Articles | Volume 16, issue 2
https://doi.org/10.5194/os-16-291-2020
https://doi.org/10.5194/os-16-291-2020
Research article
 | 
06 Mar 2020
Research article |  | 06 Mar 2020

A revised ocean glider concept to realize Stommel's vision and supplement Argo floats

Erik M. Bruvik, Ilker Fer, Kjetil Våge, and Peter M. Haugan

Related authors

An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024,https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
The Polar Front in the northwestern Barents Sea: structure, variability and mixing
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024,https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Dynamical reconstruction of the upper-ocean state in the central Arctic during the winter period of the MOSAiC expedition
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024,https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Technical note: Turbulence measurements from a light autonomous underwater vehicle
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022,https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
The mesoscale eddy field in the Lofoten Basin from high-resolution Lagrangian simulations
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021,https://doi.org/10.5194/os-17-651-2021, 2021
Short summary

Related subject area

Approach: Instrument Development and Techniques | Depth range: All Depths | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
A computational method for determining XBT depths
J. Stark, J. Gorman, M. Hennessey, F. Reseghetti, J. Willis, J. Lyman, J. Abraham, and M. Borghini
Ocean Sci., 7, 733–743, https://doi.org/10.5194/os-7-733-2011,https://doi.org/10.5194/os-7-733-2011, 2011
Assessment of sensor performance
C. Waldmann, M. Tamburri, R. D. Prien, and P. Fietzek
Ocean Sci., 6, 235–245, https://doi.org/10.5194/os-6-235-2010,https://doi.org/10.5194/os-6-235-2010, 2010

Cited articles

Alvarez, A., Garau, B., and Caiti, A.: Combining networks of drifting profiling floats and gliders for adaptive sampling of the Ocean, Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007, IEEE, https://doi.org/10.1109/ROBOT.2007.363780, 2007. 
Alvarez, A., Chiggiato, J., and Schroeder, K.: Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders, Deep-Sea Res. Pt. I, 74, 115–129, https://doi.org/10.1016/j.dsr.2012.10.014, 2013. 
Anderson, J. D.: Fundamentals of Aerodynamics, 5th edn., McGraw-Hill, New York, ISBN 978-007-128908-5, 2011. 
Argo: How do Argo floats work, Argo web pages, available at: http://www.argo.ucsd.edu/How_Argo_floats.html, last access: 18 October 2019a. 
Argo: FAQ – How much does the project cost and who pays?, Argo web pages, available at: http://www.argo.ucsd.edu/FAQ.html#cost, last access: 21 October 2019b. 
Download
Short summary
A concept of small and slow ocean gliders or profiling floats with wings is explored. These robots or drones measure the ocean temperature and currents. Even if the speed is very slow, only 13 cm s1, it is possible to navigate the (simulated) ocean using a navigation method called Eulerian roaming. The slow speed and size conserve a lot of energy and enable scientific missions of years at sea.