Articles | Volume 16, issue 4
https://doi.org/10.5194/os-16-927-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-927-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling mussel (Mytilus spp.) microplastic accumulation
Natalia Stamataki
Department of Physics, Section of Environmental Physics and Meteorology, National and Kapodistrian University of Athens, 15784 Athens, Greece
Hellenic Centre for Marine Research (HCMR), 71003 Heraklion, Greece
Yannis Hatzonikolakis
Hellenic Centre for Marine Research (HCMR), Athens-Sounio Avenue,
Mavro Lithari, 19013 Anavyssos, Greece
Department of Biology, National and Kapodistrian University of Athens,
15784, Greece
Kostas Tsiaras
Hellenic Centre for Marine Research (HCMR), Athens-Sounio Avenue,
Mavro Lithari, 19013 Anavyssos, Greece
Catherine Tsangaris
Hellenic Centre for Marine Research (HCMR), Athens-Sounio Avenue,
Mavro Lithari, 19013 Anavyssos, Greece
George Petihakis
Hellenic Centre for Marine Research (HCMR), 71003 Heraklion, Greece
Sarantis Sofianos
Department of Physics, Section of Environmental Physics and Meteorology, National and Kapodistrian University of Athens, 15784 Athens, Greece
George Triantafyllou
CORRESPONDING AUTHOR
Hellenic Centre for Marine Research (HCMR), Athens-Sounio Avenue,
Mavro Lithari, 19013 Anavyssos, Greece
Related authors
No articles found.
Konstantinos Kampouris, Vassilios Vervatis, John Karagiorgos, and Sarantis Sofianos
Ocean Sci., 17, 919–934, https://doi.org/10.5194/os-17-919-2021, https://doi.org/10.5194/os-17-919-2021, 2021
Short summary
Short summary
The wind is a source of uncertainty in oil spill modeling. We performed oil spill ensemble simulations using an atmospheric ensemble to quantify this uncertainty. We investigate the reliability of oil spill ensemble prediction used as an important forecasting tool to better plan mitigation procedures in the event of an oil spill.
Vassilios D. Vervatis, Pierre De Mey-Frémaux, Nadia Ayoub, Sarantis Sofianos, Charles-Emmanuel Testut, Marios Kailas, John Karagiorgos, and Malek Ghantous
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-31, https://doi.org/10.5194/gmd-2019-31, 2019
Revised manuscript not accepted
Short summary
Short summary
Our contributions were specifically targeted at the generation of ensembles, in particular (but not solely) for high-resolution ocean configurations including regional and coastal physics and biogeochemistry. The most important paradigm of this work was to adopt a balanced approach building ocean biogeochemical model ensembles and testing their relevance against observational networks monitoring upper-ocean properties, in the sense of nonzero joint probabilities.
George Petihakis, Leonidas Perivoliotis, Gerasimos Korres, Dionysios Ballas, Constantin Frangoulis, Paris Pagonis, Manolis Ntoumas, Manos Pettas, Antonis Chalkiopoulos, Maria Sotiropoulou, Margarita Bekiari, Alkiviadis Kalampokis, Michalis Ravdas, Evi Bourma, Sylvia Christodoulaki, Anna Zacharioudaki, Dimitris Kassis, Emmanuel Potiris, George Triantafyllou, Kostas Tsiaras, Evangelia Krasakopoulou, Spyros Velanas, and Nikos Zisis
Ocean Sci., 14, 1223–1245, https://doi.org/10.5194/os-14-1223-2018, https://doi.org/10.5194/os-14-1223-2018, 2018
Short summary
Short summary
Integrated oceanic observations on multiple processes including biogeochemistry are scarce. In the eastern Mediterranean (Cretan Sea) the spatiotemporal coverage of such observations has increased with the expansion of the POSEIDON observatory. The observatory addresses scientific questions, provides services to policy makers and society, and serves as a technological test bed. It plays a key role in European and international observing programs, in harmonization procedures and data handling.
Athanasia Iona, Athanasios Theodorou, Sarantis Sofianos, Sylvain Watelet, Charles Troupin, and Jean-Marie Beckers
Earth Syst. Sci. Data, 10, 1829–1842, https://doi.org/10.5194/essd-10-1829-2018, https://doi.org/10.5194/essd-10-1829-2018, 2018
Short summary
Short summary
The paper introduces a new product composed of a set of climatic indices from 1950 to 2015 for the Mediterranean Sea. It is produced from a high-resolution decadal climatology of temperature and salinity on a 1/8 degree regular grid based on the SeaDataNet V2 historical data collection. The climatic indices can contribute to the studies of the long-term variability of the Mediterranean Sea and the better understanding of the complex response of the region to the ongoing global climate change.
Emmanuel Potiris, Constantin Frangoulis, Alkiviadis Kalampokis, Manolis Ntoumas, Manos Pettas, George Petihakis, and Vassilis Zervakis
Ocean Sci., 14, 783–800, https://doi.org/10.5194/os-14-783-2018, https://doi.org/10.5194/os-14-783-2018, 2018
Short summary
Short summary
Zooplankton and fishes found below a depth of 200 m may perform a vertical migration to the surface waters. The migration patterns (from 400 m to the surface) of four groups of organisms were studied in the deep (1500 m) eastern Mediterranean (Cretan Sea) for 2.5 years. The lunar cycle, daylight duration, cloudiness and presence of predators and prey explain their migration variability. This phenomenon is important as it constitutes an active transport of organic matter over large distances.
M. Ličer, P. Smerkol, A. Fettich, M. Ravdas, A. Papapostolou, A. Mantziafou, B. Strajnar, J. Cedilnik, M. Jeromel, J. Jerman, S. Petan, V. Malačič, and S. Sofianos
Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, https://doi.org/10.5194/os-12-71-2016, 2016
Short summary
Short summary
We compare the northern Adriatic response to an extreme bora event, as simulated by one-way and two-way (i.e. with ocean feedback to the atmosphere) atmosphere-ocean coupling. We show that two-way coupling yields significantly better estimates of heat fluxes, most notably sensible heat flux, across the air-sea interface. When compared to observations in the northern Adriatic, two-way coupled system consequently leads to a better representation of ocean temperatures throughout the event.
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
Cited articles
Alunno-Bruscia, M., Bourlès, Y., Maurer, D., Robert, S., Mazurié,
J., Gangnery, A., Goulletquer, P., and Pouvreau, S.: A single bio-energetics
growth and reproduction model for the oyster Crassostrea gigas in six
Atlantic ecosystems, J. Sea Res., 66, 340–348,
https://doi.org/10.1016/j.seares.2011.07.008, 2011.
