Articles | Volume 16, issue 2
https://doi.org/10.5194/os-16-291-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-291-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A revised ocean glider concept to realize Stommel's vision and supplement Argo floats
Erik M. Bruvik
Geophysical Institute, University of Bergen, Bergen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
Kjetil Våge
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
Peter M. Haugan
Geophysical Institute, University of Bergen, Bergen, Norway
Institute of Marine Research, Bergen, Norway
Related authors
No articles found.
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024, https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022, https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
Short summary
A turbulence instrument was installed on a light autonomous underwater vehicle (AUV) and deployed in the Barents Sea in February 2021. We present the data quality and discuss limitations when measuring turbulence from the AUV. AUV vibrations contaminate the turbulence measurements, yet the measurements were sufficiently cleaned when the AUV operated in turbulent environments. In quiescent environments the noise from the AUV became relatively large, making the turbulence measurements unreliable.
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Zoe Koenig, Eivind H. Kolås, and Ilker Fer
Ocean Sci., 17, 365–381, https://doi.org/10.5194/os-17-365-2021, https://doi.org/10.5194/os-17-365-2021, 2021
Short summary
Short summary
The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing contributes to this sink by mixing the Atlantic and Pacific waters with surrounding waters. We investigate the drivers of ocean mixing north of Svalbard based on observations collected during two research cruises in 2018 as part of the Nansen Legacy project. We found that wind and tidal forcing are the main drivers and that 1 % of the Atlantic Water heat loss can be attributed to vertical turbulent mixing.
Ilker Fer, Anthony Bosse, and Johannes Dugstad
Ocean Sci., 16, 685–701, https://doi.org/10.5194/os-16-685-2020, https://doi.org/10.5194/os-16-685-2020, 2020
Short summary
Short summary
We analyzed 14-month-long observations from moored instruments to describe the average features and the variability of the Norwegian Atlantic Slope Current at the Lofoten Escarpment (13°E, 69°N). The slope current varies strongly with depth and in time. Pulses of strong current occur, lasting for 1 to 2 weeks, and extend as deep as 600 m. The average volume transport is 2 x 106 m3 s-1.
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018, https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary
Short summary
Measurements of ocean currents, stratification and microstructure collected northwest of Svalbard are used to characterize the evolution of the warm Atlantic current. The measured turbulent heat flux is too small to account for the observed cooling rate of the current. The estimated contribution of diffusion by eddies could be limited to one half of the observed heat loss. Mixing in the bottom boundary layer, driven by cross-slope flow of buoyant water, can be important.
Jenny E. Ullgren, Elin Darelius, and Ilker Fer
Ocean Sci., 12, 451–470, https://doi.org/10.5194/os-12-451-2016, https://doi.org/10.5194/os-12-451-2016, 2016
Short summary
Short summary
One-year long moored measurements of currents and hydrographic properties in the overflow region of the Faroe Bank Channel have provided a more accurate observational-based estimate of the volume transport, entrainment, and eddy diffusivities associated with the overflow plume. The data set resolves the temporal variability and covers the entire lateral and vertical extent of the plume.
E. Darelius, I. Fer, T. Rasmussen, C. Guo, and K. M. H. Larsen
Ocean Sci., 11, 855–871, https://doi.org/10.5194/os-11-855-2015, https://doi.org/10.5194/os-11-855-2015, 2015
Short summary
Short summary
Quasi-regular eddies are known to be generated in the outflow of dense water through the Faroe Bank Channel. One year long mooring records from the plume region show that (1) the energy associated with the eddies varies by a factor of 10 throughout the year and (2) the frequency of the eddies shifts between 3 and 6 days and is related to the strength of the outflow. Similar variability is shown by a high-resolution regional model and the observations agree with theory on baroclinic instability.
