Articles | Volume 16, issue 3
https://doi.org/10.5194/os-16-743-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-743-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model
Ivan M. Parras-Berrocal
CORRESPONDING AUTHOR
Instituto Universitario de Investigación Marina (INMAR),
University of Cádiz, Puerto Real, Cádiz 11510, Spain
Ruben Vazquez
Instituto Universitario de Investigación Marina (INMAR),
University of Cádiz, Puerto Real, Cádiz 11510, Spain
William Cabos
Department of Physics and Mathematics, University of Alcalá, Alcalá de
Henares 28801, Spain
Dmitry Sein
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven
27570, Germany
Shirshov Institute of Oceanology, Russian Academy of Science, Moscow,
Russia
Rafael Mañanes
Instituto Universitario de Investigación Marina (INMAR),
University of Cádiz, Puerto Real, Cádiz 11510, Spain
Juan Perez-Sanz
Department of Physics and Mathematics, University of Alcalá, Alcalá de
Henares 28801, Spain
Alfredo Izquierdo
Instituto Universitario de Investigación Marina (INMAR),
University of Cádiz, Puerto Real, Cádiz 11510, Spain
Related authors
Iván M. Parras-Berrocal, Rubén Vázquez, William Cabos, Dimitry V. Sein, Oscar Álvarez, Miguel Bruno, and Alfredo Izquierdo
Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, https://doi.org/10.5194/os-19-941-2023, 2023
Short summary
Short summary
Global warming may strongly affect dense water formation in the eastern Mediterranean, potentially impacting basin circulation and water properties. We find that at the end of the century dense water formation is reduced by 75 % for the Adriatic, 84 % for the Aegean, and 83 % for the Levantine Sea. This reduction is caused by changes in the temperature and salinity of surface and intermediate waters, which strengthen the vertical stratification, hampering deep convection.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
David Roque, Ivan Parras-Berrocal, Miguel Bruno, Ricardo Sánchez-Leal, and Francisco Javier Hernández-Molina
Ocean Sci., 15, 1381–1397, https://doi.org/10.5194/os-15-1381-2019, https://doi.org/10.5194/os-15-1381-2019, 2019
Short summary
Short summary
Global circulation of intermediate water masses has been extensively studied; however, its regional and local circulation along continental margins and variability and implications on sea floor morphologies are still not well known. In this study the intermediate water mass variability in the Gulf of Cádiz and adjacent areas has been analysed and its implications discussed. Remarkable seasonal variations of the Antarctic Intermediate Water and the Subarctic Intermediate Water are determined.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Iván M. Parras-Berrocal, Rubén Vázquez, William Cabos, Dimitry V. Sein, Oscar Álvarez, Miguel Bruno, and Alfredo Izquierdo
Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, https://doi.org/10.5194/os-19-941-2023, 2023
Short summary
Short summary
Global warming may strongly affect dense water formation in the eastern Mediterranean, potentially impacting basin circulation and water properties. We find that at the end of the century dense water formation is reduced by 75 % for the Adriatic, 84 % for the Aegean, and 83 % for the Levantine Sea. This reduction is caused by changes in the temperature and salinity of surface and intermediate waters, which strengthen the vertical stratification, hampering deep convection.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Torben Koenigk, Ramon Fuentes-Franco, Virna Meccia, Oliver Gutjahr, Laura C. Jackson, Adrian L. New, Pablo Ortega, Christopher Roberts, Malcolm Roberts, Thomas Arsouze, Doroteaciro Iovino, Marie-Pierre Moine, and Dmitry V. Sein
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-41, https://doi.org/10.5194/os-2020-41, 2020
Revised manuscript not accepted
Short summary
Short summary
The mixing of water masses into the deep ocean in the North Atlantic is important for the entire global ocean circulation. We use seven global climate models to investigate the effect of increasing the model resolution on this deep ocean mixing. The main result is that increased model resolution leads to a deeper mixing of water masses in the Labrador Sea but has less effect in the Greenland Sea. However, most of the models overestimate the deep ocean mixing compared to observations.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
David Roque, Ivan Parras-Berrocal, Miguel Bruno, Ricardo Sánchez-Leal, and Francisco Javier Hernández-Molina
Ocean Sci., 15, 1381–1397, https://doi.org/10.5194/os-15-1381-2019, https://doi.org/10.5194/os-15-1381-2019, 2019
Short summary
Short summary
Global circulation of intermediate water masses has been extensively studied; however, its regional and local circulation along continental margins and variability and implications on sea floor morphologies are still not well known. In this study the intermediate water mass variability in the Gulf of Cádiz and adjacent areas has been analysed and its implications discussed. Remarkable seasonal variations of the Antarctic Intermediate Water and the Subarctic Intermediate Water are determined.