Anderson, J. C., Park, B. J., and Palace, V. P.: Microplastics in aquatic
environments: Implications for Canadian ecosystems, Environ. Pollut., 218,
269–280, https://doi.org/10.1016/j.envpol.2016.06.074, 2016.
Andrady, A. L.: Microplastics in the marine environment, Mar. Pollut. Bull., 62, 1596–1605, https://doi.org/10.1016/j.marpolbul.2011.05.030, 2011.
ACRI-ST: GlobColour data, available at: http://www.globcolour.info/, last access: 28 July 2020.
Arthur, C., Baker, J., and Bamford, H. (Eds): Proceedings of the International
Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine
Debris, University of Washington Tacoma, Tacoma, WA, USA, 9–11 September 2008, NOAA Technical Memorandum NOS-OR and R-30, 2009.
Bacher, C. and Gangnery, A.: Use of dynamic energy budget and individual
based models to simulate the dynamics of cultivated oyster populations, J.
Sea Res., 56, 140–155, https://doi.org/10.1016/j.seares.2006.03.004, 2006.
Bayne, B. and Worrall, C.: Growth and Production of Mussels Mytilus edulis
from Two Populations, Mar. Ecol. Prog. Ser., 3, 317–328, https://doi.org/10.3354/meps003317, 1980.
Bayne, B. L., Hawkins, A. J. S., and Navarro, E.: Feeding and digestion by
the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and
algal cells at low concentrations, J. Exp. Mar. Bio. Ecol., 111, 1–22,
https://doi.org/10.1016/0022-0981(87)90017-7, 1987.
Béjaoui-Omri, A., Béjaoui, B., Harzallah, A., Aloui-Béjaoui, N.,
El Bour, M., and Aleya, L.: Dynamic energy budget model: a monitoring tool
for growth and reproduction performance of Mytilus galloprovincialis in
Bizerte Lagoon (Southwestern Mediterranean Sea), Environ. Sci. Pollut. Res.,
21, 13081–13094, https://doi.org/10.1007/s11356-014-3265-1, 2014.
Beyer, J., Green, N. W., Brooks, S., Allan, I. J., Ruus, A., Gomes, T.,
Bråte, I. L. N., and Schøyen, M.: Blue mussels (Mytilus edulis spp.)
as sentinel organisms in coastal pollution monitoring: A review, Mar.
Environ. Res., 130, 338–365, https://doi.org/10.1016/j.marenvres.2017.07.024, 2017.
Birnstiel, S., Soares-Gomes, A., and da Gama, B. A. P.: Depuration reduces
microplastic content in wild and farmed mussels, Mar. Pollut. Bull., 140,
241–247, https://doi.org/10.1016/j.marpolbul.2019.01.044, 2019.
Bourlès, Y., Alunno-Bruscia, M., Pouvreau, S., Tollu, G., Leguay, D.,
Arnaud, C., Goulletquer, P., and Kooijman, S. A. L. M.: Modelling growth and
reproduction of the Pacific oyster Crassostrea gigas: Advances in the
oyster-DEB model through application to a coastal pond, J. Sea Res.,
62, 62–71, https://doi.org/10.1016/j.seares.2009.03.002, 2009.
Bråte, I. L. N., Hurley, R., Iversen, K., Beyer, J., Thomas, K. V.,
Steindal, C. C., Green, N. W., Olsen, M., and Lusher, A.: Mytilus spp. as
sentinels for monitoring microplastic pollution in Norwegian coastal waters:
A qualitative and quantitative study, Environ. Pollut., 243, 383–393,
https://doi.org/10.1016/j.envpol.2018.08.077, 2018.
Brewin, R., Ciavatta, S., Sathyendranath, S., Jackson, T., Tilstone, G., and
Curran, K.: Uncertainty in Ocean-Color Estimates of Chlorophyll for
Phytoplankton Groups, Front. Mar. Sci., 4, 104, https://doi.org/10.3389/fmars.2017.00104,
2017.
Browne, M. A., Galloway, T., and Thompson, R.: Microplastic – an emerging contaminant of potential concern?, Integr. Environ. Assess. Manag., 3,
559–561, https://doi.org/10.1002/ieam.5630030412, 2007.
Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., and Thompson,
R. C.: Ingested microscopic plastic translocates to the circulatory system
of the mussel, Mytilus edulis (L.), Environ. Sci. Technol., 42,
5026–5031, https://doi.org/10.1021/es800249a, 2008.
Browne, M. A.: Sources and Pathways of Microplastics to Habitats, in: Marine Anthropogenic Litter, edited by: Bergmann M., Gutow L., and Klages M., Springer, Cham., 229–244, https://doi.org/10.1007/978-3-319-16510-3_9, 2015.
Capolupo, M., Franzellitti, S., Valbonesi, P., Lanzas, C. S., and Fabbri, E.:
Uptake and transcriptional effects of polystyrene microplastics in larval
stages of the Mediterranean mussel Mytilus galloprovincialis, Environ.
Pollut., 241, 1038–1047, https://doi.org/10.1016/j.envpol.2018.06.035, 2018.
Cardoso, J. F. M. F., Dekker, R., Witte, J. I. J., and ven der Veer, H. W.:
Is reproductive failure responsible for reduced recruitment of intertidal
Mytilus edulis L. in the western Dutch Wadden Sea?, Senck.
Marit., 37, 83–92, https://doi.org/10.1007/BF03043695, 2007.
Casas, S. and Bacher, C.: Modelling trace metal (Hg and Pb) bioaccumulation
in the Mediterranean mussel, Mytilus galloprovincialis, applied to
environmental monitoring, J. Sea Res., 56, 168–181,
https://doi.org/10.1016/j.seares.2006.03.006, 2006.
Ciavatta, S., Kay, S., Brewin, R. J. W., Cox, R., Di Cicco, A., Nencioli,
F., Polimene, L., Sammartino, M., Santoleri, R., Skákala, J., and
Tsapakis, M.: Ecoregions in the Mediterranean Sea Through the Reanalysis of
Phytoplankton Functional Types and Carbon Fluxes, J. Geophys. Res.-Oceans,
124, 6737–6759, https://doi.org/10.1029/2019JC015128, 2019.
Cole, M., Lindeque, P., Halsband, C., and Galloway, T. S.: Microplastics as contaminants in the marine environment: A review, Mar. Pollut. Bull.,
62, 2588–2597, https://doi.org/10.1016/j.marpolbul.2011.09.025, 2011.
Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., and Galloway, T. S.: Microplastic ingestion by zooplankton, Environ. Sci.