I. Fer, M. Müller, and A. K. Peterson
Ocean Sci., 11, 287–304, https://doi.org/10.5194/os-11-287-2015, https://doi.org/10.5194/os-11-287-2015, 2015
Short summary
Short summary
Over the Yermak Plateau northwest of Svalbard there is substantial energy conversion from barotropic to internal tides. Internal tides are trapped along the topography. An approximate local conversion-to-dissipation balance is found over
shallows and also in the deep part of the sloping flanks. Dissipation of
tidal energy can be a significant contributor to turbulent mixing and cooling of the Atlantic layer in the Arctic Ocean.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Bakhoday Paskyabi and I. Fer
Nonlin. Processes Geophys., 21, 713–733, https://doi.org/10.5194/npg-21-713-2014, https://doi.org/10.5194/npg-21-713-2014, 2014
E. Støylen and I. Fer
Nonlin. Processes Geophys., 21, 87–100, https://doi.org/10.5194/npg-21-87-2014, https://doi.org/10.5194/npg-21-87-2014, 2014
Related subject area
Approach: Instrument Development and Techniques | Depth range: All Depths | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
A computational method for determining XBT depths
Assessment of sensor performance
J. Stark, J. Gorman, M. Hennessey, F. Reseghetti, J. Willis, J. Lyman, J. Abraham, and M. Borghini
Ocean Sci., 7, 733–743, https://doi.org/10.5194/os-7-733-2011, https://doi.org/10.5194/os-7-733-2011, 2011
C. Waldmann, M. Tamburri, R. D. Prien, and P. Fietzek
Ocean Sci., 6, 235–245, https://doi.org/10.5194/os-6-235-2010, https://doi.org/10.5194/os-6-235-2010, 2010
Cited articles
Alvarez, A., Garau, B., and Caiti, A.: Combining networks of drifting profiling floats and gliders for adaptive sampling of the Ocean, Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007, IEEE, https://doi.org/10.1109/ROBOT.2007.363780, 2007.
Alvarez, A., Chiggiato, J., and Schroeder, K.: Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders, Deep-Sea Res. Pt. I, 74, 115–129, https://doi.org/10.1016/j.dsr.2012.10.014, 2013.
Anderson, J. D.: Fundamentals of Aerodynamics, 5th edn., McGraw-Hill, New York, ISBN 978-007-128908-5, 2011.
Argo: How do Argo floats work, Argo web pages, available at:
http://www.argo.ucsd.edu/How_Argo_floats.html, last access: 18 October 2019a.
Argo: FAQ – How much does the project cost and who pays?, Argo web pages, available at:
http://www.argo.ucsd.edu/FAQ.html#cost, last access:
21 October 2019b.
Bonaduce, A., Benkiran, M., Remy, E., Le Traon, P. Y., and Garric, G.: Contribution of future wide-swath altimetry missions to ocean analysis and forecasting, Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018, 2018.
Bosse, A. and Fer, I.: Mean structure and seasonality of the Norwegian
Atlantic Front Current along the Mohn Ridge from repeated glider transects, Geophys. Res. Lett., 46, 13170–13179, https://doi.org/10.1029/2019GL084723, 2019.
Bosse, A., Fer, I., Søiland, H., and Rossby, T.: Atlantic water transformation along its poleward pathway across the Nordic Seas, J. Geophys. Res.-Oceans, 123, 6428–6448, https://doi.org/10.1029/2018JC014147, 2018.
Brakstad, A., Våge, K., Håvik, L., and Moore, G. W. K.: Water mass transformation in the Greenland Sea during the period 1986–2016, J. Phys.
Oceanogr., 49, 121–140, 2019.
Chapman, C. and Sallée, J. B.: Can we reconstruct mean and eddy fluxes from Argo floats?, Ocean Model., 120, 83–100, 2017.
CMEMS: Product User Manual For the Global Ocean Physical Reanalysis product, available at: http://cmems-resources.cls.fr/documents/PUM/CMEMS-GLO-PUM-001-030.pdf (last access: 27 February 2020), Issue 1.1, also available at:
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_030 (last access: 30 March 2019), 2018.
Davis, R. E., Webb, D. C., Regier, L. A., and Dufour, J.: The Autonomous Lagrangian Circulation Explorer (ALACE), J. Atmos. Ocean. Tech., 9,
264–285, 1992.
Davis, R. E., Sherman, J. T., and Dufour, J.: Profiling ALACEs and Other Advances in Autonomous Subsurface Floats, J. Atmos. Ocean. Tech., 18, 982–993, 2001.
Davis, R. E., Eriksen, C. C., and Jones, C. P.: Autonomous Buoyancy-driven
Underwater Gliders, in: The Technology and Applications of Autonomous
Underwater Vehicles, edited by: Griffiths, G., Taylor and Francis, London, 37–58, 2002.