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Anton Y. Dvornikov, Stanislav D. Martyanov, Vladimir A. Ryabchenko, Tatjana R. Eremina, Alexey V. Isaev, and Dmitry V. Sein
Earth Syst. Dynam., 8, 265–282, https://doi.org/10.5194/esd-8-265-2017, https://doi.org/10.5194/esd-8-265-2017, 2017
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: Mediterranean Sea | Phenomena: Temperature, Salinity and Density Fields
A study of the hydrographic conditions in the Adriatic Sea from numerical modelling and direct observations (2000–2008)
A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting
P. Oddo and A. Guarnieri
Ocean Sci., 7, 549–567, https://doi.org/10.5194/os-7-549-2011, https://doi.org/10.5194/os-7-549-2011, 2011
P. Oddo, M. Adani, N. Pinardi, C. Fratianni, M. Tonani, and D. Pettenuzzo
Ocean Sci., 5, 461–473, https://doi.org/10.5194/os-5-461-2009, https://doi.org/10.5194/os-5-461-2009, 2009
Cited articles
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué,
M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., and Alvarez-Fanjul,
E.: Mediterranean Sea response to climate change in an ensemble of twenty
first century scenarios, Clim. Dynam., 45, 2775–2802,
https://doi.org/10.1007/s00382-015-2507-3, 2015.
Akhtar, N., Brauch, J., and Ahrens, B.: Climate modeling over the
Mediterranean Sea: impact of resolution and ocean coupling, Clim. Dynam,
51, 933–948, https://doi.org/10.1007/s00382-017-3570-8, 2018.
Akhtar, N., Krug, A., Brauch, J., Arsouze, T., Dieterich, C., and Ahrens, B.:
European marginal seas in a regional atmosphere-ocean coupled model and
their impact on Vb-cyclones and associated precipitation, Clim. Dynam., 53,
5967–5984, https://doi.org/10.1007/s00382-019-04906-x, 2019.
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical
processes of the UCLA general circulation model, General Circulation of the
Atmosphere, 17, 173–265, 1977.
Artale, V., Calmanti, S., Carillo, A., Dell'Aquila, A., Herrmann, M.,
Pisacane, G., Ruti, P. M., Sannino, G., Struglia, M. V., Giorgi, F., Bi, X.,
Pal, J. S., and Rauscher, S.: An atmosphere–ocean regional climate model for
the Mediterranean area: assessment of a present climate simulation, Clim.
Dynam., 35, 721–740, https://doi.org/10.1007/s00382-009-0691-8, 2010.
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the
Mediterranean Sea: a historical review of experimental investigations, Adv.
Ocean. Limol., 1, 11–28, https://doi.org/10.1080/19475721.2010.491656, 2010.
Beuvier, J., Sevault, F., Herrmann, M., Kontoyiannis, H., Ludwig, W., Rixen,
M., Stanev, E., Béranger, K., and Somot, S.: Modeling the Mediterranean
Sea interannual variability during 1961-2000: focus on the Eastern
Mediterranean Transient, J. Geophys. Res., 115, C08017,
https://doi.org/10.1029/2009JC005950, 2010.
Cabos, W., Sein, D. V., Durán-Quesada, A., Liguori, G., Koldunov, N. V.,
Martínez-López, B., Alvarez, F., Sieck, K., Limareva, N., and Pinto
J. G.: Dynamical downscaling of historical climate over CORDEX Central
America domain with a regionally coupled atmosphere-ocean model, Clim.
Dynam., 52, 4305–4328, https://doi.org/10.1007/s00382-018-4381-2, 2019.