Technol., 47, 6646–6655, https://doi.org/10.1021/es400663f, 2013.
Cucci, T. L., Shumway, S. E., Brown, W. S., and Newell, C. R.: Using
phytoplankton and flow cytometry to analyze grazing by marine organisms,
Cytometry, 10, 659–669, https://doi.org/10.1002/cyto.990100523, 1989.
Daewel, U., Peck, M. A., Kühn, W., St. John, M. A., Alekseeva, I., and
Schrum, C.: Coupling ecosystem and individual-based models to simulate the
influence of environmental variability on potential growth and survival of
larval sprat (Sprattus sprattus L.) in the North Sea, Fish. Oceanogr.,
17, 333–351, https://doi.org/10.1111/j.1365-2419.2008.00482.x, 2008.
de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., and Futter, M. N.:
Studies of the effects of microplastics on aquatic organisms: What do we
know and where should we focus our efforts in the future?, Sci. Total
Environ., 645, 1029–1039, https://doi.org/10.1016/j.scitotenv.2018.07.207, 2018.
De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G.,
Cooreman, K., and Robbens, J.: Quality assessment of the blue mussel (Mytilus
edulis): Comparison between commercial and wild types, Mar. Pollut. Bull.,
85, 146–155, https://doi.org/10.1016/j.marpolbul.2014.06.006, 2014.
Di Cicco, A., Sammartino, M., Marullo, S., and Santoleri, R.: Regional
Empirical Algorithms for an Improved Identification of Phytoplankton
Functional Types and Size Classes in the Mediterranean Sea Using Satellite
Data, Front. Mar. Sci., 4, 126, https://doi.org/10.3389/fmars.2017.00126, 2017.
Digka, N., Tsangaris, C., Torre, M., Anastasopoulou, A., and Zeri, C.:
Microplastics in mussels and fish from the Northern Ionian Sea, Mar. Pollut.
Bull., 135, 30–40, https://doi.org/10.1016/j.marpolbul.2018.06.063, 2018a.
Digka, N., Tsangaris, C., Kaberi, H., Adamopoulou, A., and Zeri, C.:
Microplastic Abundance and Polymer Types in a Mediterranean Environment, in: Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea, Springer Water, edited by: Cocca, M., Di Pace, E., Errico, M., Gentile, G., Montarsolo, A., Mossotti, R., Springer, Cham, 17–24, https://doi.org/10.1007/978-3-319-71279-6_3, 2018b.
El Hourany, R., Abboud-Abi Saab, M., Faour, G., Mejia, C., Crépon, M.,
and Thiria, S.: Phytoplankton Diversity in the Mediterranean Sea From
Satellite Data Using Self-Organizing Maps, J. Geophys. Res.-Oceans, 124,
5827–5843, https://doi.org/10.1029/2019jc015131, 2019.
Enders, K., Lenz, R., Stedmon, C. A., and Nielsen, T. G.: Abundance, size and
polymer composition of marine microplastics ≥10 µm in the Atlantic
Ocean and their modelled vertical distribution, Mar. Pollut. Bull., 100,
70–81, https://doi.org/10.1016/j.marpolbul.2015.09.027, 2015.
Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J.,
Borerro, J. C., Galgani, F., Ryan, P. G., and Reisser, J.: Plastic Pollution
in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over
250,000 Tons Afloat at Sea, PloS one, 9, e111913
https://doi.org/10.1371/journal.pone.0111913, 2014.
Everaert, G., Van Cauwenberghe, L., De Rijcke, M., Koelmans, A. A., Mees,
J., Vandegehuchte, M., and Janssen, C. R.: Risk assessment of microplastics
in the ocean: Modelling approach and first conclusions, Environ. Pollut.,
242, 1930–1938, https://doi.org/10.1016/j.envpol.2018.07.069, 2018.
Fossi, M. C., Pedà, C., Compa, M., Tsangaris, C., Alomar, C., Claro, F., Ioakeimidis, C., Galgani, F., Hema, T., Deudero, S., Romeo, T., Battaglia,
P., Andaloro, F., Caliani, I., Casini, S., Panti, C., and Baini, M.:
Bioindicators for monitoring marine litter ingestion and its impacts on
Mediterranean biodiversity, Environ. Pollut., 237, 1023–1040,
https://doi.org/10.1016/j.envpol.2017.11.019, 2018.
Gardon, T., Reisser, C., Soyez, C., Quillien, V., and Le Moullac, G.:
Microplastics Affect Energy Balance and Gametogenesis in the Pearl Oyster
Pinctada margaritifera, Environ. Sci. Technol., 52, 5277–5286,
https://doi.org/10.1021/acs.est.8b00168, 2018.
Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., and Bretagnon, M.: The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies, Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-15-819-2019, 2019.
GESAMP: Sources, fate and effects of microplastics in the
marine environment: a global assessment, edited by: Kershaw, P. J., IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, Rep. Stud. GESAMP No. 90, 96 pp., https://doi.org/10.13140/RG.2.1.3803.7925, 2015.
Gohin, F., Druon, J. N., and Lampert, L.: A five channel chlorophyll
concentration algorithm applied to Sea WiFS data processed by SeaDAS in
coastal waters, Int. J. Remote Sens., 23, 1639–1661,
https://doi.org/10.1080/01431160110071879, 2002.
Goldstein, M. C., Titmus, A. J., and Ford, M.: Scales of spatial
heterogeneity of plastic marine debris in the northeast Pacific Ocean, Plos
One, 8, 80020, https://doi.org/10.1371/journal.pone.0080020, 2013.
Handå, A., Alver, M., Edvardsen, C. V., Halstensen, S., Olsen, A. J.,
Øie, G., Reitan, K. I., Olsen, Y., and Reinertsen, H.: Growth of farmed
blue mussels (Mytilus edulis L.) in a Norwegian coastal area; comparison of
food proxies by DEB modeling, J. Sea Res., 66, 297–307,
https://doi.org/10.1016/j.seares.2011.05.005, 2011.
Hantoro, I., Löhr, A. J., Van Belleghem, F. G. A. J., Widianarko, B., and
Ragas, A. M. J.: Microplastics in coastal areas and seafood: implications
for food safety, Food Addit. Contam. – Part A Chem. Anal. Control. Expo.
Risk Assess., 36, 674–711, https://doi.org/10.1080/19440049.2019.1585581, 2019.
