Articles | Volume 17, issue 4
https://doi.org/10.5194/os-17-1031-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1031-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global contributions of mesoscale dynamics to meridional heat transport
Andrew Delman
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Tong Lee
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Related authors
Andrew Delman and Tong Lee
Ocean Sci., 16, 979–995, https://doi.org/10.5194/os-16-979-2020, https://doi.org/10.5194/os-16-979-2020, 2020
Short summary
Short summary
The oceans play an important role in moving heat between the equatorial and polar regions, with both large current systems and smaller eddies contributing to this heat transport. This analysis separates the contribution of the larger-scale and eddy-scale flows in the North Atlantic, finding that eddy-scale flows account for 25–35 % of the heat transport in middle latitudes near 40° N. The study also shows how the year-to-year variability of eddies contributes to heat transport changes at 40° N.
Andrew Delman, Janet Sprintall, Julie McClean, and Lynne Talley
Ocean Sci. Discuss., https://doi.org/10.5194/os-2016-1, https://doi.org/10.5194/os-2016-1, 2016
Revised manuscript not accepted
Short summary
Short summary
Eastward-propagating Kelvin waves are important to the development of coupled climate modes such as El Niño and the Indian Ocean Dipole. The new decomposition method presented isolates the waves' signal from sea surface height variations. The Kelvin waves are tracked effectively even when superimposed with westward-propagating waves of higher amplitude in a noisy field. When applied to satellite data, the decomposition of eastward- and westward-propagating signals is consistent with theory.
Andrew Delman and Tong Lee
Ocean Sci., 16, 979–995, https://doi.org/10.5194/os-16-979-2020, https://doi.org/10.5194/os-16-979-2020, 2020
Short summary
Short summary
The oceans play an important role in moving heat between the equatorial and polar regions, with both large current systems and smaller eddies contributing to this heat transport. This analysis separates the contribution of the larger-scale and eddy-scale flows in the North Atlantic, finding that eddy-scale flows account for 25–35 % of the heat transport in middle latitudes near 40° N. The study also shows how the year-to-year variability of eddies contributes to heat transport changes at 40° N.
Andrew Delman, Janet Sprintall, Julie McClean, and Lynne Talley
Ocean Sci. Discuss., https://doi.org/10.5194/os-2016-1, https://doi.org/10.5194/os-2016-1, 2016
Revised manuscript not accepted
Short summary
Short summary
Eastward-propagating Kelvin waves are important to the development of coupled climate modes such as El Niño and the Indian Ocean Dipole. The new decomposition method presented isolates the waves' signal from sea surface height variations. The Kelvin waves are tracked effectively even when superimposed with westward-propagating waves of higher amplitude in a noisy field. When applied to satellite data, the decomposition of eastward- and westward-propagating signals is consistent with theory.
Cited articles
Abernathey, R. and Haller, G.: Transport by Lagrangian vortices in the eastern Pacific, J. Phys. Oceanogr., 48, 667–685, https://doi.org/10.1175/JPO-D-17-0102.1, 2018. a
Bolton, T., Abernathey, R., and Zanna, L.: Regional and temporal variability of lateral mixing in the North Atlantic, J. Phys. Oceanogr., 49, 2601–2614, 2019. a
Boulanger, J.-P. and Menkès, C.: Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period, Clim. Dynam., 15, 205–225, 1999. a
Chaigneau, A. and Pizarro, O.: Eddy characteristics in the eastern South
Pacific, J. Geophys. Res.-Oceans, 110, C06005, https://doi.org/10.1029/2004JC002815, 2005. a
Charney, J. G. and Stern, M.: On the stability of internal baroclinic jets in a rotating atmosphere, J. Atmos. Sci., 19, 159–172, 1962. a
