Articles | Volume 16, issue 1
https://doi.org/10.5194/os-16-221-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-221-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decrease in 230Th in the Amundsen Basin since 2007: far-field effect of increased scavenging on the shelf?
Ole Valk
CORRESPONDING AUTHOR
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Michiel M. Rutgers van der Loeff
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Walter Geibert
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Sandra Gdaniec
Department of Geological Sciences, Stockholm University, 106 91,
Stockholm, Sweden
S. Bradley Moran
College of Fisheries and Ocean Sciences, University of Alaska
Fairbanks, Fairbanks, AK 99775, USA
Kate Lepore
Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075, USA
Robert Lawrence Edwards
Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Yanbin Lu
Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798, Singapore
Viena Puigcorbé
Center for Marine Ecosystem Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
Nuria Casacuberta
Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, Environmental
Physics, ETH Zurich, 8092 Zurich, Switzerland
Ronja Paffrath
Max Planck Research Group for Marine Isotope Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of
Oldenburg, 26129 Oldenburg, Germany
William Smethie
Lamont-Doherty Earth Observatory, Palisades, NY 10964-8000, USA
Matthieu Roy-Barman
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA – CNRS – UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Related authors
No articles found.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3612, https://doi.org/10.5194/egusphere-2024-3612, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present in this manuscript a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe of the last 16500 years before present.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3594, https://doi.org/10.5194/egusphere-2024-3594, 2024
Short summary
Short summary
The uranium-thorium and uranium-lead radiometric dating methods are both capable of dating carbonate samples ranging in age from about 400,000 to 650,000 years. Here we test agreement between the two methods by 'double dating' speleothems (i.e. secondary cave mineral deposits) that grew within this age range. We demonstrate excellent agreement between the two dating methods and discuss their relative strengths and weaknesses.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Revised manuscript accepted for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1632, https://doi.org/10.5194/egusphere-2024-1632, 2024
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and pore-water dataset from the Helgoland Mud Area (HMA), North Sea, to determine, which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea, but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246, https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial-interglacial sea ice response to a changing climate and enhance our understanding of the ocean-sea ice-ice shelf interactions and dynamics.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Simone Strydom, Roisin McCallum, Anna Lafratta, Chanelle L. Webster, Caitlyn M. O'Dea, Nicole E. Said, Natasha Dunham, Karina Inostroza, Cristian Salinas, Samuel Billinghurst, Charlie M. Phelps, Connor Campbell, Connor Gorham, Rachele Bernasconi, Anna M. Frouws, Axel Werner, Federico Vitelli, Viena Puigcorbé, Alexandra D'Cruz, Kathryn M. McMahon, Jack Robinson, Megan J. Huggett, Sian McNamara, Glenn A. Hyndes, and Oscar Serrano
Earth Syst. Sci. Data, 15, 511–519, https://doi.org/10.5194/essd-15-511-2023, https://doi.org/10.5194/essd-15-511-2023, 2023
Short summary
Short summary
Seagrasses are important underwater plants that provide valuable ecosystem services to humans, including mitigating climate change. Understanding the natural history of seagrass meadows across different types of environments is crucial to conserving seagrasses in the global ocean. This dataset contains data extracted from peer-reviewed publications and highlights which seagrasses have been studied and in which locations and is useful for pointing out which need further investigation.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Viena Puigcorbé, Pere Masqué, and Frédéric A. C. Le Moigne
Earth Syst. Sci. Data, 12, 1267–1285, https://doi.org/10.5194/essd-12-1267-2020, https://doi.org/10.5194/essd-12-1267-2020, 2020
Short summary
Short summary
The biological carbon pump is a mechanism by which the oceans capture atmospheric carbon dioxide thanks to microscopic marine algae. Quantifying its strength and efficiency is crucial to understand the global carbon budget and be able to forecast its trends. The radioactive pair 234Th : 238U has been extensively used for that purpose. This is a global compilation of carbon-to-234Th ratios (needed to convert the 234Th fluxes to carbon fluxes) that will contribute to improve our modeling efforts.