Hatzonikolakis, Y., Tsiaras, K., Theodorou, J. A., Petihakis, G., Sofianos,
S., and Triantafyllou, G.: Simulation of mussel Mytilus galloprovincialis
growth with a dynamic energy budget model in Maliakos and Thermaikos Gulfs
(Eastern mediterranean), Aquacult Env. Interac., 9, 371–383,
https://doi.org/10.3354/aei00236, 2017.
Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M.,
Kwan, C., Moore, C., Gray, H., Laursen, D., Zettler, E. R., Farrington, J.
W., Reddy, C. M., Peacock, E. E., and Ward, M. W.: Organic micropollutants in
marine plastics debris from the open ocean and remote and urban beaches,
Mar. Pollut. Bull., 62, 1683–1692, https://doi.org/10.1016/j.marpolbul.2011.06.004,
2011.
International Ocean-Colour Coordinating Group – IOCCG: Remote sensing of ocean colour in coastal, and other optically-complex waters, Rep. Int.
Ocean-Colour Coord. Group 3, edited by S. Sathyendranath, IOCCG, Dartmouth, NS, Canada, 140 pp. https://doi.org/10.25607/OBP-95, 2000.
Jacobs, P., Beauchemin, C., and Riegman, R.: Growth of juvenile blue mussels
(Mytilus edulis) on suspended collectors in the Dutch Wadden Sea, J. Sea
Res., 85, 365–371, https://doi.org/10.1016/j.seares.2013.07.006, 2014.
Jacobs, P., Troost, K., Riegman, R., and van der Meer, J.: Length- and
weight-dependent clearance rates of juvenile mussels (Mytilus edulis) on
various planktonic prey items, Helgoland Mar. Res., 69, 101–112,
https://doi.org/10.1007/s10152-014-0419-y, 2015.
Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A. M.,
Helber, R., and Arnone, R. A.: Summary diagrams for coupled
hydrodynamic-ecosystem model skill assessment, J. Marine Syst., 76,
64–82, https://doi.org/10.1016/j.jmarsys.2008.05.014, 2009.
Jørgensen, C., Larsen, P., and Riisgård, H.: Effects of temperature on
the mussel pump, Mar. Ecol. Prog. Ser., 64, 89–97,
https://doi.org/10.3354/meps064089, 1990.
Kach, D. and Ward, J.: The role of marine aggregates in the ingestion of
picoplankton-size particles by suspension-feeding molluscs, Mar. Biol.,
153, 797–805, https://doi.org/10.1007/s00227-007-0852-4, 2007.
Kalaroni, S., Hatzonikolakis, Y., Tsiaras, K., Gkanasos, A., and Triantafyllou, G.:
Modelling the Marine Microplastic Distribution from Municipal Wastewater in
Saronikos Gulf (E. Mediterranean), Oceanogr Fish Open Access J., 9,
555752, https://doi.org/10.19080/OFOAJ.2019.09.555752, 2019.
Kalaroni, S., Tsiaras, K., Petihakis, G., Economou-Amilli, A., and
Triantafyllou, G.: Modelling the Mediterranean pelagic ecosystem using the
POSEIDON ecological model. Part I: Nutrients and chlorophyll a dynamics,
Deep-Sea Res. Pt. II, 171, 104647,
https://doi.org/10.1016/j.dsr2.2019.104647, 2020.
Karayücel, S., Çelik, M. Y., Karayücel, I., and Erik, G.:
Karadeniz'de Sinop İlinde Akdeniz Midyesinin (Mytilus galloprovincialis
Lamarck, 1819) Sal Sisteminde Büyümesi ve Üretimi, Turk. J.
Fish. Aquat. Sc., 10, 9–17, https://doi.org/10.4194/trjfas.2010.0102, 2010.
Karlsson, T. M., Vethaak, A. D., Almroth, B. C., Ariese, F., van Velzen, M.,
Hassellöv, M., and Leslie, H. A.: Screening for microplastics in
sediment, water, marine invertebrates and fish: Method development and
microplastic accumulation, Mar. Pollut. Bull., 122, 403–408,
https://doi.org/10.1016/j.marpolbul.2017.06.081, 2017.
Kearney, M., Simpson, S. J., Raubenheimer, D., and Helmuth, B.: Modelling the
ecological niche from functional traits, Philos. T. Roy. Soc. B, 365(1557), 3469–3483, https://doi.org/10.1098/rstb.2010.0034, 2010.
Khan, M. B. and Prezant, R. S.: Microplastic abundances in a mussel bed and ingestion by the ribbed marsh mussel Geukensia demissa, Mar. Pollut. Bull.,
130, 67–75, https://doi.org/10.1016/j.marpolbul.2018.03.012, 2018.
Kiørboe, T. and Møhlenberg, F.: Particle Selection in
Suspension-Feeding Bivalves, Mar. Ecol. Prog. Ser., 5, 291–296,
https://doi.org/10.3354/meps005291, 1981.
Kooi, M., Reisser, J., Slat, B., Ferrari, F. F., Schmid, M. S., Cunsolo, S.,
Brambini, R., Noble, K., Sirks, L. A., Linders, T. E. W., Schoeneich-Argent,
R. I., and Koelmans, A. A.: The effect of particle properties on the depth
profile of buoyant plastics in the ocean, Sci. Rep., 6, 33882
https://doi.org/10.1038/srep33882, 2016.
Kooijman, S. A. L. M.: Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 2000.
Kooijman, S. A. L. M.: Pseudo-faeces production in bivalves, J. Sea Res.,
56, 103–106, https://doi.org/10.1016/j.seares.2006.03.003, 2006.
Kooijman S. A. L. M.: Dynamic Energy Budget Theory for Metabolic Organisation, Cambridge University Press, Cambridge, 2010.
Lacroix, G., Ruddick, K., Ozer, J., and Lancelot, C.: Modelling the impact of
the Scheldt and Rhine/Meuse plumes on the salinity distribution in Belgian
waters (southern North Sea), J. Sea Res., 52, 149–163,
https://doi.org/10.1016/j.seares.2004.01.003, 2004.
Lattin, G. L., Moore, C. J., Zellers, A. F., Moore, S. L., and Weisberg, S.
B.: A comparison of neustonic plastic and zooplankton at different depths
near the southern California shore, Mar. Pollut. Bull., 49, 291–294,
https://doi.org/10.1016/j.marpolbul.2004.01.020, 2004.
Law, K. L. and Thompson, R. C.: Microplastics in the seas, Science,
345, 144–145, https://doi.org/10.1126/science.1254065, 2014.
Lenz, R., Enders, K., and Nielsen, T. G.: Microplastic exposure studies
should be environmentally realistic, P. Natl. Acad. Sci. USA,
113, E4121–E4122, https://doi.org/10.1073/pnas.1606615113, 2016.
Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., and
Shi, H.: Microplastics in mussels along the coastal waters of China,
Environ. Pollut., 214, 177–184, https://doi.org/10.1016/j.envpol.2016.04.012, 2016.
Li, J., Green, C., Reynolds, A., Shi, H., and Rotchell, J. M.: Microplastics
in mussels sampled from coastal waters and supermarkets in the United
Kingdom, Environ. Pollut., 241, 35–44, https://doi.org/10.1016/j.envpol.2018.05.038,
2018.
Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Bråte,
I. L. N., Sun, C., Shahadat Hossain, M., Li, Q., Kolandhasamy, P., and Shi,
H.: Using mussel as a global bioindicator of coastal microplastic pollution,
Environ. Pollut., 244, 522–533, https://doi.org/10.1016/j.envpol.2018.10.032, 2019.
Liubartseva, S., Coppini, G., Lecci, R., and Clementi, E.: Tracking plastics
in the Mediterranean: 2D Lagrangian model, Mar. Pollut. Bull., 129,
151–162, https://doi.org/10.1016/j.marpolbul.2018.02.019, 2018.
Lusher, A.: Microplastics in the marine environment: Distribution,
interactions and effects, Mar. Anthropog. Litter, 245–307,
https://doi.org/10.1007/978-3-319-16510-3_10, 2015.
Lusher, A., Bråte, I. L. N., Hurley, R., Iversen, K., and Olsen, M.:
Testing of methodology for measuring microplastics in blue mussels (Mytilus
spp) ans sediments, and recommendations for future monitoring of
microplastics, Norwegian Institute for Water Research, 87, 7209, https://doi.org/10.13140/RG.2.2.24399.59041, 2017.
Maes, T., Van der Meulen, M. D., Devriese, L. I., Leslie, H. A., Huvet, A.,
Frère, L., Robbens, J., and Vethaak, A. D.: Microplastics baseline
surveys at the water surface and in sediments of the North-East Atlantic,
Front. Mar. Sci., 4, 135, https://doi.org/10.3389/fmars.2017.00135, 2017.
Maire, O., Amouroux, J. M., Duchêne, J. C., and Grémare, A.:
Relationship between filtration activity and food availability in the
Mediterranean mussel Mytilus galloprovincialis, Mar. Biol., 152,
1293–1307, https://doi.org/10.1007/s00227-007-0778-x, 2007.
MarLIN: The Marine Life Information Network – Common mussel (Mytilus
edulis), available at: https://www.marlin.ac.uk/species/detail/1421 (last access: 28 July 2020), 2016.
Mathalon, A. and Hill, P.: Microplastic fibers in the intertidal ecosystem
surrounding Halifax Harbor, Nova Scotia, Mar. Pollut. Bull., 81, 69–79,
https://doi.org/10.1016/j.marpolbul.2014.02.018, 2014.
Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., and Kaminuma, T.: Plastic resin pellets as a transport medium for toxic chemicals in the
marine environment, Environ. Sci. Technol., 35, 318–324,
https://doi.org/10.1021/es0010498, 2001.
Messinetti, S., Mercurio, S., Parolini, M., Sugni, M., and Pennati, R.:
Effects of polystyrene microplastics on early stages of two marine
invertebrates with different feeding strategies, Environ. Pollut., 237,
1080–1087, https://doi.org/10.1016/j.envpol.2017.11.030, 2018.
Møhlenberg, F., and Riisgård, H. : Efficiency of particle retention
in 13 species of suspension feeding bivalves, Ophelia, 17, 239–246,
https://doi.org/10.1080/00785326.1978.10425487, 1978.
Monaco, C. J. and McQuaid, C. D.: Applicability of Dynamic Energy Budget (DEB) models across steep environmental gradients, Sci. Rep., 8, 16384,
https://doi.org/10.1038/s41598-018-34786-w, 2018.
Moore, C. J., Moore, S. L., Leecaster, M. K., and Weisberg, S. B.: A
comparison of plastic and plankton in the North Pacific Central Gyre, Mar.
Pollut. Bull., 42, 1297–1300, https://doi.org/10.1016/S0025-326X(01)00114-X, 2001.
Otto, L., Zimmerman, J. T. F., Furnes, G. K., Mork, M., Saetre, R., and
Becker, G.: Review of the physical oceanography of the North Sea,
Neth. J. Sea Res., 26, 161, https://doi.org/10.1016/0077-7579(90)90091-T,
1990.
Painting, S. J., Collingridge, K. A., Durand, D., Grémare, A., Créach, V., Arvanitidis, C., and Bernard, G.: Marine monitoring in Europe: is it adequate to address environmental threats and pressures?, Ocean Sci., 16, 235–252, https://doi.org/10.5194/os-16-235-2020, 2020.
Palacz, A. P., John, M. A. St., Brewin, R. J. W., Hirata, T., and Gregg, W. W.: Distribution of phytoplankton functional types in high-nitrate, low-chlorophyll waters in a new diagnostic ecological indicator model, Biogeosciences, 10, 7553–7574, https://doi.org/10.5194/bg-10-7553-2013, 2013.
Pascoe, P. L., Parry, H. E., and Hawkins, A. J. S.: Observations on the
measurement and interpretation of clearance rate variations in
suspension-feeding bivalve shellfish, Aquat. Biol., 6, 181–190,
https://doi.org/10.3354/ab00123, 2009.
Pasquini, G., Ronchi, F., Strafella, P., Scarcella, G., and Fortibuoni, T.:
Seabed litter composition, distribution and sources in the Northern and
Central Adriatic Sea (Mediterranean), Waste Manag., 58, 41–51,
https://doi.org/10.1016/j.wasman.2016.08.038, 2016.
Petihakis, G., Triantafyllou, G., Allen, I. J., Hoteit, I., and Dounas, C.:
Modelling the spatial and temporal variability of the Cretan Sea ecosystem,
J. Marine Syst., 36, 173–196, https://doi.org/10.1016/S0924-7963(02)00186-0, 2002.
Petihakis, G., Triantafyllou, G., Korres, G., Tsiaras, K., and Theodorou, A.:
Ecosystem modelling: Towards the development of a management tool for a
marine coastal system part-II, ecosystem processes and biogeochemical
fluxes, J. Marine Syst., 94, 49–64, https://doi.org/10.1016/j.jmarsys.2011.11.006, 2012.