Cavicchia, L., Gualdi, S., Sanna, A., and Oddo, P.: The Regional
Ocean-Atmosphere Coupled Model COSMP-NEMO_MFS, CMCC Res.
Paper, RP0254, 2015.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J-P., Iglesias, A.,
Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J.,
Snoussi, M., Toreti, A., Tsimplis, M. N., and Xoplaki, E.: Climate change and
interconnected risks to sustainable development in the Mediterranean, Nat.
Clim. Change, 8, 972–980, https://doi.org/10.1038/s41558-018-0299-2, 2018.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D.,
Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future
evolution of Marine Heatwaves in the Mediterranean Sea, Clim. Dynam.,
53, 1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi. S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van den Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallber, P., Kohler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrett, J. J., Park, B.
K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011 (data available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 13 February 2020).
Dengg, J., Beckmann, A., and Gerdes, R.: The Gulf Stream separation problem,
in The Warmwatersphere of the North Atlantic Ocean, edited by: Krauss, W.,
253–290, Gebr. Bornträger, Berlin, 1996.
Déqué, M. and Piedelievre, J. P.: Latest issue climate simulation
over Europe, Clim. Dynam., 11, 321–339, https://doi.org/10.1007/BF00215735, 1995.
Di Luca, A., Flaounas, E., Drobinski, P., and Lebeaupin-Brossier, C.: The
atmospheric component of the Mediterranean Sea water budget in a WRF
multi-physics ensemble and observations, Clim. Dynam., 43, 2349–2375,
https://doi.org/10.1007/s00382-014-2058-z, 2014.
Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M.,
Dell'Aquilla, A., Elizalde, A., Gualdi, S., Jacob, D., L'Hévéder,
B., Li, L., Oddo, P., Sannino, G., Scoccimarro, E., and Sevault, F.: Future
projections of the surface heat and water budgets of the Mediterranean Sea
in an ensemble of coupled atmosphere–ocean regional climate models, Clim.
Dynam., 39, 1859–1884, https://doi.org/10.1007/s00382-011-1261-4, 2012.
Fantini, A., Raffaele, F., Torma, C., Bacer, S., Coppola, E., Giorgi, F.,
Ahrens, B., Dubois, C., Sanchez, E., and Verdecchia, M.: Assessment of
multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and
EURO-CORDEX experiments against high resolution observations, Clim. Dynam.,
51, 877–900, https://doi.org/10.1007/s00382-016-3453-4, 2018.
Fratianni, C., Simoncelli, S., Pinardi, N., Cherchi, A., Grandi, A., and
Dobricic, S.: Mediterranean RR 1955–2015 (Version1) [Dataset], Copernicus
Monitoring Environment Marine Service (CMEMS), https://doi.org/10.25423/MEDSEA_REANALYSIS_PHY_006, 2015.
Ferster, B. S., Subrahmanyam, B., and Macdonald, A. M.: Confirmation of
ENSO-Southern Ocean Teleconnections Using Satellite-Derived SST, Remote Sens.,
10, 1–9, https://doi.org/10.3390/rs10020331, 2018.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013 (data available at: https://cera-www.dkrz.de/WDCC/ui/cerasearch/q?query=mpi-esm&page=0&rows=15, last access: 6 October 2020).
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F. and Lionello, P.: Climate change projections for the
Mediterranean region, Global Planet. Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013 (data available at: https://www.metoffice.gov.uk/hadobs/en4/download.html).
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in
bathythermograph data: Development of a new correction scheme based on
analysis of a global ocean database, Deep-Sea Res. Pt. I., 57,
812–833, https://doi.org/10.1016/j.dsr.2010.03.011, 2010.
Gualdi, S., Somot, S., Li, L., Artale, V., Adani, M., Bellucci, A., Braun,
A., Calmanti, S., Carillo, A., Dell'Aquila, A., Déqué, M., Dubois,
C., Elizalde, A., Harzallah, A., Jacob, D., L'Hévéder, B., May, W.,
Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F., and
Navarra, A.: The CIRCE simulations: regional climate change projections with
realistic representation of the Mediterranean Sea, B. Am. Meteorol. Soc., 94, 65–81, https://doi.org/10.1175/BAMS-D-11-00136.1, 2013.
