Articles | Volume 17, issue 5
https://doi.org/10.5194/os-17-1473-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1473-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decadal sea-level variability in the Australasian Mediterranean Sea
GEOMAR Helmholtz Centre for Ocean Research Kiel, Ocean Circulation and Climate Dynamics, Kiel, Germany
Claus W. Böning
GEOMAR Helmholtz Centre for Ocean Research Kiel, Ocean Circulation and Climate Dynamics, Kiel, Germany
Related authors
Patrick Wagner, Markus Scheinert, and Claus W. Böning
Ocean Sci., 17, 1103–1113, https://doi.org/10.5194/os-17-1103-2021, https://doi.org/10.5194/os-17-1103-2021, 2021
Short summary
Short summary
We analyse the importance of local heat and freshwater fluxes for sea level variability in the tropical Pacific on interannual to decadal timescales by using a global ocean model. Our results suggest that they amplify sea level variability in the eastern part of the basin and dampen it in the central and western part of the domain. We demonstrate that the oceanic response allows local sea level anomalies to propagate zonally which enables remote effects of local heat and freshwater fluxes.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Patrick Wagner, Markus Scheinert, and Claus W. Böning
Ocean Sci., 17, 1103–1113, https://doi.org/10.5194/os-17-1103-2021, https://doi.org/10.5194/os-17-1103-2021, 2021
Short summary
Short summary
We analyse the importance of local heat and freshwater fluxes for sea level variability in the tropical Pacific on interannual to decadal timescales by using a global ocean model. Our results suggest that they amplify sea level variability in the eastern part of the basin and dampen it in the central and western part of the domain. We demonstrate that the oceanic response allows local sea level anomalies to propagate zonally which enables remote effects of local heat and freshwater fluxes.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Franziska U. Schwarzkopf, Arne Biastoch, Claus W. Böning, Jérôme Chanut, Jonathan V. Durgadoo, Klaus Getzlaff, Jan Harlaß, Jan K. Rieck, Christina Roth, Markus M. Scheinert, and René Schubert
Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, https://doi.org/10.5194/gmd-12-3329-2019, 2019
Short summary
Short summary
A family of nested global ocean general circulation model configurations, the INALT family, has been established with resolutions of 1/10°, 1/20° and 1/60° in the South Atlantic and western Indian oceans, covering the greater Agulhas Current (AC) system. The INALT family provides a consistent set of configurations that allows to address eddy dynamics in the AC system and their impact on the large-scale ocean circulation.
Olaf Duteil, Andreas Oschlies, and Claus W. Böning
Biogeosciences, 15, 7111–7126, https://doi.org/10.5194/bg-15-7111-2018, https://doi.org/10.5194/bg-15-7111-2018, 2018
Short summary
Short summary
Oxygen-depleted regions of the Pacific Ocean are currently expanding, which is threatening marine habitats. Based on numerical simulations, we show that the decrease in the intensity of the trade winds and the subsequent slowdown of the oceanic currents lead to a reduction in oxygen supply. Our study suggests that the prevailing positive conditions of the Pacific Decadal Oscillation since 1975, a major source of natural variability, may explain a significant part of the current deoxygenation.
Rafael Abel, Claus W. Böning, Richard J. Greatbatch, Helene T. Hewitt, and Malcolm J. Roberts
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-24, https://doi.org/10.5194/os-2017-24, 2017
Revised manuscript not accepted
Short summary
Short summary
In coupled global atmosphere ocean models a feedback from ocean surface currents to atmospheric winds was found. Surface winds are energized by about 30 % of the ocean currents. We were able to implement this feedback in uncoupled ocean models which results in a realistic surface flux coupling. Due to changes in the dissipation the kinetic energy of the time-variable flow is increased up to 10 % when this feedback is implemented. Implementation in other models should be straightforward.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
Cited articles
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS
NGDC-24, Tech. rep., National Geophysical Data Center, NOAA,
https://doi.org/10.7289/V5C8276M, 2009. a
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le
Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1,
2006. a
Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., and
Delcroix, T.: Sea level variations at tropical Pacific islands since 1950,
Global Planet. Change, 80–81, 85–98,
https://doi.org/10.1016/j.gloplacha.2011.09.004, 2012. a, b
Chen, G., Hou, Y., Chu, X., Qi, P., and Hu, P.: The variability of eddy
kinetic energy in the South China Sea deduced from satellite altimeter data,
Chin. J. Oceanol. Limn., 27, 943–954,
https://doi.org/10.1007/s00343-009-9297-6, 2009. a
Cheng, X. and Qi, Y.: Trends of sea level variations in the South China Sea
from merged altimetry data, Global Planet. Change, 57, 371–382,
https://doi.org/10.1016/j.gloplacha.2007.01.005, 2007. a, b, c, d
Cheng, X. and Qi, Y.: Variations of eddy kinetic energy in the South China
Sea, J. Oceanogr., 66, 85–94, https://doi.org/10.1007/s10872-010-0007-y,
2010. a
Clarke, A. J. and Liu, X.: Interannual Sea Level in the Northern and Eastern
Indian Ocean, J. Phys. Oceanogr., 24, 1224–1235,
https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2, 1994. a
Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M., and Leloup, J.: Observed
freshening and warming of the western Pacific Warm Pool, Clim. Dynam.,
33, 565–589, https://doi.org/10.1007/s00382-009-0526-7, 2009. a
Debreu, L., Vouland, C., and Blayo, E.: AGRIF: Adaptive grid refinement in
Fortran, Comput. Geosci., 34, 8–13,
https://doi.org/10.1016/j.cageo.2007.01.009, 2008. a
Fang, G., Chen, H., Wei, Z., Wang, Y., Wang, X., and Li, C.: Trends and
interannual variability of the South China Sea surface winds, surface height,
and surface temperature in the recent decade, J. Geophys.
