Articles | Volume 16, issue 3
https://doi.org/10.5194/os-16-545-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-545-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical distribution of water mass properties under the influence of subglacial discharge in Bowdoin Fjord, northwestern Greenland
Yoshihiko Ohashi
CORRESPONDING AUTHOR
Department of Ocean Sciences, Tokyo University of Marine Science and
Technology, Tokyo, 108-8477, Japan
Shigeru Aoki
Institute of Low Temperature Science, Hokkaido University, Sapporo,
060-0819, Japan
Yoshimasa Matsumura
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
Shin Sugiyama
Institute of Low Temperature Science, Hokkaido University, Sapporo,
060-0819, Japan
Arctic Research Center, Hokkaido University, Sapporo, 001-0021, Japan
Naoya Kanna
Arctic Research Center, Hokkaido University, Sapporo, 001-0021, Japan
Daiki Sakakibara
Arctic Research Center, Hokkaido University, Sapporo, 001-0021, Japan
Related authors
No articles found.
Katsuro Katsumata, Shigeru Aoki, Kay I. Ohshima, and Michiyo Yamamoto-Kawai
EGUsphere, https://doi.org/10.5194/egusphere-2024-2237, https://doi.org/10.5194/egusphere-2024-2237, 2024
Short summary
Short summary
Ship-based observation provides data of such sea water properties as temperature, salinity, nutrients, and various gases, but some important world oceans have not still been covered. A voyage in 2019/20 in the southwest Indian Ocean along approximately 55° E from 30° S to the Antarctica attempted to fill one such data sparse regions. The measured cross section of the Antarctic Circumpolar Current and accompanying eddies demonstrates various oceanic behaviours including fronts and eddy mixing.
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
EGUsphere, https://doi.org/10.5194/egusphere-2024-1476, https://doi.org/10.5194/egusphere-2024-1476, 2024
Short summary
Short summary
We report flow speed variations near the front of a tidewater glacier in Greenland. Ice flow near the glacier front is crucial for the mass loss of the Greenland ice sheet, but in-situ data are hard to obtain. Our unique in-situ GPS data revealed fine details of short-term speed variations associated with melting, ocean tides, and rain. The results are important for understanding the response of tidewater glaciers to changing environments, such as warming, more frequent rain, and ice thinning.
Mutsumi Iizuka, Takuya Itaki, Osamu Seki, Ryosuke Makabe, Motoha Ojima, and Shigeru Aoki
J. Micropalaeontol., 43, 37–53, https://doi.org/10.5194/jm-43-37-2024, https://doi.org/10.5194/jm-43-37-2024, 2024
Short summary
Short summary
Radiolarian fossils are valuable tools for understanding water mass distribution. However, they have not been used in the high-latitude Southern Ocean due to unclear radiolarian assemblages. Our study identifies four assemblages related to water masses and ice edge environments in the high-latitude Southern Ocean, offering insights for water mass reconstruction in this region.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, Takeshi Tamura, Kohei Mizobata, Guy D. Williams, and Shigeru Aoki
The Cryosphere, 18, 43–73, https://doi.org/10.5194/tc-18-43-2024, https://doi.org/10.5194/tc-18-43-2024, 2024
Short summary
Short summary
This study focuses on the Totten and Moscow University ice shelves, East Antarctica. We used an ocean–sea ice–ice shelf model to better understand regional interactions between ocean, sea ice, and ice shelf. We found that a combination of warm ocean water and local sea ice production influences the regional ice shelf basal melting. Furthermore, the model reproduced the summertime undercurrent on the upper continental slope, regulating ocean heat transport onto the continental shelf.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Shun Tsutaki, Koji Fujita, Takayuki Nuimura, Akiko Sakai, Shin Sugiyama, Jiro Komori, and Phuntsho Tshering
The Cryosphere, 13, 2733–2750, https://doi.org/10.5194/tc-13-2733-2019, https://doi.org/10.5194/tc-13-2733-2019, 2019
Short summary
Short summary
We investigate thickness change of Bhutanese glaciers during 2004–2011 using repeat GPS surveys and satellite-based observations. The thinning rate of Lugge Glacier (LG) is > 3 times that of Thorthormi Glacier (TG). Numerical simulations of ice dynamics and surface mass balance (SMB) demonstrate that the rapid thinning of LG is driven by both negative SMB and dynamic thinning, while the thinning of TG is minimised by a longitudinally compressive flow regime.