Davis, R. E., Leonard, N. E., and Fratantoni, D. M.: Routing strategies for
underwater gliders, Deep-Sea Res. Pt. II, 56, 173–187, 2009.
de Steur, L., Hansen, E., Mauritzen, C., Beszczynska-Moeller, A., and Fahrbach, E.: Impact of recirculation on the East Greenland Current: results from moored current meter measurements between 1997 and 2009, Deep-Sea Res. Pt. I, 92, 26–40, 2014.
Eriksen, C. C., Osse, T. J., Light, R. D., Wen, T., Lehman, T. W., Sabin, P. L., Ballard, J. W., and Chiodi, A. M.: Seaglider: A Long-Range Autonomous Underwater Vehicle for Oceanographic Research, IEEE J. Oceanic Eng., 26,
424–436, 2001.
Frajka-Williams, E., Eriksen, C. C., Rhines, P. B., and Harcourt, R. R.: Determining Vertical Water Velocities from Seaglider, J. Atmos. Ocean.
Tech., 28, 1641–1656, 2011.
Fu, L.-L. and Ubelmann, C.: On the Transition from Profile Altimeter to Swath
Altimeter for Observing Global Ocean Surface Topography, J. Atmos. Ocean. Tech., 31, 560–568, https://doi.org/10.1175/JTECH-D-13-00109.1, 2014.
Garau, B., Ruiz, S., Zhang, W. G., Pascual, A., Heslop, E., Kerfoot, J., and
Tintoré, J.: Thermal Lag Correction on Slocum CTD Glider Data, J.
Atmos. Ocean. Tech., 28, 1065–1071, 2011.
Gould, W. J.: From Swallow floats to Argo—the development of neutrally
buoyant floats, Deep-Sea Res. Pt. II, 52, 529–543, 2005.
Graver, J. G.: Underwater Gliders: Dynamics, Control and Design, PhD thesis,
Princeton University, USA, 2005.
Hoerner, S. F.: Fluid-dynamic Drag, Hoerner Fluid Dynamics, Bakersfield, CA,
USA, LCCCN 64-19666, 1965.
Høydalsvik, F., Mauritzen, C., Orvik, K. A., LaCasce, J. H., Lee, C. M., and Gobat, J.: Transport estimates of the Western Branch of the Norwegian Atlantic Current from glider surveys, Deep-Sea Res. Pt. I, 79, 86–95, 2013.
IOC, SCOR, and IAPSO: The international thermodynamic equation of seawater –
2010: calculations and use of thermodynamic properties, Intergovernmental
Oceanographic Commission, UNESCO, Manuals and Guides No. 56, 196 pp., 2010.
Isachsen, P. E., Mauritzen, C., and Svendsen, H.: Dense water formation in the Nordic Seas diagnosed from sea surface buoyancy fluxes, Deep-Sea Res. Pt. I, 54, 22–41, 2007.
Jagadeesh, P., Murali, K., and Idichandy, V. G.: Experimental investigation of hydrodynamic force coefficients over AUV hull form, Ocean Eng., 36,
113–118, 2009.
Jenkins, S. A., Humphreys, D. E., Sherman, J., Osse, J., Jones, C., Leonard, N., Graver, J., Bachmayer, R., Clem, T., Carrol, P., Davis, P., Berry, J., Worley, P., and Wasyl, J.: Underwater Glider System Study, Scripps Institution of Oceanography, UC San Diego, Technical Report No. 53, 242 pp., 2003.
Khoury, G. A. and Gillett, J. D. (Eds.): Airship Technology, Cambridge University Press, Cambridge, UK, ISBN 978-0521430746, 1999.
Kobayashi, T., Asakawa, K., Watanabe, K., Ino, T., Amaike, K., Iwamiya, H.,
Tachikawa, M., Shikama, N., and Mizuno, K.: New buoyancy engine for autonomous vehicles observing deeper oceans, in: Proc. 20th International Offshore and Polar Engineering Conference,Beijing, China, 20–25 June 2010, International Society of Offshore and Polar Engineers, 2, 401–405, 2010.
Le Traon, P. Y.: From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography, Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, 2013.
Lee, C. M. and Rudnick, D. L.: Underwater Gliders, in Observing the Oceans in
Real Time, Springer Oceanography, Cham, Switzerland, ISBN 978-3-319-66492-7,
2018.