Politikos, D. V., Tsiaras, K., Papatheodorou, G., and Anastasopoulou, A.:
Modeling of floating marine litter originated from the Eastern Ionian Sea:
Transport, residence time and connectivity, Mar. Pollut. Bull., 150, 110727,
https://doi.org/10.1016/j.marpolbul.2019.110727, 2020.
Pouvreau, S., Bourles, Y., Lefebvre, S., Gangnery, A., and Alunno-Bruscia,
M.: Application of a dynamic energy budget model to the Pacific oyster,
Crassostrea gigas, reared under various environmental conditions, J. Sea
Res., 56, 156–167, https://doi.org/10.1016/j.seares.2006.03.007, 2006.
Prins, T. C., Smaal, A. C., and Pouwer, A. J.: Selective ingestion of
phytoplankton by the bivalves Mytilus edulis L. and Cerastoderma edule (L.),
Hydrobiol. Bull., 25, 93–100, https://doi.org/10.1007/BF02259595, 1991.
Qu, X., Su, L., Li, H., Liang, M., and Shi, H.: Assessing the relationship
between the abundance and properties of microplastics in water and in
mussels, Sci. Total Environ., 621, 679–686,
https://doi.org/10.1016/j.scitotenv.2017.11.284, 2018.
Raitsos, D. E., Reid, P. C., Lavender, S. J., Edwards, M., and Richardson, A.
J.: Extending the SeaWiFS chlorophyll data set back 50 years in the
northeast Atlantic, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2005GL022484, 2005.
Raitsos, D. E., Lavender, S. J., Maravelias, C. D., Haralabous, J.,
Richardson, A. J., and Reid, P. C.: Identifying four phytoplankton functional
types from space: An ecological approach, Limnol. Oceanogr., 53,
605–613, https://doi.org/10.4319/lo.2008.53.2.0605, 2008.
Raitsos, D. E., Korres, G., Triantafyllou, G., Petihakis, G., Pantazi, M.,
Tsiaras, K., and Pollani, A.: Assessing chlorophyll variability in relation
to the environmental regime in Pagasitikos Gulf, Greece, J. Marine Syst.,
94, 16–22, https://doi.org/10.1016/j.jmarsys.2011.11.003, 2012.
Raitsos, D. E., Pradhan, Y., Lavender, S. J., Hoteit, I., Mcquatters-Gollop,
A., Reid, P. C., and Richardson, A. J.: From silk to satellite: Half a
century of ocean colour anomalies in the Northeast Atlantic, Glob. Change
Biol., 20, 2117–2123, https://doi.org/10.1111/gcb.12457, 2014.
Ren, J. S.: Effect of food quality on energy uptake, J. Sea Res., 62,
72–74, https://doi.org/10.1016/j.seares.2008.11.002, 2009.
Riisgård, H. U., Kittner, C., and Seerup, D. F.: Regulation of opening
state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus
edulis, Mya arenaria) in response to low algal concentration, J. Exp. Mar.
Bio. Ecol., 284, 105–127, https://doi.org/10.1016/S0022-0981(02)00496-3, 2003.
Riisgård, H. U., Egede, P. P., and Barreiro Saavedra, I.: Feeding
Behaviour of the Mussel, Mytilus edulis?: New Observations, with a
Minireview of Current Knowledge, J. Mar. Biol., 2011, 1–13,
https://doi.org/10.1155/2011/312459, 2011.
Rios, L. M., Moore, C., and Jones, P. R.: Persistent organic pollutants
carried by synthetic polymers in the ocean environment, Mar. Pollut. Bull.,
54, 1230–1237, https://doi.org/10.1016/j.marpolbul.2007.03.022, 2007.
Rist, S., Steensgaard, I. M., Guven, O., Nielsen, T. G., Jensen, L. H.,
Møller, L. F., and Hartmann, N. B.: The fate of microplastics during
uptake and depuration phases in a blue mussel exposure system, Environ.
Toxicol. Chem., 38, 99–105, https://doi.org/10.1002/etc.4285, 2019.
Romeo, T., Pietro, B., Pedà, C., Consoli, P., Andaloro, F., and Fossi, M.
C.: First evidence of presence of plastic debris in stomach of large pelagic
fish in the Mediterranean Sea, Mar. Pollut. Bull., 95, 358–361,
https://doi.org/10.1016/j.marpolbul.2015.04.048, 2015.
Rosland, R., Strand, Alunno-Bruscia, M., Bacher, C., and Strohmeier, T.:
Applying Dynamic Energy Budget (DEB) theory to simulate growth and
bio-energetics of blue mussels under low seston conditions, J. Sea Res.,
62, 49–61, https://doi.org/10.1016/j.seares.2009.02.007, 2009.
Santana, M. F. M., Moreira, F. T., Pereira, C. D. S., Abessa, D. M. S., and
Turra, A.: Continuous Exposure to Microplastics Does Not Cause Physiological
Effects in the Cultivated Mussel Perna perna, Arch. Environ. Contam.
Toxicol., 74, 594–604, https://doi.org/10.1007/s00244-018-0504-3, 2018.
Sarà, G., Kearney, M., and Helmuth, B.: Combining heat-transfer and
energy budget models to predict thermal stress in Mediterranean intertidal
mussels, Chem. Ecol., 27, 135–145, https://doi.org/10.1080/02757540.2011.552227,
2011.
Sarà, G., Reid, G. K., Rinaldi, A., Palmeri, V., Troell, M., and
Kooijman, S. A. L. M.: Growth and reproductive simulation of candidate
shellfish species at fish cages in the Southern Mediterranean: Dynamic
Energy Budget (DEB) modelling for integrated multi-trophic aquaculture,
Aquaculture, 324–325, 259–266, https://doi.org/10.1016/j.aquaculture.2011.10.042,
2012.
Sarà, G., Milanese, M., Prusina, I., Sarà, A., Angel, D. L.,
Glamuzina, B., Nitzan, T., Freeman, S., Rinaldi, A., Palmeri, V., Montalto,
V., Lo Martire, M., Gianguzza, P., Arizza, V., Lo Brutto, S., De Pirro, M.,
Helmuth, B., Murray, J., De Cantis, S., and Williams, G. A.: The impact of
climate change on mediterranean intertidal communities: Losses in coastal
ecosystem integrity and services, Reg. Environ. Chang., 14, 5–17,
https://doi.org/10.1007/s10113-012-0360-z, 2014.
Saraiva, S., van der Meer, J., Kooijman, S. A. L. M., and Sousa, T.:
Modelling feeding processes in bivalves: A mechanistic approach, Ecol.
Model., 222, 514–523, https://doi.org/10.1016/j.ecolmodel.2010.09.031, 2011a.