Hakime Seddik, Ralf Greve, Thomas Zwinger, and Shin Sugiyama
The Cryosphere, 11, 2213–2229, https://doi.org/10.5194/tc-11-2213-2017, https://doi.org/10.5194/tc-11-2213-2017, 2017
Short summary
Short summary
The Shirase Glacier in Antarctica is studied by means of a computer model. This model implements two physical approaches to represent the glacier flow dynamics. This study finds that it is important to use the more precise and sophisticated method in order to better understand and predict the evolution of fast flowing glaciers. This may be important to more accurately predict the sea level change due to global warming.
Guillaume Jouvet, Yvo Weidmann, Julien Seguinot, Martin Funk, Takahiro Abe, Daiki Sakakibara, Hakime Seddik, and Shin Sugiyama
The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017, https://doi.org/10.5194/tc-11-911-2017, 2017
Short summary
Short summary
In this study, we combine UAV (unmanned aerial vehicles) images taken over the Bowdoin Glacier, north-western Greenland, and a model describing the viscous motion of ice to track the propagation of crevasses responsible for the collapse of large icebergs at the glacier-ocean front (calving). This new technique allows us to explain the systematic calving pattern observed in spring and summer of 2015 and anticipate a possible rapid retreat in the future.
Takahiro Abe, Masato Furuya, and Daiki Sakakibara
The Cryosphere, 10, 1427–1432, https://doi.org/10.5194/tc-10-1427-2016, https://doi.org/10.5194/tc-10-1427-2016, 2016
Short summary
Short summary
We identified 12-year cyclic surging episodes at Donjek Glacier in Yukon, Canada. The surging area is limited within the ~20km section from the terminus, originating in an area where the flow width significantly narrows downstream. Our results suggest strong control of the valley constriction on the surge dynamics.
K. Hara, F. Nakazawa, S. Fujita, K. Fukui, H. Enomoto, and S. Sugiyama
Atmos. Chem. Phys., 14, 10211–10230, https://doi.org/10.5194/acp-14-10211-2014, https://doi.org/10.5194/acp-14-10211-2014, 2014
Related subject area
Approach: In situ Observations | Depth range: Shelf-sea depth | Geographical range: Shelf Seas | Phenomena: Temperature, Salinity and Density Fields
Seasonal and inter-annual variability of water column properties along the Rottnest continental shelf, south-west Australia
The Barents Sea frontal zones and water masses variability (1980–2011)
The 2011 marine heat wave in Cockburn Sound, southwest Australia
Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf
Seasonal and inter-annual temperature variability in the bottom waters over the western Black Sea shelf
On the freshening of the northwestern Weddell Sea continental shelf
Miaoju Chen, Charitha B. Pattiaratchi, Anas Ghadouani, and Christine Hanson
Ocean Sci., 15, 333–348, https://doi.org/10.5194/os-15-333-2019, https://doi.org/10.5194/os-15-333-2019, 2019
L. Oziel, J. Sirven, and J.-C. Gascard
Ocean Sci., 12, 169–184, https://doi.org/10.5194/os-12-169-2016, https://doi.org/10.5194/os-12-169-2016, 2016
Short summary
Short summary
The Barents Sea (BS) is a subpolar region and a zone transition where the Atlantic and the Arctic water masses meets and creates the "Polar Front". This study, based on one of the largest hydrological data set, showed for the first time that the "Polar Front" splits into two branches in the eastern part of the BS. This study also showed that, in a context of climate change, the BS experiences an "Atlantification", which goes along with a north-eastward shift of the frontal structure.
T. H. Rose, D. A. Smale, and G. Botting
Ocean Sci., 8, 545–550, https://doi.org/10.5194/os-8-545-2012, https://doi.org/10.5194/os-8-545-2012, 2012
D. G. Martinson and D. C. McKee
Ocean Sci., 8, 433–442, https://doi.org/10.5194/os-8-433-2012, https://doi.org/10.5194/os-8-433-2012, 2012
G. I. Shapiro, F. Wobus, and D. L. Aleynik
Ocean Sci., 7, 585–596, https://doi.org/10.5194/os-7-585-2011, https://doi.org/10.5194/os-7-585-2011, 2011
H. H. Hellmer, O. Huhn, D. Gomis, and R. Timmermann
Ocean Sci., 7, 305–316, https://doi.org/10.5194/os-7-305-2011, https://doi.org/10.5194/os-7-305-2011, 2011
Cited articles
Arendt, K. E., Dutz, J., Jónasdóttir, S. H., Jung-Mads, S.,
Mortensen, J., Møller, E. F., and Nielsen, T. G.: Effects of suspended
sediments on copepods feeding in a glacial influenced sub-Arctic fjord, J.