Res.-Oceans, 111, C11S16, https://doi.org/10.1029/2005JC003276, 2006. a
Feng, M., Li, Y., and Meyers, G.: Multidecadal variations of Fremantle sea
level: Footprint of climate variability in the tropical Pacific, Geophys.
Res. Lett., 31, L16302, https://doi.org/10.1029/2004GL019947, 2004. a
Feng, M., Böning, C., Biastoch, A., Behrens, E., Weller, E., and
Masumoto, Y.: The reversal of the multi-decadal trends of the equatorial
Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current
transports, Geophys. Res. Lett., 38, L11604,
https://doi.org/10.1029/2011GL047291, 2011. a
Feng, M., Benthuysen, J., Zhang, N., and Slawinski, D.: Freshening anomalies
in the Indonesian throughflow and impacts on the Leeuwin Current during
2010–2011, Geophys. Res. Lett., 42, 8555–8562,
https://doi.org/10.1002/2015GL065848, 2015. a
Feng, M., Zhang, X., Sloyan, B., and Chamberlain, M.: Contribution of the deep
ocean to the centennial changes of the Indonesian Throughflow, Geophys.
Res. Lett., 44, 2859–2867, https://doi.org/10.1002/2017GL072577, 2017. a, b
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys.
Res.-Oceans, 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997. a
Forget, G. and Ponte, R. M.: The partition of regional sea level variability,
Prog. Oceanogr., 137, 173–195, https://doi.org/10.1016/j.pocean.2015.06.002,
2015. a
Gordon, A. L.: Interocean exchange of thermocline water, J.
Geophys. Res., 91, 5037–5046, https://doi.org/10.1029/jc091ic04p05037, 1986. a
Gordon, A. L.: Oceanography of the Indonesian seas and their throughflow,
Oceanography, 18, 15–27, https://doi.org/10.5670/oceanog.2005.01, 2005. a
Hamlington, B. D., Cheon, S., Thompson, P. R., Merrifield, M. A., Nerem, R. S.,
Leben, R. R., and Kim, K.-Y.: An ongoing shift in Pacific Ocean sea level,
J. Geophys. Res.-Oceans, 121, 5084–5097,
https://doi.org/10.1002/2016JC011815, 2016. a
Han, W., Stammer, D., Thompson, P., Ezer, T., Palanisamy, H., Zhang, X.,
Domingues, C. M., Zhang, L., and Yuan, D.: Impacts of Basin-Scale Climate
Modes on Coastal Sea Level: a Review, Surv. Geophys., 40, 1493–1541,
https://doi.org/10.1007/s10712-019-09562-8, 2019. a, b
Hsu, C.-W., Yin, J., Griffies, S. M., and Dussin, R.: A mechanistic analysis of tropical Pacific dynamic sea level in GFDL-OM4 under OMIP-I and OMIP-II forcings, Geosci. Model Dev., 14, 2471–2502, https://doi.org/10.5194/gmd-14-2471-2021, 2021. a
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., Gordon, A. L.,
Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T.,
Kashino, Y., Wang, F., and Kessler, W. S.: Pacific western boundary currents
and their roles in climate, Nature, 522, 299–308,
https://doi.org/10.1038/nature14504, 2015. a
International Hydrographic Organization: Limits of oceans and seas, 3rd Edition, Special Publication No. 23, Montecarlo, 1–42, 1953. a
Jie, Z. and De-Hai, L.: Response of the Kuroshio Current to Eddies in the
Luzon Strait, Atmos. Ocean. Sci. Lett., 3, 160–164,
https://doi.org/10.1080/16742834.2010.11446856, 2010. a
Kleinherenbrink, M., Riva, R., Frederikse, T., Merrifield, M., and Wada, Y.:
Trends and interannual variability of mass and steric sea level in the
Tropical Asian Seas, J. Geophys. Res.-Oceans, 122,
6254–6276, https://doi.org/10.1002/2017JC012792, 2017. a, b, c
Lee, T. and McPhaden, M. J.: Decadal phase change in large-scale sea level and
winds in the Indo-Pacific region at the end of the 20th century, Geophys.