Saraiva, S., van der Meer, J., Kooijman, S. A. L. M., and Sousa, T.: DEB
parameters estimation for Mytilus edulis, J. Sea Res., 66, 289–296,
https://doi.org/10.1016/j.seares.2011.06.002, 2011b.
Saraiva, S., Van Der Meer, J., Kooijman, S. A. L. M., Witbaard, R.,
Philippart, C. J. M., Hippler, D., and Parker, R.: Validation of a Dynamic
Energy Budget (DEB) model for the blue mussel Mytilus edulis, Mar. Ecol.
Prog. Ser., 463, 141–158, https://doi.org/10.3354/meps09801, 2012.
Schwabl, P., Koppel, S., Konigshofer, P., Bucsics, T., Trauner, M.,
Reiberger, T., and Liebmann, B.: Detection of various microplastics in human
stool: A prospective case series, Ann. Intern. Med., 171, 453–457,
https://doi.org/10.7326/M19-0618, 2019.
Seuront, L., Nicastro, K. R., Zardi, G. I., and Goberville, E.: Decreased
thermal tolerance under recurrent heat stress conditions explains summer
mass mortality of the blue mussel Mytilus edulis, Sci. Rep., 9, 17498,
https://doi.org/10.1038/s41598-019-53580-w, 2019.
Skoulikidis, N. T., Economou, A. N., Gritzalis, K. C., and Zogaris, S.:
Rivers of the Balkans, in: Rivers Europe, edited by: Tockner, K., Uehlinger, U., and Robinson, C., Academic Press, 421–466, https://doi.org/10.1016/B978-0-12-369449-2.00011-4, 2009.
Smith, M., Love, D. C., Rochman, C. M., and Neff, R. A.: Microplastics in
Seafood and the Implications for Human Health, Curr. Environ. Heal. Reports,
5(3), 375–386, https://doi.org/10.1007/s40572-018-0206-z, 2018.
Sprung, M.: Reproduction and fecundity of the mussel mytilus edulis at
helgoland (North sea), Helgolander Meeresun., 36,
243–255, https://doi.org/10.1007/BF01983629, 1983.
Strohmeier, T., Strand, Ø., Alunno-Bruscia, M., Duinker, A., and Cranford,
P.: Variability in particle retention efficiency by the mussel Mytilus
edulis, J. Exp. Mar. Biol. Ecol., 412, 96–102,
https://doi.org/10.1016/j.jembe.2011.11.006, 2012.
Sukhotin, A. A. and Kulakowski, E. E.: Growth and population dynamics in
mussels (Mytilus edulis L.) cultured in the White Sea, Aquaculture,
101, 59–73, https://doi.org/10.1016/0044-8486(92)90232-A, 1992.
Sukhotin, A. A., Strelkov, P. P., Maximovich, N. V., and Hummel, H.: Growth
and longevity of Mytilus edulis (L.) from northeast Europe, Mar. Biol. Res.,
3, 155–167, https://doi.org/10.1080/17451000701364869, 2007.
Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M.
E. J., Goïc, N. Le, Quillien, V., Mingant, C., Epelboin, Y., Corporeau,
C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., and Huvet, A.:
Oyster reproduction is affected by exposure to polystyrene microplastics,
P. Natl. Acad. Sci. USA, 113, 2430–2435,
https://doi.org/10.1073/pnas.1519019113, 2016.
Tagliarolo, M. and McQuaid, C. D.: Sub-lethal and sub-specific temperature
effects are better predictors of mussel distribution than thermal tolerance,
Mar. Ecol. Prog. Ser., 535, 145–159, https://doi.org/10.3354/meps11434, 2015.
Teuten, E. L., Rowland, S. J., Galloway, T. S., and Thompson, R. C.:
Potential for plastics to transport hydrophobic contaminants, Environ. Sci.
Technol., 41, 7759–7764, https://doi.org/10.1021/es071737s, 2007.
Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S.,
Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita,
R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente,
M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., Hirai, H.,
Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., and Takada, H.:
Transport and release of chemicals from plastics to the environment and to
wildlife, Philos. T. Roy. Soc. B, 364, 2027–2045,
https://doi.org/10.1098/rstb.2008.0284, 2009.
Theodorou, J. A., Viaene, J., Sorgeloos, P., and Tzovenis, I.: Production and Marketing Trends of the Cultured Mediterranean Mussel Mytilus
galloprovincialis Lamarck 1819, in Greece, J. Shellfish Res., 30,
859–874, https://doi.org/10.2983/035.030.0327, 2011.
Thomas, Y., Mazurié, J., Alunno-Bruscia, M., Bacher, C., Bouget, J. F.,
Gohin, F., Pouvreau, S., and Struski, C.: Modelling spatio-temporal
variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget
model with satellite-derived environmental data, J. Sea Res., 66,
308–317, https://doi.org/10.1016/j.seares.2011.04.015, 2011.
Thompson, R. C., Olson, Y., Mitchell, R. P., Davis, A., Rowland, S. J.,
John, A. W. G., McGonigle, D., and Russell, A. E.: Lost at Sea: Where Is All
the Plastic?, Science, 30, 838, https://doi.org/10.1126/science.1094559, 2004.
Triantafyllou, G., Petihakis, G., and Allen, I. J.: Assessing the performance of the Cretan Sea ecosystem model with the use of high frequency M3A buoy data set, Ann. Geophys., 21, 365–375, https://doi.org/10.5194/angeo-21-365-2003, 2003.
Troost, T. A., Wijsman, J. W. M., Saraiva, S., and Freitas, V.: Modelling
shellfish growth with dynamic energy budget models: An application for
cockles and mussels in the Oosterschelde (southwest Netherlands), Philos.
T. Roy. Soc. B, 365, 3567–3577,
https://doi.org/10.1098/rstb.2010.0074, 2010.
Troost, T. A., Desclaux, T., Leslie, H. A., van Der Meulen, M. D., and
Vethaak, A. D.: Do microplastics affect marine ecosystem productivity?, Mar.
Pollut. Bull., 135, 17–29, https://doi.org/10.1016/j.marpolbul.2018.05.067, 2018.
Tsiaras, K. P., Petihakis, G., Kourafalou, V. H., and Triantafyllou, G.:
Impact of the river nutrient load variability on the North Aegean ecosystem
functioning over the last decades, J. Sea Res., 86, 97–109,
https://doi.org/10.1016/j.seares.2013.11.007, 2014.