Plankt. Res., 33, 1526–1537, https://doi.org/10.1093/plankt/fbr054, 2011.
Bartholomaus, T. C., Amundson, J. M., Walter, J. I., O'Neel, S., West, M.
E., and Larsen, C. F.: Subglacial discharge at tidewater glaciers revealed
by seismic tremor, Geophys. Res. Lett., 42, 6391–6398,
https://doi.org/10.1002/2015GL064590, 2015.
Bendtsen, J., Mortensen, J., Lennert, K., and Rysgaard, S.: Heat sources for
glacial ice melt in a West Greenland tidewater outlet glacier fjord: The
role of subglacial freshwater discharge, Geophys. Res. Lett., 42,
4089–4095, https://doi.org/10.1002/2015GL063846, 2015.
Box, J. E.: Greenland Ice Sheet Mass Balance Reconstruction. Part II:
Surface Mass Balance (1840–2010), J. Climate, 26, 6974–6989,
https://doi.org/10.1175/JCLI-D-12-00518.1, 2013.
Cape, R. M., Straneo F., Beaird N., Bundy, R. M., and Charette, M. A.:
Nutrient release to oceans from buoyancy-driven upwelling at Greenland
tidewater glaciers, Nat. Geosci., 12, 34–39,
https://doi.org/10.1038/s41561-018-0268-4, 2019.
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Modeling turbulent subglacial meltwater plumes:
Implications for fjord-scale buoyancy-driven circulation, J. Phys.
Oceanogr., 45, 2169–2185, https://doi.org/10.1175/JPO-D-15-0033.1, 2015.
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Subglacial discharge-driven renewal of tidewater glacier
fjords, J. Geophys. Res.-Oceans, 122, 6611–6629, https://doi.org/10.1002/2017JC012962,
2017.
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J.,
Bartholomaus, T. C., Morlighem, M., Shroyer, E., and Nash,
J.: Geometric Controls on Tidewater Glacier Retreat in Central Western
Greenland, J. Geophys. Res.-Earth Surf., 123, 2024–2038, https://doi.org/10.1029/2017JF004499, 2018.
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., Koppes, M., Sole, A., Christoffersen, P., and Patton, H.: Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers, The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, 2014.
Chu, V. W.: Greenland ice sheet hydrology: a review, Prog. Phys. Geogr.,
38, 19–54, https://doi.org/10.1177/0309133313507075, 2014.
Enderlin, E., Howat, I., Jeong, S., Noh, M., van Angelen, J. H., and van den
Broeke, M. R.: An improved mass budget for the Greenland Ice Sheet, Geophys.
Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Everett, A., Kohler, J., Sundfjord A., Kovacs, K. M., Torsvik, T., Pramanik,
A., Boehme, L., and Lydersen, C.: Subglacial discharge plume behaviour
revealed by CTD-instrumented ringed seals, Sci. Rep.-UK, 8, 13467,
https://doi.org/10.1038/s41598-018-31875-8, 2018.
Gade, H. G.: Melting of ice in sea water: A primitive model with application
to the Antarctic ice shelf and icebergs, J. Phys. Oceanogr., 9, 189–198,
https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2,
1979.
Gimbert, F., Tsai, V. C., Amundson, J. M., Bartholomaus, T. C., and Walter
J. I.: Sub-seasonal changes observed in subglacial channel pressure, size,
and sediment transport, Geophys. Res. Lett., 43, 3786–3794,
https://doi.org/10.1002/2016GL068337, 2016.
Holland, D. and Jenkins, A.: Modeling thermodynamic ice–ocean interactions
at the base of an ice shelf, J. Phys. Oceanogr., 29, 1787–1800,
https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999.
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.
Jenkins, A.: The impact of melting ice on ocean waters, J. Phys. Oceanogr.,
29, 2370–2391, https://doi.org/10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2, 1999.
Jenkins, A.: Convection-driven melting near the grounding lines of ice
shelves and tidewater glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011.
Kanna, N., Sugiyama, S., Ohashi, Y., Sakakibara, D., Fukamachi, Y., and
Nomura, D.: Upwelling of macronutrients and dissolved inorganic carbon by a
subglacial freshwater driven plume in Bowdoin Fjord, northwestern Greenland,
J. Geophys. Res.-Biogeo., 123, 1666–1682, https://doi.org/10.1029/2017JG004248,
2018.