Hagemann, S. and Dümenil-Gates, L.: A parameterization of the lateral
waterflow for the global scale, Clim. Dynam., 14, 17–31,
https://doi.org/10.1007/s003820050205, 1998.
Hagemann, S. and Dümenil-Gates, L.: Validation of the hydrological cycle
of ECMWF and NCEP reanalysis using the MPI hydrological discharge model, J.
Geophys. Res., 106, 1503–1510, https://doi.org/10.1029/2000JD900568, 2001.
Hibler III, W. D.: A dynamic thermodynamic sea ice model, J. Phys. Oceanogr.,
9, 815–846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979.
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., and Xie, P.:
Integrated Multi-satellitE Retrievals for GPM (IMERG), version 4.4. NASA's
Precipitation Processing Center, available at:
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/ (last access: 31 March 2015), 2014.
Ilyina, T., Six, K., Segschneider, J., Maier-Reimer, E., Li, H., and
Nunez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model
architecture and performance as component of the MPI-Earth System Model in
different CMIP5 experimental realizations, J. Adv. Model. Earth Sy.,
5, 287–315, https://doi.org/10.1029/2012MS000178, 2013.
IPCC: Emissions Scenarios. Summary for Policymakers. A special Report of
IPCC Working Group III, Cambridge University Press, Cambridge, 2000.
Izquierdo, A. and Mikolajewicz, U.: The role of tides in the spreading of
Mediterranean Outflow waters along the southwestern Iberian margin, Ocean
Model., 133, 27–43, https://doi.org/10.1016/j.ocemod.2018.08.003, 2019.
Jacob, D.: A note to the simulation of the annual and interannual
variability of the water budget over the Baltic Sea drainage basin,
Meteorol. Atmos. Phys., 77, 61–73, https://doi.org/10.1007/s007030170017, 2001.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei,
D., Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in MPIOM, the ocean component of the MPI-Earth system
model, J. Adv. Model Earth Sy., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013.
Lauer, A., Eyring, V., Righi, M., Buchwitz, M., Defourny, P., Evaldsson, M.,
Friedlingstein, P., de Jeu, R., de Leeuw, G., Loew, A., Merchant, C. J.,
Müler, B., Popp, T., Reuter, M., Sandven, S., Senftleben, D., Stengel,
M., Van Roozendael, M., Wenzel, S., and Willén, U.: Benchmarking CMIP5
models with a subset of ESA CCI Phase 2 data using the ESMValTool, Remote
Sens. Environ., 203, 9–39, https://doi.org/10.1016/j.rse.2017.01.007, 2017.
Levitus, S., Boyer, T. P., Conkright, M. E., O'Brien, T., Antonov, J.,
Stephens, C., Stathoplos, L., Johnson, D., and Gelfeld, R.: World Ocean
Database 1998, vol.1, Introduction, NOAA Atlas NESDIS 18, Ocean Clim. Lab.,
Natl. Oceanogr. Data Cent., U.S. Gov. Print. Off., Washington, D.C., 1998.
L'Hévéder, B., Li, L., Sevault, F., and Somot, S.: Interannual
variability of deep convection in the Northwestern Mediterranean simulated
with a coupled AORCM, Clim. Dynam., 41, 937–960,
https://doi.org/10.1007/s00382-012-1527-5, 2013.
Li, H., Kanamitsu, M., and Hong, S. Y.: California reanalysis downscaling at
10 km using an ocean-atmosphere coupled regional model system, J. Geophys.
Res., 117, D12118, https://doi.org/10.1029/2011JD017372, 2012.
Macias, D., Garcia-Gorriz, E., Dosio, A., Stips, A., and Keuler, K.:
Obtaining the correct sea surface temperature: bias correction of regional
climate model data for the Mediterranean Sea, Clim. Dynam., 51, 1095–1117,
https://doi.org/10.1007/s00382-016-3049-z, 2018.
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The HAMburg
Ocean Carbon Cycle Model HAMOCC5.1 Technical Description Release 1.1, Ber.
Erdsystemforschung, 14, available at:
http://hdl.handle.net/11858/00-001M-0000-0011-FF5C-D (last access: 24 November 2019), 2005.