Gina E. Moseley, Christoph Spötl, Susanne Brandstätter, Tobias Erhardt, Marc Luetscher, and R. Lawrence Edwards
Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020, https://doi.org/10.5194/cp-16-29-2020, 2020
Short summary
Short summary
Abrupt climate change during the last ice age can be used to provide important insights into the timescales on which the climate is capable of changing and the mechanisms that drive those changes. In this study, we construct climate records for the period 60 to 120 ka using stalagmites that formed in caves along the northern rim of the European Alps and find good agreement with the timing of climate changes in Greenland and the Asian monsoon.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Gayatri Kathayat, Hai Cheng, Ashish Sinha, Max Berkelhammer, Haiwei Zhang, Pengzhen Duan, Hanying Li, Xianglei Li, Youfeng Ning, and R. Lawrence Edwards
Clim. Past, 14, 1869–1879, https://doi.org/10.5194/cp-14-1869-2018, https://doi.org/10.5194/cp-14-1869-2018, 2018
Short summary
Short summary
The 4.2 ka event is generally characterized as an approximately 300-year period of major global climate anomaly. However, the climatic manifestation of this event remains unclear in the Indian monsoon domain. Our high-resolution and precisely dated speleothem record from Meghalaya, India, characterizes the event as consisting of a series of multi-decadal droughts between 3.9 and 4.0 ka rather than a singular pulse of multi-centennial drought as previously thought.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Maxi Castrillejo, Núria Casacuberta, Marcus Christl, Christof Vockenhuber, Hans-Arno Synal, Maribel I. García-Ibáñez, Pascale Lherminier, Géraldine Sarthou, Jordi Garcia-Orellana, and Pere Masqué
Biogeosciences, 15, 5545–5564, https://doi.org/10.5194/bg-15-5545-2018, https://doi.org/10.5194/bg-15-5545-2018, 2018
Short summary
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
Marco van Hulten, Jean-Claude Dutay, and Matthieu Roy-Barman
Geosci. Model Dev., 11, 3537–3556, https://doi.org/10.5194/gmd-11-3537-2018, https://doi.org/10.5194/gmd-11-3537-2018, 2018
Short summary
Short summary
We present an ocean model of the natural radioactive isotopes thorium-230 and protactinium-231. These isotopes are often used to investigate past ocean circulation and particle transport. They are removed by particles produced by plankton and from uplifted desert dust that is deposited into the ocean. We approach observed dissolved and adsorbed Th-230 and Pa-231 activities. The Pa-231 / Th-230 sedimentation ratio is reproduced as well; this quantity can be used as a proxy for ocean circulation.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Olivier Aumont, Marco van Hulten, Matthieu Roy-Barman, Jean-Claude Dutay, Christian Éthé, and Marion Gehlen
Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017, https://doi.org/10.5194/bg-14-2321-2017, 2017
Short summary
Short summary
The marine biological carbon pump is dominated by the vertical transfer of particulate organic carbon (POC) from the surface ocean to its interior. In this study, we explore the impacts of a variable composition of this organic matter using a global ocean biogeochemical model. We show that accounting for a variable lability of POC increases POC concentrations by up to 2 orders of magnitude in the ocean's interior. Furthermore, the amount of carbon that reaches the sediments is twice as large.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017, https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
Short summary
We ran a global ocean model to understand manganese (Mn), a biologically essential element. Our model shows that (i) in the deep ocean, dissolved [Mn] is mostly homogeneous ~0.10—0.15 nM. The model reproduces this with a threshold on MnO2 of 25 pM, suggesting a minimal particle concentration is needed before aggregation and removal become efficient.
(ii) The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vents.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
Cited articles
Aagaard, K., Coachman, L. K., and Carmack, E. C.: On the halocline of the
Arctic Ocean, Deep-Sea Res., 28, 529–545, 1980.