Khan, S. A., Wahr, J., Bevis, M., Velicogna, I., and Kendrick, E.: Spread of
ice mass loss into northwest Greenland observed by GRACE and GPS, Geophys.
Res. Lett., 37, L06501, https://doi.org/10.1029/2010GL042460, 2010.
Kjær, K. H., Khan, S. A., Korsgaard, N. J., Wahr, J., Bamber, J. L.,
Hurkmans, R., van den Broeke, M., Timm, L. H., Kjeldsen, K. K., and
Bjørk, A. A.: Aerial photographs reveal late-20th-century dynamic ice
loss in northwestern Greenland, Science, 337, 596–573,
https://doi.org/10.1126/science.1220614, 2012.
Losch, M.: Modeling ice shelf cavities in a z coordinate ocean general
circulation model, J. Geophys. Res., 113, C08043, https://doi.org/10.1029/2007JC004368,
2008.
Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M.,
Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø.,
Walczowski, W., Weslawski, J. M., and Zajaczkowski, M.: The importance of
tidewater glaciers for marine mammals and seabirds in Svalbard, Norway, J.
Mar. Syst., 129, 452–471, https://doi.org/10.1016/j.jmarsys.2013.09.006, 2014.
Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., and
Singh, H.: Structure and dynamics of a subglacial discharge plume in a
Greenlandic fjord, J. Geophys. Res.-Oceans, 121, 8670–8688, https://doi.org/10.1002/2016JC011764, 2016.
Matsumura, Y. and Hasumi, H.: A non-hydrostatic ocean model with a scalable
multigrid Poisson solver, Ocean Model., 24, 15–28,
https://doi.org/10.1016/j.ocemod.2008.05.001, 2008.
Matsumura, Y. and Hasumi, H.: Modeling ice shelf water overflow and bottom
water formation in the southern Weddell Sea, J. Geophys. Res., 115, C10033,
https://doi.org/10.1029/2009JC005841, 2010.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, F., and Meysman, F. J.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Change Biol., 23, 5344–5357, https://doi.org/10.1111/gcb.13801, 2017.
Mortensen, J., Lennert, K., Bendtsen, J., and Rysgaard, S.: Heat sources for
glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the
Greenland Ice Sheet, J. Geophys. Res., 116, C01013,
https://doi.org/10.1029/2010JC006528, 2011.
Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M.,
Fahnestock, M., and Rysgaard, S.: On the seasonal freshwater stratification
in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic
sill fjord, J. Geophys. Res.-Oceans, 118, 1382–1395,
https://doi.org/10.1002/jgrc.20134, 2013.
Motyka, R. J., Truffer, M., Fahnestock, M., Mortensen, J., Rysgaard, S., and
Howat, I. M.: Submarine melting of the 1985 Jakobshavn Isbræ floating
tongue and the triggering of the current retreat, J. Geophys. Res., 116,
F01007, https://doi.org/10.1029/2009JF001632, 2011.
Motyka, R. J., Dryer, W. P., Amundson, J., Truffer, M., and Fahnestock, M.:
Rapid submarine melting driven by subglacial discharge, LeConte Glacier,
Alaska, Geophys. Res. Lett., 40, 5153–5158, https://doi.org/10.1002/grl.51011, 2013.
Myers, P. G., Kulan, N., and Ribergaard, M. H.: Irminger Water variability
in the West Greenland Current, Geophys. Res. Lett., 34, L17601,
https://doi.org/10.1029/2007GL030419, 2007.
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., and van den Broeke, M. R.: A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015), The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, 2016.
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, 2018.
Ohashi, Y., Iida, T., Sugiyama, S., and Aoki, S.: Spatial and temporal
variations in high turbidity surface water off the Thule region,
northwestern Greenland, Polar Sci., 10, 270–277,
https://doi.org/10.1016/j.polar.2016.07.003, 2016.
Ohashi, Y., Aoki, S., Matsumura, Y., Sugiyama, S., Kanna, N., and
Sakakibara, D.: Observational data and numerical experimental files for subglacial discharge plume in Bowdoin Fjord, northwestern Greenland [Data set], Zenodo, available at: https://zenodo.org/record/3532803 (last access: 6 April 2020), 2019.
O'Leary, M. and Christoffersen, P.: Calving on tidewater glaciers amplified by submarine frontal melting, The Cryosphere, 7, 119–128, https://doi.org/10.5194/tc-7-119-2013, 2013.