Majewski, D.: The Europa-Modell of the Deutscher Wetterdienst, Seminar
Proceedings ECMWF, Reading, 2, 147–191, 1991.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Roeske, F.: The
Max-Planck- Institute global ocean/sea ice model with orthogonal curvilinear
coordinates, Ocean Model., 5, 91–127, https://doi.org/10.1016/S1463-5003(02)00015-X,
2003.
Menna, M. and Poulain, P. M.: Mediterranean intermediate circulation estimated from Argo data in 2003–2010, Ocean Sci., 6, 331–343, https://doi.org/10.5194/os-6-331-2010, 2010
Metzger, E. J., Smedstad, O. M., Thoppil, P. G., Hurlburt, H. E., Cummings,
J. A., Wallcraft, A. J., Zamudio, L., Franklin, D. S., Posey, P. G., Phelps,
M. W., Hogan, P. J., Bub, F, L., and DeHaan, C. J.: US Navy Operational
Global Ocean and Artic Ice Prediction Systems, Oceanography, 27, 32–43,
https://doi.org/10.5670/oceanog.2014.66, 2014.
Panthou, G., Vrac, M., Drobinski, P., Bastin, S., and Li, L.: Impact of model
resolution and Mediterranean Sea coupling on hydrometeorological extremes in
RCMs in the frame of HymMeX and MED-CORDEX, Clim. Dynam., 51, 915–932,
https://doi.org/10.1007/s00382-016-3374-2, 2018.
Rechid, D. and Jacob, D.: Influence of monthly varying vegetation on the
simulated climate in Europe, Meteorol. Z., 15, 99–116,
https://doi.org/10.1127/0941-2948/2006/0091, 2006.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: The representation of
natural and anthropogenic land cover change in MPIESM, J. Adv. Model. Earth
Sy., 5, 1–24, https://doi.org/10.1002/jame.20022, 2013.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily High-Resolution-Blended Analyses for sea surface
temperature, J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1,
2007 (data available at: https://www.ncdc.noaa.gov/oisst, last access: 6 October 2020).
Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M.,
Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schulzweida, U.:
The Atmospheric General Circulation Model ECHAM-4: Model description and
simulation of present-day-climate, Rep. 218, MPI für Meteorol., Hamburg,
Germany, 1996.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M.,
Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E.,
Schlese, U., and Schulzweida, U.: The atmospheric general circulation model
ECHAM 5. PART I: Model description, Rep. 349, MPI für Meteorol.,
Hamburg, Germany, available at: http://hdl.handle.net/11858/00-001M-0000-0012-0144-5 (last access: 17 February 2019),
2003.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos,
W., Calmanti, S., Calvet, J. C., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Dobrinski, P., Elizalde-Arellano, A., Gaertner, M., Galan,
P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O., Jorda, G.,
L'Heveder, B., Lebeaupin-Brossier, L., Li, L., Liguori, G., Lionello, P.,
Macias, D., Nabat, P., Önol, B., Raikovic, B., Ramage, K., Sevault, F.,
Sannino, G., Struglia, M. V., Sanna, A., Troma, C., and Vervatis, V.:
MED-CORDEX initiative for Mediterranean Climate studies, B. Am. Meteorol.
Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2015.
Sánchez-Gómez, E., Somot, S., Josey, S. A., Dubois, C., Elguindi, N.,
and Déqué, M.: Evaluation of Mediterranean Sea water and heat
budgets simulated by an ensemble of high resolution regional climate models,
Clim. Dynam., 37, 2067–2086, https://doi.org/10.1007/s00382-011-1012-6, 2011.
Sein, D. V., Koldunov, N. V., Pinto, J. G., and Cabos, W.: Sensitivity of
simulated regional Arctic climate to the choice of coupled model domain,
Tellus A, 66, 23966, https://doi.org/10.3402/tellusa.v66.23966, 2014.
Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto,
J. G., Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.: Regionally
coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1.
Description and validation, J. Adv. Model. Earth Sy., 7, 268–304,
https://doi.org/10.1002/2014MS000357, 2015.
Sevault, F., Somot, S., Alias, A., Dubois, C., Lebeaupin-Brossier, C.,
Nabat, P., Adloff, F., Déqué, M., and Decharme, B.: A fully coupled
Mediterranean regional climate system model: design and evaluation of the
ocean component for the 1980–2012 period, Tellus A, 66, 23967,
https://doi.org/10.3402/tellusa.v66.23967, 2014.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and
future scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443,
https://doi.org/10.5697/oc.56-3.411, 2014.