Lekien, F., Mortier, L., and Testor, P.: Glider Coordinated Control and
Lagrangian Coherent Structures, IFAC Proceedings Volumes, 41, 125–130,
2008.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Leonard, N. E., Paley, D. A., Davis, R. E., Fratantoni, D. M., Lekien, F., and Zhang, F.: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay, J. Field Robot., 27, 718–740, https://doi.org/10.1002/rob.20366, 2010.
Lermusiaux, P. F. J., Haley Jr., P. J., Jana, S., Gupta, A., Kulkarni, C. S.,
Mirabito, C., Ali, W. H., Subramani, D. N., Dutt, A., Lin, J., Shcherbina, A. Y., Lee, C. M., and Gangopadhyay, A.: Optimal planning and sampling predictions for
autonomous and Lagrangian platforms and sensors in the northern Arabian Sea,
Oceanography 30, 172–185, https://doi.org/10.5670/oceanog.2017.242, 2017a.
Lermusiaux, P. F. J., Subramani, D. N., Lin, J., Kulkarni, C. S., Gupta, A., Dutt, A., Lolla, T., Haley Jr., P. J., Ali, W. H., Mirabito, C., and Jana, S.: A future for intelligent autonomous ocean observing systems, J. Mar. Res., 75, 765–813, https://doi.org/10.1357/002224017823524035, 2017b.
L'Hévéder, B., Mortier, L., Testor, P., and Lekien, F.: A Glider Network Design Study for a Synoptic View of the Oceanic Mesoscale Variability, J. Atmos. Ocean. Tech., 30, 1472–1493, 2013.
Liblik, T., Karstensen, J., Testor, P., Alenius, P., Hayes, D., Ruiz, S., Heywood, K. J., Pouliquen, S., Mortier, L., and Mauri, E.: Potential for an underwater glider component as part of the Global Ocean Observing System, Methods in Oceanography, 17, 50–82, 2016.
Lidtke, A. K., Turnock, S. R., and Downes, J.: Hydrodynamic Design of Underwater Gliders Using k-kL-ω Reynolds Averaged Navier–Stokes Transition Model, IEEE J. Oceanic Eng., 43, 2, 356–368, 2018.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 1: Temperature, edited by: Mishonov, A., NOAA Atlas NESDIS 81, 52 pp., 2018.
Lueck, R. G. and Picklo, J. J.: Thermal inertia of conductivity cells:
Observations with a Sea-Bird cell, J. Atmos. Ocean. Tech., 7, 756–768, 1990.
Mauritzen, C.: Production of dense overflow waters feeding the North
Atlantic across the Greenland-Scotland Ridge. Part 1: evidence for a revised
circulation scheme, Deep-Sea Res. Pt. I, 43, 769–806, 1996.
McMasters, J. H.: An Analytic Survey of Low Speed Flying Devices – Natural
and Man-Made, Technical Soaring, 3, 17–42, 1974.
Merckelbach, L., Smeed, D., and Griffiths, G.: Vertical Water Velocities from
Underwater Gliders, J. Atmos. Ocean. Tech., 27, 547–563, 2010.
Merckelbach, L., Berger, A., Krahmann, G., Dengler, M., and Carpenter, J.: A
dynamic flight model for Slocum gliders and implications for turbulence
microstructure measurements, J. Atmos. Ocean. Tech., 36, 281–296, https://doi.org/10.1175/JTECH-D-18-0168.1, 2019.
Moore, G. W. K., Våge, K., Pickart, R. S., and Renfrew, I. A.: Decreasing
intensity of open-ocean convection in the Greenland and Iceland seas, Nat.
Clim. Change, 5, 877–882, 2015.
Osse, T. J. and Eriksen, C. C.: The Deepglider: A Full Ocean Depth Glider for
Oceanographic Research, OCEANS 2007, Vancouver, BC, Canada, 29 September–4 October 2007, IEEE, https://doi.org/10.1109/OCEANS.2007.4449125, 2007.
Owens, B., Roemmich, D., and Dufour, J.: Status of SOLO-II Floats Development, presentation given to the Argo Steering Team meeting No. 13, Paris, France, available at: http://www.argo.ucsd.edu/AST13_SOLO-II_Status.pdf (last access: 27 February 2020), 2012.
