Articles | Volume 16, issue 4
https://doi.org/10.5194/os-16-767-2020
https://doi.org/10.5194/os-16-767-2020
Research article
 | 
03 Jul 2020
Research article |  | 03 Jul 2020

Ventilation of the northern Baltic Sea

Thomas Neumann, Herbert Siegel, Matthias Moros, Monika Gerth, Madline Kniebusch, and Daniel Heydebreck

Related authors

Flux coupling approach on an exchange grid for the IOW Earth System Model (version 1.04.00) of the Baltic Sea region
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024,https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
A regional pCO2 climatology of the Baltic Sea from in situ pCO2 observations and a model-based extrapolation approach
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024,https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Ocean models as shallow sea oxygen deficiency assessment tools: from research to practical application
Sarah Piehl, René Friedland, Thomas Neumann, and Gerald Schernewski
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-152,https://doi.org/10.5194/bg-2023-152, 2023
Revised manuscript under review for BG
Short summary
The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022,https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022,https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary

Cited articles

Aagaard, K., Coachman, L., and Carmack, E.: On the halocline of the Arctic Ocean, Deep-Sea Res., 28, 529–545, https://doi.org/10.1016/0198-0149(81)90115-1, 1981. a
Assur, A.: Composition of Sea Ice and its Tensile Strength, in: Arctic Sea Ice, 106–138, U.S. National Academy of Science – National Research Council, Washington, D.C., 1958. a
Baltic Icebreaking Management: Baltic Sea Icebreaking Report 2016–2017, Tech. rep., Baltic Icebreaking Management, available at: http://baltice.org/app/static/pdf/BIM Report 16-17.pdf (last access: 19 June 2020), 2017. a
Geyer, B. and Rockel, B.: coastDat-2 COSMO-CLM Atmospheric Reconstruction, https://doi.org/10.1594/WDCC/coastDat-2_COSMO-CLM, 2013. a
Granskog, M., Kaartokallio, H., Kuosa, H., Thomas, D. N., and Vainio, J.: Sea ice in the Baltic Sea? A review, Estuarine, Coastal and Shelf Science, 70, 145–160, https://doi.org/10.1016/j.ecss.2006.06.001, 2006. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The bottom water of the northern Baltic Sea usually is well oxygenated. We used a combined approach of numerical model simulations and in situ observations to investigate processes responsible for a regular ventilation of the Bothnian Bay. Surface water masses from the Bothnian Sea and the Bothnian Bay mix at the link between both regions. In winter, when water temperature is low, the resulting density is large enough that the water descends and replaces old bottom water.