Computational and Information Systems Laboratory: Yellowstone: IBM
iDataPlex System (University Community Computing), National Center for
Atmospheric Research, Boulder, CO, available at: http://n2t.net/ark:/85065/d7wd3xhc (last access: 26 July 2021), 2016. a
Copernicus Marine Service: Global ocean gridded L4 sea surface
heights and derived variables reprocessed (1993–ongoing),
SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047, Copernicus Marine Service [data set],
available at: http://marine.copernicus.eu/services-portfolio/access-to-products/, last access: 26 July 2021. a
Cox, M. D.: An eddy resolving numerical model of the ventilated thermocline, J. Phys. Oceanogr., 15, 1312–1324, 1985. a
Delman, A. S., McClean, J. L., Sprintall, J., Talley, L. D., and Bryan, F. O.: Process-specific contributions to anomalous Java mixed layer cooling during positive IOD events, J. Geophys. Res.-Oceans, 123, 4153–4176, 2018. a
Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nat. Commun., 5, 1–6, 2014. a
Dong, D., Brandt, P., Chang, P., Schütte, F., Yang, X., Yan, J., and Zeng, J.: Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports, J. Geophys. Res.-Oceans, 122, 9795–9813, 2017. a
Ducet, N., Traon, P. Y. L., and Reverdin, G.: Global high–resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res., 105, 19477–19498, 2000. a
Eady, E. T.: Long waves and cyclone waves, Tellus, 1, 33–52, 1949. a
Eden, C. and Greatbatch, R. J.: Towards a mesoscale eddy closure, Ocean Model., 20, 223–239, 2008. a
Ferrari, R. and Nikurashin, M.: Suppression of eddy diffusivity across jets in the Southern Ocean, J. Phys. Oceanogr., 40, 1501–1519, 2010. a
George, T., Manucharyan, G., and Thompson, A.: Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence, Nat. Commun., 12, 1–11, https://doi.org/10.1038/s41467-020-20779-9,
2019. a
Greatbatch, R., Zhai, X., Claus, M., Czeschel, L., and Rath, W.: Transport driven by eddy momentum fluxes in the Gulf Stream Extension region, Geophys. Res. Lett., 37, L24401, https://doi.org/10.1029/2010GL045473, 2010. a
Green, J.: Transfer properties of the large-scale eddies and the general circulation of the atmosphere, Q. J. Roy. Meteor. Soc., 96, 157–185, 1970. a
Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A., Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models, J. Climate, 28, 952–977, 2015. a
Groeskamp, S., LaCasce, J. H., McDougall, T. J., and Rogé, M.: Full-depth global estimates of ocean mesoscale eddy mixing from observations and theory, Geophys. Res. Lett., 47, e2020GL089425, https://doi.org/10.1029/2020GL089425, 2020. a
Hall, N. M. J., Barnier, B., Penduff, T., and Molines, J.-M.: Interannual variation of Gulf Stream heat transport in a high-resolution model forced by reanalysis data, Clim. Dynam., 23, 341–351, 2004. a
Hallberg, R.: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects, Ocean Model., 72, 92–103, 2013. a
Holloway, G.: Estimation of oceanic eddy transports from satellite altimetry, Nature, 323, 243–244, 1986. a
Jochum, M. and Murtugudde, R.: Temperature advection by tropical instability waves, J. Phys. Oceanogr., 36, 592–605, 2006. a
Johnson, B. K., Bryan, F. O., Grodsky, S. A., and Carton, J. A.: Climatological annual cycle of the salinity budgets of the subtropical maxima, J. Phys. Oceanogr., 46, 2981–2994, 2016. a
Klocker, A. and Abernathey, R.: Global patterns of mesoscale eddy properties and diffusivities, J. Phys. Oceanogr., 44, 1030–1046, 2014. a
Large, W. G. and Yeager, S. G.: Diurnal and decadal global forcing for ocean
and sea-ice models: the data sets and flux climatologies, NCAR Tech. Note, National Center
for Atmospheric Research, Boulder, CO, USA,
NCAR/TN-460+STR, 2004. a
Large, W. G. and Yeager, S. G.: The climatology of an interannually–varying air sea flux data set, Clim. Dynam., 33, 341–364, 2009. a