Renfrew, I. A., Pickart, R. S., Våge, K., Moore, G. W., Bracegirdle, T. J., Elvidge, A. D., Jeansson, E., Lachlan-Cope, T., McRaven, L. T., Papritz, L., Reuder, J., Sodemann, H., Terpstra, A., Waterman, S., Valdimarsson, H., Weiss, A., Almansi, M., Bahr, F., Brakstad, A., Barrell, C., Brooke, J. K., Brooks, B. J., Brooks, I. M., Brooks, M. E., Bruvik, E. M., Duscha, C., Fer, I., Golid, H. M., Hallerstig, M., Hessevik, I., Huang, J., Houghton, L., Jónsson, S., Jonassen, M., Jackson, K., Kvalsund, K., Kolstad, E. W., Konstali, K., Kristiansen, J., Ladkin, R., Lin, P., Macrander, A., Mitchell, A., Olafsson, H., Pacini, A., Payne, C., Palmason, B., Pérez-Hernández, M. D., Peterson, A. K., Petersen, G. N., Pisareva, M. N., Pope, J. O., Seidl, A., Semper, S., Sergeev, D., Skjelsvik, S., Søiland, H., Smith, D., Spall, M. A., Spengler, T., Touzeau, A., Tupper, G., Weng, Y., Williams, K. D., Yang, X., and Zhou, S.: The Iceland Greenland Seas Project, B. Am. Meteorol. Soc., 100, 1795–1817,
https://doi.org/10.1175/BAMS-D-18-0217.1, 2019.
Riser, S. C., Freeland, H. J., Roemmich, D., Wijffels, S., Troisi, A., Belbéoch, A., Gilbert, D., Xu, J., Pouliquen, S., Thresher, A., Le Traon, P. Y., Maze, G., Klein, B., Ravichandran, M., Grant, F., Poulain, P. M., Suga, T., Lim, B., Sterl, A., Sutton, P., Mork, K. A., Vélez-Belchí, P. J., Ansorge, I., King, B., Turton, J., Baringer, M., and Jayne, S. R.: Fifteen years of ocean observations with the global Argo array, Nat. Clim. Change, 6, 145–153, 2016.
Roemmich, D., Boebel, O., Freeland, H., King, B., Le Traon, P. Y., Molinari, R., Brechner Owens, W., Riser, S., Send, U., Takeuchi, K., and Wijffels, S.: On The Design and Implementation of Argo – A Global Array of Profiling Floats, available at: http://www.argo.ucsd.edu/argo-design.pdf (last access: 27 February 2020), 1999.
Roemmich, D., Johnson, G. C., Riser, S., Davis, R., Gilson, J., Brechner Owens, W., Garzoli, S. L., Schmid, C., and Ignaszewski, M.: The Argo Program: Observing the Global Ocean with Profiling Floats, Oceanography, 22, 34–43, 2009.
Roemmich, D., Alford, M., Claustre, H., Johnson, K., King, B., Moum, J., Oke, P., Brechner, Owens, W., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D. Ó., d'Ortenzio, F., Dall'Olmo, G., Desbruyeres, D., Fennel, K., Fer, I., Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C.., Kang, K., Kolodziejczyk, N., Körtzinger, A., Le Traon, P.-Y., Lenn, Y.-D., Maze, G., Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig, C., Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T. W., Turton, J., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse, A. F., Waterman, S., Watson, A., Wilson, C., Wong, A. P. S., Xu, J., and Yasuda, I.: On the future of Argo: An enhanced global array of physical and biogeochemical sensing floats, Frontiers in Marine Science, 6, 439, https://doi.org/10.3389/fmars.2019.00439, 2019.
Rudnick, D. L.: Ocean Research Enabled by Underwater Gliders, Annu. Rev. Mar.
Sci., 8, 519–541, https://doi.org/10.1146/annurev-marine-122414-033913, 2016.
Rudnick, D. L., Sherman, J. T., and Wu, A. P.: Depth-Average Velocity from Spray Underwater Gliders, J. Atmos. Ocean. Tech., 35, 1665–1673,
https://doi.org/10.1175/JTECH-D-17-0200.1, 2018.