Res. Lett., 35, L01605, https://doi.org/10.1029/2007GL032419, 2008. a
Liu, Q., Wang, D., Zhou, W., Xie, Q., and Zhang, Y.: Covariation of the
Indonesian Throughflow and South China Sea Throughflow Associated with the
1976/77 Regime Shift, Adv. Atmos. Sci., 27, 87–94,
https://doi.org/10.1007/s00376-009-8061-3, 2010. a
Liu, Q., Feng, M., and Wang, D.: ENSO-induced interannual variability in the
southeastern South China Sea, J. Phys. Oceanogr., 67,
127–133, https://doi.org/10.1007/s10872-011-0002-y, 2011. a
Liu, Q.-Y., Feng, M., Wang, D., and Wijffels, S.: Interannual variability of
the Indonesian Throughflow transport: A revisit based on 30 year expendable
bathythermograph data, J. Geophys. Res.-Oceans, 120,
6405–6418, https://doi.org/10.1002/2015JC011351, 2015. a
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M.,
Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and
Smolyar, I. V.: World Ocean Atlas 2018, Volume 1: Temperature, Tech. rep.,
NOAA, Silver Spring, available at:
https://www.ncei.noaa.gov/sites/default/files/2021-03/woa18_vol1.pdf (last access: 18 October 2021), 2019. a
Madec, G. and NEMO-team: NEMO Ocean Engine, Tech. Rep. 27, Institut
Pierre-Simon Laplace (IPSL), Paris, https://doi.org/10.5281/zenodo.1464816, 2016. a
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A
Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production,
B. Am. Meteorol. Soc., 78, 1069–1079,
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2, 1997. a
McGregor, S., Gupta, A. S., and England, M. H.: Constraining wind stress
products with sea surface height observations and implications for Pacific
Ocean sea level trend attribution, J. Climate, 25, 8164–9176,
https://doi.org/10.1175/JCLI-D-12-00105.1, 2012. a, b
Meng, L., Zhuang, W., Zhang, W., Ditri, A., and Yan, X. H.: Decadal sea level
variability in the Pacific Ocean: Origins and climate mode contributions,
J. Atmos. Ocean. Tech., 36, 689–698,
https://doi.org/10.1175/JTECH-D-18-0159.1, 2019. a
Merrifield, M. A.: A shift in western tropical Pacific sea level trends during
the 1990s, J. Climate, 24, 4126–4138, https://doi.org/10.1175/2011JCLI3932.1,
2011. a
Merrifield, M. A. and Maltrud, M. E.: Regional sea level trends due to a
Pacific trade wind intensification, Geophys. Res. Lett., 38, L21605,
https://doi.org/10.1029/2011GL049576, 2011. a
Merrifield, M. A., Thompson, P. R., and Lander, M.: Multidecadal sea level
anomalies and trends in the western tropical Pacific, Geophys. Res.
Lett., 39, L3602, https://doi.org/10.1029/2012GL052032, 2012. a, b
Meyers, G.: Variation of Indonesian Throughflow and the El Nino-southern
oscillation, J. Geophys. Res., 101, 212–255, 1996. a
Moon, J. H. and Song, Y. T.: Sea level and heat content changes in the western
North Pacific, J. Geophys. Res.-Oceans, 118, 2014–2022,
https://doi.org/10.1002/jgrc.20096, 2013. a
Moon, J. H., Song, Y. T., Bromirski, P. D., and Miller, A. J.: Multidecadal
regional sea level shifts in the Pacific over 1958–2008, J.