Laxenaire, R., Speich, S., Blanke, B., Chaigneau, A., Pegliasco, C., and Stegner, A.: Anticyclonic eddies connecting the western boundaries of Indian and Atlantic oceans, J. Geophys. Res.-Oceans, 123, 7651–7677, 2018. a
Laxenaire, R., Speich, S., and Stegner, A.: Agulhas Ring Heat Content and Transport in the South Atlantic Estimated by Combining Satellite Altimetry and Argo Profiling Floats Data, J. Geophys. Res.-Oceans, 125, e2019JC015511, https://doi.org/10.1029/2019JC015511, 2020. a
Los Alamos National Laboratory and National Center for Atmospheric
Research: Parallel Ocean Program 2.1 source code, University Corporation for Atmospheric Research [code], available
at: https://www.cesm.ucar.edu/models/cesm1.0/pop2/, last access:
26 July 2021. a
Marshall, D. P., Maddison, J. R., and Berloff, P. S.: A framework for parameterizing eddy potential vorticity fluxes, J. Phys. Oceanogr., 42, 539–557, 2012. a
Marshall, J. and Shutts, G.: A note on rotational and divergent eddy fluxes, J. Phys. Oceanogr., 11, 1677–1680, 1981. a
McPhaden, M. J. and Yu, X.: Equatorial waves and the 1997–98 El Niño, Geophys. Res. Lett., 26, 2961–2964, 1999. a
Müller, V. and Melnichenko, O.: Decadal Changes of Meridional Eddy Heat Transport in the Subpolar North Atlantic Derived From Satellite and In Situ Observations, J. Geophys. Res.-Oceans, 125, e2020JC016081, https://doi.org/10.1029/2020JC016081, 2020. a
Müller, V., Kieke, D., Myers, P. G., Pennelly, C., Steinfeldt, R., and Stendardo, I.: Heat and freshwater transport by mesoscale eddies in the southern subpolar North Atlantic, J. Geophys. Res.-Oceans, 124, 5565–5585, 2019. a
National Center for Atmospheric Research: Computational & Information Systems Lab website, National Center for Atmospheric Research [data set], available at: https://www2.cisl.ucar.edu, last access: 26 July 2021. a
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) reference
manual, Tech. Rep. LAUR-10-01853, Los Alamos National Laboratory, and National
Center for Atmospheric Research, Los Alamos, NM, USA, 2010. a
Talley, L. D.: Shallow, intermediate, and deep overturning components of the global heat budget, J. Phys. Oceanogr., 33, 530–560, 2003. a
Tréguier, A.-M., Deshayes, J., Lique, C., Dussin, R., and Molines, J.-M.: Eddy contributions to the meridional transport of salt in the North Atlantic, J. Geophys. Res.-Oceans, 117, C05010, https://doi.org/10.1029/2012JC007927, 2012. a
Ushakov, K. and Ibrayev, R.: Assessment of mean world ocean meridional heat transport characteristics by a high-resolution model, Russian Journal of Earth Sciences, 18, ES1004, https://doi.org/10.2205/2018ES000616, 2018. a
Volkov, D. L., Lee, T., and Fu, L.-L.: Eddy-induced meridional heat transport in the ocean, Geophys. Res. Lett., 35, L20601, https://doi.org/10.1029/2008GL035490, 2008. a, b, c
Volkov, D. L., Fu, L.-L., and Lee, T.: Mechanisms of the meridional heat transport in the Southern Ocean, Ocean Dynam., 60, 791–801, 2010. a
Wekerle, C., Wang, Q., Danilov, S., Schourup-Kristensen, V., von Appen, W.-J., and Jung, T.: Atlantic Water in the Nordic Seas: Locally eddy-permitting ocean simulation in a global setup, J. Geophys. Res.-Oceans, 122, 914–940, 2017. a
Zhao, J., Bower, A., Yang, J., Lin, X., and Holliday, N. P.: Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic, Nat. Commun., 9, 1–9, 2018. a
Short summary
This study quantifies the influence of ocean eddies and other
mesoscalephenomena (spanning 50–1000 km) on heat movement. The method used gives different results than earlier studies by classifying motions based on their variation in space, not time. The effect of major ocean currents on heat movement in the ocean depends on the currents' mesoscale structure. Mesoscale processes also impact year-to-year changes in heat movement, especially at middle latitudes and in the tropical Pacific.
This study quantifies the influence of ocean eddies and other
mesoscalephenomena (spanning...