Porter, D. F., Tinto, K. J., Boghosian, A., Cochran, J. R., Bell, R. E.,
Manizade, S. S., and Sonntag, J. G.: Bathymetric control of tidewater
glacier mass loss in northwest Greenland, Earth Planet. Sci. Lett., 401,
40–46, https://doi.org/10.1016/j.epsl.2014.05.058, 2014.
Retamal, L., Bonilla, S., and Vincent, W. F.: Optical gradients and
phytoplankton production in the Mackenzie River and the coastal Beaufort
Sea, Polar Biol., 31, 363–379, https://doi.org/10.1007/s00300-007-0365-0, 2008.
Ribergaard, M. H., Olsen, S. M., and Mortensen, J.: Oceanographic
Investigations off West Greenland 2007, Danish Metrological Institute Centre
for Ocean and Ice (DMI), Copenhagen, 48 pp.,
available at: https://archive.nafo.int/open/sc/2008/scr08-003.pdf (last access: 6 April 2020), 2008.
Rignot, E., Fenty, I., Xu, Y., Cai, C., and Kemp, C.: Undercutting of
marine-terminating glaciers in West Greenland, Geophys. Res. Lett., 42,
5909–5917, https://doi.org/10.1002/2015GL064236, 2015.
Sciascia, R., Straneo, F., Cenedese, C., and Heimbach, P.: Seasonal
variability of submarine melt rate and circulation in an East Greenland
fjord, J. Geophys. Res.-Oceans, 118, 2492–2506, https://doi.org/10.1002/jgrc.20142,
2013.
Seguinot, J., Funk, M., Ryser, C., Jouvet, G., Bauder, A., and Sugiyama, S.:
Ice dynamics of Bowdoin tidewater glacier, Northwest Greenland, from
borehole measurements and numerical modelling, Geophys. Res. Abstr., 18,
EGU2016-11604-1, 2016.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J.,
Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N.,
Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li,
J. L., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M.,
Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J.,
Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sorensen, L. S., Scambos,
T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van
Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G.,
Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D. H.,
Young, D., and Zwally, H. J.: A reconciled estimate of ice-sheet mass
balance, Science, 338, 1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Smagorinsky, J.: General circulation experiments with the primitive
equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2,
1963.
Stevens, L. A., Straneo, F., Das, S. B., Plueddemann, A. J., Kukulya, A. L., and Morlighem, M.: Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations, The Cryosphere, 10, 417–432, https://doi.org/10.5194/tc-10-417-2016, 2016.
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's Glacial Fjords and
Their Role in Climate, Ann. Rev. Mar. Sci., 7, 89–112,
https://doi.org/10.1146/annurev-marine-010213-135133, 2015.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43,
https://doi.org/10.1038/nature12854, 2013.
Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C.,
Våge, K., and Stearns, L. A.: Impact of fjord dynamics and glacial
runoff on the circulation near Helheim Glacier, Nat. Geosci., 3,
182–186, https://doi.org/10.1038/ngeo1109, 2011.
Straneo, F., Sutherland, D. A., Holland, D. M., Gladish, C., Hamilton, G.
S., Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M.: Characteristics of
ocean waters reaching Greenland's glaciers, Ann. Glaciol., 53, 202–210,
https://doi.org/10.3189/2012AoG60A059, 2012.
Sugiyama, S., Sakakibara, D., Tsutaki, S., Maruyama, M., and Sawagaki, T.:
Glacier dynamics near the calving front of Bowdoin Glacier, northwestern
Greenland, J. Glaciol., 61, 223–232, https://doi.org/10.3189/2015JoG14J127, 2015.
Sutherland, D. A. and Pickart, R. S.: The East Greenland Coastal Current:
structure, variability, and forcing, Prog. Oceanogr., 78, 58–77,
https://doi.org/10.1016/j.pocean.2007.09.006, 2008.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Xu, Y., Rignot, E., Fenty, I., and Menemenlis, D.: Subaqueous melting of
Store Glacier, West Greenland from three-dimensional, high resolution
numerical modeling and ocean observations, Geophys. Res. Lett., 40,
4648–4653, https://doi.org/10.1002/grl.50825, 2013.
Short summary
Subglacial freshwater discharge affects fjord circulation, material transport, and biological productivity. To better understand the influence of subglacial discharge on properties of vertical water mass profiles of Bowdoin Fjord in northwestern Greenland, observations and numerical experiments were conducted. The vertical distributions of turbid freshwater outflow near the surface and at the subsurface were likely due to the amount of subglacial discharge and fjord stratification, respectively.
Subglacial freshwater discharge affects fjord circulation, material transport, and biological...