Simmons, A. J. and Burridge, D. M.: An energy and angular-momentum
conserving vertical finite-difference scheme and hybrid vertical coordinate,
Mon. Weather. Rev., 109, 758–766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2, 1981.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change
scenario simulation of the Mediterranean Sea for the 21st century using a
high-resolution ocean circulation model, Clim. Dynam., 27, 851–879,
https://doi.org/10.1007/s00382-006-0167-z, 2006.
Somot, S., Sevault, F., Déqué, M., and Crépon, M.: 21st century
climate change scenario for the Mediterranean using a coupled
atmosphere–ocean regional climate model, Global Planet. Change, 63,
112–126, https://doi.org/10.1016/j.gloplacha.2007.10.003, 2008.
Somot, S., Ruti, P., Ahrens, B., Coppola, E., Jordà, G., Sannino, G., and
Solmon, F.: Editorial for the Med-CORDEX special issue, Clim. Dynam., 51,
771–777, https://doi.org/10.1007/s00382-018-4325-x, 2018.
Soto-Navarro, J., Somot, S., Sevault, F., Beuvier, J., Criado-Aldeanueva,
F., García-Lafuente, J., and Béranger, K.: Evaluation of regional
ocean circulation models for the Mediterranean Sea at the Strait of
Gibraltar: volume transport and thermohaline properties of the outflow,
Clim. Dynam., 44, 1277–1292, https://doi.org/10.1007/s00382-014-2179-4, 2014.
SSALTO/DUACS: User Handbook (M)SLA and (M)ADT near-real time and delayed
time products. Nomenclature: SALP- MU-P-EA-21065-CLS. Issue 3, Rev. 4.
Reference: CLSDOS-NT-06-034, available at: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 (last access: 22 June 2020), 2013.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, R., and
Roeckner, E.: Atmospheric component of the MPI-M Earth system model: ECHAM6,
J. Adv. Model. Earth Sy., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013.
Struglia, M. V., Mariotti, A., and Filograsso, A.: River discharge into the
Mediterranean Sea: climatology and aspects of the observed variability, J.
Climate, 17, 4740–4751, https://doi.org/10.1175/JCLI-3225.1, 2004.
Tanre, D., Geleyn, J. F., and Slingo, J. M.: First results of the
introduction of an advanced aerosol-radiation interaction in the ECMWF low
resolution global model, Aerosols and their Climatic Effects, edited by:
Gerber, H. and Deepak, A., Hampton, Virginia, 133–177, 1984.
Taylor, K., Stouffer, R., and Meehl, G.: An overview of CMIP5 and the
experiments design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thorpe, R. B. and Bigg, G. R.: Modelling the sensitivity of the
Mediterranean outflow to anthropogenically forced climate change, Clim.
Dynam., 16, 355–368, https://doi.org/10.1007/s003820050333, 2000.
Tomczak, M. and Godfrey S. J.: Regional Oceanography: an Introduction,
Pergamon, New York, 274–280, 1994.
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013.
Velikou, K., Tolika, K., Anagnostopoulou, C., and Zanis, P.: Sensitivity
analysis of RegCM4 model: present time simulations over the Mediterranean,
Theor. Appl. Climatol., 136, 1185–1208, https://doi.org/10.1007/s00704-018-2547-9, 2019.
Wang, F. and Polcher, J.: Assessing the freshwater flux from the continents
to the Mediterranean Sea, Sci. Rep.-UK, 9, 8024, https://doi.org/10.1038/s41598-019-44293-1,
2019.
Short summary
This work presents high-resolution simulations of a coupled regional model in the Mediterranean basin. The approach allows us to assess the role of ocean feedbacks in the downscaled climate. Our results show good skills in simulating present climate; the model's robustness introduces improvements in reproducing physical processes at local scales. Our climate projections reveal that by the end of the 21st century the Mediterranean Sea will be warmer and saltier although not in a homogeneous way.
This work presents high-resolution simulations of a coupled regional model in the Mediterranean...