Articles | Volume 16, issue 2
Ocean Sci., 16, 291–305, 2020
https://doi.org/10.5194/os-16-291-2020
Ocean Sci., 16, 291–305, 2020
https://doi.org/10.5194/os-16-291-2020

Research article 06 Mar 2020

Research article | 06 Mar 2020

A revised ocean glider concept to realize Stommel's vision and supplement Argo floats

Erik M. Bruvik et al.

Related authors

Technical note: Turbulence measurements from a Light Autonomous Underwater Vehicle
Eivind Hugaas Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-107,https://doi.org/10.5194/os-2021-107, 2021
Preprint under review for OS
Short summary
The mesoscale eddy field in the Lofoten Basin from high-resolution Lagrangian simulations
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021,https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Structure and drivers of ocean mixing north of Svalbard in summer and fall 2018
Zoe Koenig, Eivind H. Kolås, and Ilker Fer
Ocean Sci., 17, 365–381, https://doi.org/10.5194/os-17-365-2021,https://doi.org/10.5194/os-17-365-2021, 2021
Short summary
Norwegian Atlantic Slope Current along the Lofoten Escarpment
Ilker Fer, Anthony Bosse, and Johannes Dugstad
Ocean Sci., 16, 685–701, https://doi.org/10.5194/os-16-685-2020,https://doi.org/10.5194/os-16-685-2020, 2020
Short summary
Hydrography, transport and mixing of the West Spitsbergen Current: the Svalbard Branch in summer 2015
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018,https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary

Related subject area

Depth range: All Depths | Approach: Instrument Development | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
A computational method for determining XBT depths
J. Stark, J. Gorman, M. Hennessey, F. Reseghetti, J. Willis, J. Lyman, J. Abraham, and M. Borghini
Ocean Sci., 7, 733–743, https://doi.org/10.5194/os-7-733-2011,https://doi.org/10.5194/os-7-733-2011, 2011
Assessment of sensor performance
C. Waldmann, M. Tamburri, R. D. Prien, and P. Fietzek
Ocean Sci., 6, 235–245, https://doi.org/10.5194/os-6-235-2010,https://doi.org/10.5194/os-6-235-2010, 2010

Cited articles

Alvarez, A., Garau, B., and Caiti, A.: Combining networks of drifting profiling floats and gliders for adaptive sampling of the Ocean, Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007, IEEE, https://doi.org/10.1109/ROBOT.2007.363780, 2007. 
Alvarez, A., Chiggiato, J., and Schroeder, K.: Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders, Deep-Sea Res. Pt. I, 74, 115–129, https://doi.org/10.1016/j.dsr.2012.10.014, 2013. 
Anderson, J. D.: Fundamentals of Aerodynamics, 5th edn., McGraw-Hill, New York, ISBN 978-007-128908-5, 2011. 
Argo: How do Argo floats work, Argo web pages, available at: http://www.argo.ucsd.edu/How_Argo_floats.html, last access: 18 October 2019a. 
Argo: FAQ – How much does the project cost and who pays?, Argo web pages, available at: http://www.argo.ucsd.edu/FAQ.html#cost, last access: 21 October 2019b. 
Download
Short summary
A concept of small and slow ocean gliders or profiling floats with wings is explored. These robots or drones measure the ocean temperature and currents. Even if the speed is very slow, only 13 cm s1, it is possible to navigate the (simulated) ocean using a navigation method called Eulerian roaming. The slow speed and size conserve a lot of energy and enable scientific missions of years at sea.