Aagaard, K.: On the deep circulation in the Arctic Ocean, Deep-Sea Res., 28, 251–268, https://doi.org/10.1016/0198-0149(81)90066-2, 1981.
Aksenov, Y., Ivanov, V. V., Nurser, A. J. G., Bacon, S., Polyakov, I. V.,
Coward, A. C., Naveira-Garabato, A. C., and Beszczynska-Moeller, A.: The
Arctic Circumpolar Boundary Current, J. Geophys. Res., 116, C09017, https://doi.org/10.1029/2010JC006637, 2011.
Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Removal of 230Th and 231Pa from the open ocean, Earth Planet. Sc. Lett., 62, 7–23, 1983a.
Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Removal of 230Th and 231Pa at ocean margins, Earth Planet. Sc. Lett., 66, 73–90, 1983b.
Anderson, R. F., Fleisher, M. Q., Robinson, L., Edwards, R. L., Hoff, J. A.,
Moran, S. B., Rutgers van der Loeff, M. M., Thomas, A. L., Roy-Barman, M.,
and Francois, R.: GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be, Limnol. Oceanogr.-Meth., 10, 179–213, 2012.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70,
https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic
ice cover on marine primary production, Geophys. Res. Lett., 35, L19603, https://doi.org/10.1029/2008GL035028, 2008.
Bacon, M. P. and Anderson, R. F.: Distribution of Thorium Isotopes Between
Dissolved and Particulate Forms in The Deep Sea, J. Geophys. Res., 87, 2045–2056, 1982.
Bacon, M. P., Huh, C.-A., and Moore, R. M.: Vertical profiles of some
natural radionuclides over the Alpha Ridge, Arctic Ocean, Earth Planet. Sc. Lett., 95, 15–22, 1989.
Björk, G., Jakobsson, M., Rudels, B., Swift, J. H., Anderson, L., Darby,
D. A., Backman, J., Coakley, B., Winsor, P., Polyak, L., and Edwards, M.:
Bathymetry and deep-water exchange across the central Lomonosov Ridge at
88–89∘ N, Deep-Sea Res. Pt. I, 54, 1197–1208, https://doi.org/10.1016/j.dsr.2007.05.010, 2007.
Björk, G., Anderson, L. G., Jakobsson, M., Antony, D., Eriksson, B.,
Eriksson, P. B., Hell, B., Hjalmarsson, S., Janzen, T., Jutterström, S.,
Linders, J., Löwemark, L., Marcussen, C., Anders Olsson, K., Rudels, B.,
Sellén, E., and Sølvsten, M.: Flow of Canadian basin deep water in
the Western Eurasian Basin of the Arctic Ocean, Deep-Sea Res. Pt. I, 57, 577–586, https://doi.org/10.1016/j.dsr.2010.01.006, 2010.
Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J.,
Fernández-Méndez, M., Hendricks, S., Katlein, C., Lalande, C.,
Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., Rogacheva, A., Rybakova,
E., Somavilla, R., and Wenzhöfer, F.: Export of Algal Biomass from the
Melting Arctic Sea Ice, Science, 339, 1430–1432, 2013.
Cai, P., Rutgers van der Loeff, M. M., Stimac, I., Nöthig, E.-M.,
Lepore, K., and Moran, S. B.: Low export flux of particulate organic carbon
in the central Arctic Ocean as revealed by 234Th:238U
disequilibrium, J. Geophys. Res., 115, C10037, https://doi.org/10.1029/2009JC005595, 2010.
Casacuberta, N., Christl, M., Vockenhuber, C., Wefing, A.-M., Wacker, L.,
Masqué, P., Synal, H.-A., and Rutgers van der Loeff, M.: Tracing the
Three Atlantic Branches Entering the Arctic Ocean With 129I and
236U, J. Geophys. Res.-Oceans, 123, 6909–6921,
https://doi.org/10.1029/2018JC014168, 2018.