Geophys. Res.-Oceans, 118, 7024–7035, https://doi.org/10.1002/2013JC009297,
2013. a, b
Nan, F., Xue, H., and Yu, F.: Kuroshio intrusion into the South China Sea: A
review, Prog. Oceanogr., 137, 314–333,
https://doi.org/10.1016/j.pocean.2014.05.012, 2015. a
Peng, D., Palanisamy, H., Cazenave, A., and Meyssignac, B.: Interannual Sea
Level Variations in the South China Sea Over 1950–2009, Mar. Geod., 36,
164–182, https://doi.org/10.1080/01490419.2013.771595, 2013. a
Piecuch, C. G. and Ponte, R. M.: Mechanisms of interannual steric sea level
variability, Geophys. Res. Lett., 38, L15605,
https://doi.org/10.1029/2011GL048440, 2011. a
Piecuch, C. G. and Ponte, R. M.: Buoyancy-driven interannual sea level changes
in the southeast tropical Pacific, Geophys. Res. Lett., 39, 1–5,
https://doi.org/10.1029/2012GL051130, 2012. a
Piecuch, C. G., Thompson, P. R., and Hamlington, B. D.: What Caused Recent
Shifts in Tropical Pacific Decadal Sea-Level Trends?, J.
Geophys. Res.-Oceans, 124, 7575–7590, https://doi.org/10.1029/2019JC015339,
2019. a, b
Ponte, R. M.: An assessment of deep steric height variability over the global
ocean, Geophys. Res. Lett., 39, L04601, https://doi.org/10.1029/2011GL050681,
2012. a
Qiu, B. and Chen, S.: Multidecadal Sea Level and Gyre Circulation Variability
in the Northwestern Tropical Pacific Ocean, J. Phys.
Oceanogr., 42, 193–206, https://doi.org/10.1175/JPO-D-11-061.1, 2012. a
Qu, T., Kim, Y. Y., Yaremchuk, M., Tuzuka, T., Ishida, A., and Yamagata, T.:
Can Luzon Strait transport play a role in conveying the impact of ENSO to
the South China Sea?, J. Climate, 17, 3644–3657,
https://doi.org/10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2, 2004. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V.,
Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002jd002670, 2003. a
Rong, Z., Liu, Y., Zong, H., and Cheng, Y.: Interannual sea level variability
in the South China Sea and its response to ENSO, Global Planet.
Change, 55, 257–272, https://doi.org/10.1016/j.gloplacha.2006.08.001, 2007. a, b, c
Ryan, S., Ummenhofer, C. C., Gawarkiewicz, G., Wagner, P., Scheinert, M.,
Biastoch, A., and Böning, C. W.: Depth structure of Ningaloo
Niño/Niña events and associated drivers, J. Climate, 34,
1767–1788, https://doi.org/10.1175/jcli-d-19-1020.1, 2021. a
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole
mode in the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999. a, b
Scharffenberg, M. G. and Stammer, D.: Seasonal variations of the large-scale
geostrophic flow field and eddy kinetic energy inferred from the
TOPEX/Poseidon and Jason-1 tandem mission data, J. Geophys.
Res.-Oceans, 115, C02008, https://doi.org/10.1029/2008JC005242, 2010. a
Schwarzkopf, F. U., Biastoch, A., Böning, C. W., Chanut, J., Durgadoo, J. V., Getzlaff, K., Harlaß, J., Rieck, J. K., Roth, C., Scheinert, M. M., and Schubert, R.: The INALT family – a set of high-resolution nests for the Agulhas Current system within global NEMO ocean/sea-ice configurations, Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, 2019. a
Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T.,
Pujiana, K., Wijffels, S. E., and Wij, S. E.: The Indonesian seas and their
role in the coupled ocean–climate system, Nat. Geosci., 7, 487–492,
https://doi.org/10.1038/ngeo2188, 2014. a
Stewart, K. D., Kim, W. M., Urakawa, S., Hogg, A. M. C., Yeager, S., Tsujino,
H., Nakano, H., Kiss, A. E., and Danabasoglu, G.: JRA55-do-based repeat year
forcing datasets for driving ocean–sea-ice models, Ocean Model., 147,
1–27, https://doi.org/10.1016/j.ocemod.2019.101557, 2020. a, b
Strassburg, M. W., Hamlington, B. D., Leben, R. R., Manurung, P., Lumban Gaol, J., Nababan, B., Vignudelli, S., and Kim, K.-Y.: Sea level trends in Southeast Asian seas, Clim. Past, 11, 743–750, https://doi.org/10.5194/cp-11-743-2015, 2015. a, b, c, d
Sun, C., Feng, M., Matear, R. J., Chamberlain, M. A., Craig, P., Ridgway,
K. R., and Schiller, A.: Marine downscaling of a future climate scenario for
Australian boundary currents, J. Climate, 25, 2947–2962,