Vahl, O.: Efficiency of particle retention in mytilus edulis L, Ophelia,
10, 17–25, https://doi.org/10.1080/00785326.1972.10430098, 1972.
van Beusekom, J. E. E., Loebl, M., and Martens, P.: Distant riverine nutrient
supply and local temperature drive the long-term phytoplankton development
in a temperate coastal basin, J. Sea Res., 61, 26–33,
https://doi.org/10.1016/j.seares.2008.06.005, 2009.
Van Cauwenberghe, L. and Janssen, C. R.: Microplastics in bivalves cultured
for human consumption, Environ. Pollut., 193, 65–70,
https://doi.org/10.1016/j.envpol.2014.06.010, 2014.
Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., and Janssen, C. R.: Microplastics are taken up by mussels (Mytilus edulis) and lugworms
(Arenicola marina) living in natural habitats, Environ. Pollut., 199,
10–17, https://doi.org/10.1016/j.envpol.2015.01.008, 2015.
van der Veer, H. W., Cardoso, J. F. M. F., and van der Meer, J.: The
estimation of DEB parameters for various Northeast Atlantic bivalve species,
J. Sea Res., 56, 107–124, https://doi.org/10.1016/j.seares.2006.03.005, 2006.
van Haren, R. J. F., Schepers, H. E., and Kooijman, S. A. L. M.: Dynamic
energy budgets affect kinetics of xenobiotics in the marine mussel Mytilus
edulis, Chemosphere, 29, 163–189, https://doi.org/10.1016/0045-6535(94)90099-X,
1994.
Van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D.,
Van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., and Law, K. L.: A
global inventory of small floating plastic debris, Environ. Res. Lett.,
10, 124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015.
Vandermeersch, G., Lourenço, H. M., Alvarez-Muñoz, D., Cunha, S., Diogène, J., Cano-Sancho, G., Sloth, J. J., Kwadijk, C., Barcelo, D.,
Allegaert, W., Bekaert, K., Fernandes, J. O., Marques, A., and Robbens, J.:
Environmental contaminants of emerging concern in seafood – European
database on contaminant levels, Environ. Res., 143, 29–45,
https://doi.org/10.1016/j.envres.2015.06.011, 2015.
Vlachogianni, T., Anastasopoulou, A., Fortibuoni, T., Ronchi, F., and Zeri, C.: Marine Litter Assessment in the Adriatic and Ionian Seas, IPA-Adriatic
DeFishGear Project, MIO-ECSDE, HCMR and ISPRA, 168 pp., ISBN 978-960-6793-25-7, 2017.
Von Moos, N., Burkhardt-Holm, P., and Köhler, A.: Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure, Environ. Sci. Technol., 46, 11327–11335,
https://doi.org/10.1021/es302332w, 2012.
Ward, J. E. and Kach, D. J.: Marine aggregates facilitate ingestion of
nanoparticles by suspension-feeding bivalves, Mar. Environ. Res., 68,
137–142, https://doi.org/10.1016/j.marenvres.2009.05.002, 2009.
Ward, J. E. and Shumway, S. E.: Separating the grain from the chaff:
Particle selection in suspension- and deposit-feeding bivalves, J. Exp. Mar.
Bio. Ecol., 300(, 83–130, https://doi.org/10.1016/j.jembe.2004.03.002, 2004.
Ward, J. E., Rosa, M., and Shumway, S.: Capture, ingestion, and egestion of
microplastics by suspension-feeding bivalves: a 40-year history, Anthr.
Coasts, 2, 39–49, https://doi.org/10.1139/anc-2018-0027, 2019a.
Ward, J. E., Zhao, S., Holohan, B. A., Mladinich, K. M., Griffin, T. W.,
Wozniak, J., and Shumway, S. E.: Selective Ingestion and Egestion of Plastic
Particles by the Blue Mussel (Mytilus edulis) and Eastern Oyster
(Crassostrea virginica): Implications for Using Bivalves as Bioindicators of
Microplastic Pollution, Environ. Sci. Technol., 53, 8776–8784,
https://doi.org/10.1021/acs.est.9b02073, 2019b.
Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., and Koelmans, A.
A.: Effects of nanopolystyrene on the feeding behavior of the blue mussel
(Mytilus edulis L.), Environ. Toxicol. Chem., 31, 2490–2497,
https://doi.org/10.1002/etc.1984, 2012.
Widdows, J., Fieth, P., and Worrall, C. M.: Relationships between seston,
available food and feeding activity in the common mussel Mytilus edulis,
Mar. Biol., 50, 195–207, https://doi.org/10.1007/BF00394201, 1979.
Wieczorek, A. M., Morrison, L., Croot, P. L., Allcock, A. L., MacLoughlin,
E., Savard, O., Brownlow, H., and Doyle, T. K.: Frequency of microplastics in
mesopelagic fishes from the Northwest Atlantic, Front. Mar. Sci., 5,
https://doi.org/10.3389/fmars.2018.00039, 2018.
Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D., and Matrai, P. A.:
Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel
(Mytilus edulis), Mar. Pollut. Bull., 137, 638–645,
https://doi.org/10.1016/j.marpolbul.2018.10.061, 2018.
Zaldivar, J. M.: A general bioaccumulation DEB model for mussels, in: JRC Scientific and Technical Reports, EUR 23626, Office for Official
Publications of the European Communities, Luxembourg, ii, 31 pp., ISBN 978-92-79-10943-0, 2008.
Zeri, C., Adamopoulou, A., Bojanić Varezić, D., Fortibuoni, T.,
Kovač Viršek, M., Kržan, A., Mandic, M., Mazziotti, C.,
Palatinus, A., Peterlin, M., Prvan, M., Ronchi, F., Siljic, J., Tutman, P.,
and Vlachogianni, T.: Floating plastics in Adriatic waters (Mediterranean
Sea): From the macro- to the micro-scale, Mar. Pollut. Bull., 136, 341–350,
https://doi.org/10.1016/j.marpolbul.2018.09.016, 2018.
Zhao, S., Ward, J. E., Danley, M., and Mincer, T. J.: Field-Based Evidence
for Microplastic in Marine Aggregates and Mussels: Implications for Trophic
Transfer, Environ. Sci. Technol., 52, 11038–11048,
https://doi.org/10.1021/acs.est.8b03467, 2018.
Short summary
This study examines the accumulation of microplastics on wild and cultured mussels through a dynamic energy budget model, resulting in a comparable contamination level but different cleaning time for the mussels. Our main findings highlight that microplastics contamination is strongly dependent on the variability of specific environmental aspects and improve the knowledge of the transport and accumulation of microplastics in the mussels, enlightening future work on a biomagnification scenario.
This study examines the accumulation of microplastics on wild and cultured mussels through a...