Clark, D. L. and Hanson, A.: Central Arctic Ocean Sediment Texture: A Key
to Ice Transport Mechanisms, in: Glacial-Marine Sedimentation, edited by:
Molnia, B. F., Springer US, Boston, MA, 301–330, 1983.
Cochran, J. K., Hirschberg, D. J., Livingston, H. D., Buesseler, K. O., and Key, R. M.: Natural and anthropogenic radionuclide distributions in the Nansen Basin, Artic Ocean: Scavenging rates and circulation timescales, Deep-Sea Res. Pt. II, 42, 1495–1517, 1995.
Edmonds, H. N., Moran, S. B., Hoff, J. A., Smith, J. R., and Edwards, R. L.:
Protactinium-231 and Thorium-230 Abundances and High Scavenging Rates in the
Western Arctic Ocean, Science, 280, 405–406, 1998.
Edmonds, H. N., Moran, S. B., Cheng, H., and Edwards, R. L.: 230Th and 231Pa in the Arctic Ocean: implications for particle fluxes and
basin-scale Th/Pa fractionation, Earth Planet. Sc. Lett., 227, 155–167, 2004.
Gdaniec, S., Roy-Barman, M., Levier, M., Valk, O., van der Loeff, M. R., Foliot, L., Dapoigny, A., Missiaen, L., Mörth, C.-M., and Andersson, P. S.: 231Pa and 230Th in the Arctic Ocean: Implications for boundary scavenging and 231Pa–230Th fractionation in the Eurasian Basin, Chem. Geol., 532, 119380, https://doi.org/10.1016/j.chemgeo.2019.119380, 2020.
Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G., and Grigoriev, M. N.: Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region, Biogeosciences, 10, 4297–4318, https://doi.org/10.5194/bg-10-4297-2013, 2013.
Hansen, R. G. and Ring, E. J.: The preparation and certification of a uranium reference material, Council for Mineral Technology, MINTEK (Analytical
Chemistry Divison), Randburg, South Africa, Report, MINTEK-M–84, 12 pp., 1983.
Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Vivancos, S. M., Lam, P. J.,
Ohnemus, D. C., Huang, K.-F., Robinson, L., Lu, Y., Cheng, H., Edwards, R.
L., and Moran, S. B.: Intensity of Th and Pa scavenging partitioned by
particle chemistry in the North Atlantic Ocean, Mar. Chem., 170, 49–60, 2015.
Hill, V., Ardyna, M., Lee, S. H., and Varela, D. E.: Decadal trends in
phytoplankton production in the Pacific Arctic Region from 1950 to 2012,
Deep-Sea Res. Pt. II, 152, 82–94, https://doi.org/10.1016/j.dsr2.2016.12.015, 2017.
Hoffmann, S. S., McManus, J. F., Curry, W. B., and Brown-Leger, S. L.:
Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years, Nature, 497, 603–607, 2013.
Hsieh, Y.-T., Henderson, G. M., and Thomas, A. L.: Combining seawater 232Th and 230Th concentrations to determine dust fluxes to the surface ocean, Earth Planet. Sc. Lett., 312, 280–290, 2011.
Jakobsson, M.: Hypsometry and volume of the Arctic Ocean and its
constituent seas, Geochem. Geophy. Geosy., 3, 1–18, 2002.
Jones, E. P., Rudels, B., and Anderson, L. G.: Deep waters of the Arctic
Ocean: origins and circulation, Deep-Sea Res. Pt. I, 42, 737–760, 1995.
Kanzow, T., von Appen, W.-J., Schaffer, J., Köhn, E., Tsubouchi, T., Wilson, N., Wisotzki, A.: Physical oceanography measured with CTD/Large volume Watersampler-system during POLARSTERN cruise PS100 (ARK-XXX/2), Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.871025, 2017.
Karcher, M., Smith, J. N., Kauker, F., Gerdes, R., and Smethie Jr., W. M.:
Recent changes in Arctic Ocean circulation revealed by iodine-129
observations and modeling, J. Geophys. Res., 117, C08007, https://doi.org/10.1029/2011JC007513, 2012.
Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B., and Rigor, I.
G.: Increased fluxes of shelf-derived materials to the central Arctic Ocean,
Science Advances, 4, eaao1302, https://doi.org/10.1126/sciadv.aao1302, 2018.
Klunder, M. B., Laan, P., Middag, R., de Baar, H. J. W., and Bakker, K.: Dissolved iron in the Arctic Ocean: Important role of hydrothermal sources, shelf input and scavenging removal, J. Geophys. Res., 117, C04014, https://doi.org/10.1029/2011JC007135, 2012.
Middag, R., de Baar, H. J. W., Laan, P., and Bakker, K.: Dissolved aluminium
and the silicon cycle in the Arctic Ocean, Mar. Chem., 115, 176–195,
https://doi.org/10.1016/j.marchem.2009.08.002, 2009.
Moran, S. B. and Smith, J. N.: 234Th as a tracer of scavenging and particle export in the Beaufort Sea, Cont. Shelf Res., 20, 153–167,
https://doi.org/10.1016/S0278-4343(99)00065-5, 2000.
Moran, S. B., Hoff, J. A., Buesseler, K. O., and Edwards, R. L.: High
precision 230Th and 232Th in the Norwegian Sea and Denmark by thermal ionization mass spectrometry, Geophys. Res. Lett., 22, 2589–2592, https://doi.org/10.1029/95GL02652, 1995.
Moran, S. B., Shen, C.-C., Edwards, R. L., Edmonds, H. N., Scholten, J. C.,
Smith, J. N., and Ku, T.-L.: 231Pa and 230Th in surface sediments of the Arctic Ocean: Implications for 231Pa∕230Th fractionation, boundary scavenging, and advective export, Earth Planet. Sc. Lett., 234, 235–248, 2005.
Nozaki, Y., Horibe, Y., and Tsubota, H.: The water column distributions of
thorium isotopes in the western North Pacific, Earth Planet. Sc. Lett., 54, 203–216, https://doi.org/10.1016/0012-821X(81)90004-2, 1981.
Pabi, S., van Dijken, G. L., and Arrigo, K. R.: Primary production in the
Arctic Ocean, 1998–2006, J. Geophys. Res., 113, C08005, https://doi.org/10.1029/2007JC004578, 2008.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T.
M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin
of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204, 2017.
Owens, S. A., Buesseler, K. O., and Sims, K. W. W.: Re-evaluating the
238U-salinity relationship in seawater: Implications for the 238U–234Th disequilibrium method, Mar. Chem., 127, 31–39, 2011.
Rabe, B., Karcher, M., Kauker, F., Schauer, U., Toole, J. M., Krishfield, R.
A., Pisarev, S., Kikuchi, T., and Su, J.: Arctic Ocean basin liquid
freshwater storage trend 1992–2012, Geophys. Res. Lett., 41, 961–968, https://doi.org/10.1002/2013GL058121, 2014.
Rabe, B., Schauer, U., Ober, S., Horn, M., Hoppmann, M., Korhonen, M.,
Pisarev, S., Hampe, H., Villacieros, N., Savy, J. P., and Wisotzki, A.: Physical oceanography during POLARSTERN cruise PS94 (ARK-XXIX/3), Alfred
Wegener Institute, Helmholtz Center for Polar and Marine Research,
Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.859558, 2016.
Rempfer, J., Stocker, T. F., Joos, F., Lippold, J., and Jaccard, S. L.: New
insights into cycling of 231Pa and 230Th in the Atlantic Ocean, Earth Planet. Sc. Lett., 468, 27–37, https://doi.org/10.1016/j.epsl.2017.03.027, 2017.
Rijkenberg, M. J. A., Slagter, H. A., Rutgers van der Loeff, M., van Ooijen,
J., and Gerringa, L. J. A.: Dissolved Fe in the Deep and Upper Arctic Ocean
With a Focus on Fe Limitation in the Nansen Basin, Frontiers in Marine
Science, 5, 88, https://doi.org/10.3389/fmars.2018.00088, 2018.