https://doi.org/10.1175/JCLI-D-11-00159.1, 2012. a
Sun, Z., Zhang, Z., Zhao, W., and Tian, J.: Interannual modulation of eddy
kinetic energy in the northeastern South China Sea as revealed by an
eddy-resolving OGCM, J. Geophys. Res.-Oceans, 121,
3190–3201, https://doi.org/10.1002/2015JC011497, 2016. a
Thomson, R. and Emery, W.: Data Analysis Methods in Physical Oceanography, Elsevier Science, 3 edn., Amsterdam, 2014. a
Timmermann, A., McGregor, S., and Jin, F. F.: Wind effects on past and future
regional sea level trends in the southern Indo-Pacific, J. Climate,
23, 4429–4437, https://doi.org/10.1175/2010JCLI3519.1, 2010. a
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: an Introduction, Daya
Publishing House, Delhi, 2 edn., 2003. a
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G.,
Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W.,
Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do),
Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a, b
Ummenhofer, C. C., Ryan, S., England, M. H., Scheinert, M., Wagner, P.,
Biastoch, A., and Böning, C. W.: Late 20th Century Indian Ocean Heat
Content Gain Masked by Wind Forcing, Geophys. Res. Lett., 47,
e2020GL088692, https://doi.org/10.1029/2020GL088692, 2020. a
Wagner, P. and Böning, C. W.: Supplementary Data
to “Decadal sea-level variability in the Australasian Mediterranean Sea”, GEOMAR [supplementary data set], available
at: https://data.geomar.de/downloads/20.500.12085/e300e837-c02e-4939-a9b6-a9be163cbd26/, last access: 18 October 2021. a
Wagner, P., Scheinert, M., and Böning, C. W.: Contribution of buoyancy fluxes to tropical Pacific sea level variability, Ocean Sci., 17, 1103–1113, https://doi.org/10.5194/os-17-1103-2021, 2021. a, b, c
Wainwright, L., Meyers, G., Wijffels, S., and Pigot, L.: Change in the
Indonesian Throughflow with the climatic shift of 1976/77, Geophys.
Res. Lett., 35, L03604, https://doi.org/10.1029/2007GL031911, 2008. a
Wang, C. and Fiedler, P. C.: ENSO variability and the eastern tropical
Pacific: A review, Prog. Oceanogr., 69, 239–266,
https://doi.org/10.1016/j.pocean.2006.03.004, 2006. a
Wang, G., Chen, D., and Su, J.: Winter eddy genesis in the eastern South China
Sea due to orographic wind jets, J. Phys. Oceanogr., 38,
726–732, https://doi.org/10.1175/2007JPO3868.1, 2008. a
Wijffels, S. and Meyers, G.: An Intersection of Oceanic Waveguides:
Variability in the Indonesian Throughflow Region, J. Phys.
Oceanogr., 34, 1232–1253,
https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2, 2004. a, b
Wu, C. R. and Chang, C. W.: Interannual variability of the South China Sea in
a data assimilation model, Geophys. Res. Lett., 32, L17611,
https://doi.org/10.1029/2005GL023798, 2005. a
Xue, P., Malanotte-Rizzoli, P., Wei, J., and Eltahir, E. A.: Coupled
Ocean-Atmosphere Modeling Over the Maritime Continent: A Review, J.
Geophys. Res.-Oceans, 125, e2019JC014978, https://doi.org/10.1029/2019JC014978, 2020. a
Zhuang, W., Qiu, B., and Du, Y.: Low-frequency western Pacific Ocean sea level
and circulation changes due to the connectivity of the Philippine
archipelago, J. Geophys. Res.-Oceans, 118, 6759–6773,
https://doi.org/10.1002/2013JC009376, 2013. a, b
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Antonov, J. I.,
Locarnini, R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers,
K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 2:
Salinity, Tech. Rep. 82, NOAA, Silver Spring, 2019. a
Short summary
We characterized the pattern and magnitude of decadal sea-level variability in the Australasian Mediterranean Sea by using high-resolution ocean models. Our results suggest low-frequency ENSO variations and PDO-related changes as a primary source of variability. Sensitivity experiments indicate that anomalies are primarily driven by wind stress fluctuation but are also amplified by local heat and freshwater fluxes. Intrinsic variability is relevant in the South China Sea.
We characterized the pattern and magnitude of decadal sea-level variability in the Australasian...