Schmitz, F. W.: Aerodynamik des Flugmodels – Tragfluegelmessungen I + II
bei kleinen Geschwindigkeiten, Luftfahrtverlag Walter Zuerl,
Steinebach-Woerthsee, Germany, 6th printing/edn., 1975.
Sherman, J., Davis, R. E., Owens, W. B., and Valdes, J.: The Autonomous Underwater Glider “Spray”, IEEE J. Oceanic Eng., 26, 437–446, 2001.
Stommel, H.: The Slocum Mission, Oceanography, 2, 22–25, 1989.
Sunada, S., Yasuda, T., Yasuda, K., and Kawachi, K.: Comparison of Wing
Characteristics at an Ultralow Reynolds Number, J. Aircraft, 39, 331–338, 2002.
Testor, P., Meyers, G., Pattiaratchi, C., Bachmayer, R., Hayes, D., Pouliquen, S., Petit de la Villeon, L., Carval, T., Ganachaud, A., Gourdeau, L., Mortier, L., Claustre, H., Taillandier, V., Lherminier, P., Terre, T., Visbeck, M., Karstensen, J., Krahmann, G., Alvarez, A., Rixen, M., Poulain, P.-M., Osterhus, S., Tintore, J., Ruiz, S., Garau, B., Smeed, D., Griffiths, G., Merckelbach, L., Sherwin, T., Schmid, C., Barth, J. A., Schofield, O., Glenn, S., Kohut, J., Perry, M. J., Eriksen, C., Send, U., Davis, R., Rudnick, D., Sherman, J., Jones, C., Webb, D., Lee, C., and Owens, B.: Gliders as a component of future observing systems, in: Proceedings of the OceanObs'09 conference: ocean information for society: sustaining the benefits, realizing the potential, Venice, Italy, 21–25 September 2009, edited by: Hall, J., Harrison, D. E., and Stammer, D., ESA, WWP-306, 22 pp., 2009.
Thomas, F.: Fundamentals of Sailplane Design – Grundlagen fuer den Entwurf
von Segelflugzeugen, College Park Press, Maryland, USA, ISBN 0-9669553-0-7,
1999.
Todd, R. E., Brechner Owens, W., and Rudnick, D. L.: Potential Vorticity Structure in the North Atlantic Western Boundary Current from Underwater Glider Observations, J. Phys. Oceanogr., 46, 327–348, 2016.
Ubelmann, C., Klein, P., and Fu, L. L.: Dynamic Interpolation of Sea Surface
Height and Potential Applications for Future High-Resolution Altimetry
Mapping, J. Atmos. Ocean. Tech., 32, 177—184, 2015.
Voet, G., Quadfasel, D., Mork, K. A., and Søiland, H.: The mid-depth
circulation of the Nordic Seas derived from profiling float observations,
Tellus A, 62, 516–529, 2010.
Våge, K., Papritz, L., Håvik, L., Spall, M. A., and Moore, G. W. K.: Ocean convection linked to the recent ice edge retreat along east Greenland,
Nat. Commun., 9, 1287, https://doi.org/10.1038/s41467-018-03468-6, 2018.
Webb, D. C.: Variable buoyancy device, U.S. Patent 7,096,814 B1, issued 29 August 2006.
Webb, D. C., Simonetti, P. J., and Jones, C. P.: SLOCUM: An Underwater Glider
Propelled by Environmental Energy, IEEE J. Oceanic Eng., 26, 447–452, 2001.
Yu, L. S., Bosse, A., Fer, I., Orvik, K. A., Bruvik, E. M., Hessevik, I., and
Kvalsund, K.: The Lofoten Basin eddy: Three years of evolution as observed by
Seagliders, J. Geophys. Res.-Oceans, 122, 6814–6834,
https://doi.org/10.1002/2017JC012982, 2017.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity, edited by: Mishonov, A., NOAA Atlas NESDIS 82, 50 pp., 2018.
Short summary
A concept of small and slow ocean gliders or profiling floats with wings is explored. These robots or drones measure the ocean temperature and currents. Even if the speed is very slow, only 13 cm s1, it is possible to navigate the (simulated) ocean using a navigation method called Eulerian roaming. The slow speed and size conserve a lot of energy and enable scientific missions of years at sea.
A concept of small and slow ocean gliders or profiling floats with wings is explored. These...