Roy-Barman, M.: Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean, Biogeosciences, 6, 3091–3107, https://doi.org/10.5194/bg-6-3091-2009, 2009.
Roy-Barman, M., Lemaître, C., Ayrault, S., Jeandel, C., Souhaut, M., and Miquel, J. C.: The influence of particle composition on Thorium scavenging in the Mediterranean Sea, Earth Planet. Sc. Lett., 286, 526–534, 2009.
Rudels, B.: Arctic Ocean Circulation, in: Encyclopedia of Ocean Sciences, 2nd edn., edited by: Steele, J. H., Academic Press, Oxford, 211–225, 2009.
Rudels, B.: Physical oceanography during ODEN cruise OD91, PANGAEA, https://doi.org/10.1594/PANGAEA.742746, 2010.
Rudels, B.: Arctic Ocean circulation and variability – advection and external forcing encounter constraints and local processes, Ocean Sci., 8, 261–286, https://doi.org/10.5194/os-8-261-2012, 2012.
Rudels, B., Jones, E. P., Anderson, L. G., and Kattner, G.: On the
Intermediate Depth Waters of the Arctic Ocean, in: The Polar Oceans and
Their Role in Shaping the Global Environment, edited by: Johannessen, O. M.,
Muench, R. D., and Overland, J. E., AGU, 33–46, 1994.
Rudels, B., Schauer, U., Björk, G., Korhonen, M., Pisarev, S., Rabe, B., and Wisotzki, A.: Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s, Ocean Sci., 9, 147–169, https://doi.org/10.5194/os-9-147-2013, 2013.
Rudels, B., Korhonen, M., Schauer, U., Pisarev, S., Rabe, B., and Wisotzki,
A.: Circulation and transformation of Atlantic water in the Eurasian Basin
and the contribution of the Fram Strait inflow branch to the Arctic Ocean
heat budget, Prog. Oceanogr., 132, 128–152, https://doi.org/10.1016/j.pocean.2014.04.003, 2015.
Rutgers van der Loeff, M. M. and Berger, G. W.: Scavenging of 230Th and 231Pa near the Antarctic Polar Front in the South Atlantic,
Deep-Sea Res. Pt. I, 40, 339–357, 1993.
Rutgers van der Loeff, M. M., Key, R. M., Scholten, J., Bauch, D., and
Michel, A.: 228Ra as a tracer for shelf water in the Arctic Ocean,
Deep-Sea Res. Pt. II, 42, 1533–1553, 1995.
Rutgers van der Loeff, M., Kipp, L., Charette, M. A., Moore, W. S., Black,
E., Stimac, I., Charkin, A., Bauch, D., Valk, O., Karcher, M., Krumpen, T.,
Casacuberta, N., Smethie, W., and Rember, R.: Radium Isotopes Across the
Arctic Ocean Show Time Scales of Water Mass Ventilation and Increasing Shelf
Inputs, J. Geophys. Res.-Oceans, 123, 4853–4873, https://doi.org/10.1029/2018JC013888, 2018.
Schauer, U. and Wisotzki, A.: Physical oceanography during POLARSTERN cruise ARK-XXII/2 (SPACE), PANGAEA, https://doi.org/10.1594/PANGAEA.733418, 2010.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: November 2019), 2018.
Scholten, J. C., Rutgers van der Loeff, M. M., and Michel, A.: Distribution
of 230Th and 231Pa in the water column in relation to the
ventilation of the deep Arctic basins, Deep-Sea Res. Pt. II, 42, 1519–1531,
1995.
Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P.,
Canadell, J. G., Chanton, J. P., Chapin, F. S., Christensen, T. R., Ciais,
P., Crosby, B. T., Czimczik, C. I., Grosse, G., Harden, J., Hayes, D. J.,
Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D.,
Krinner, G., Kuhry, P., Lawrence, D. M., McGuire, A. D., Natali, S. M.,
O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E.,
Sannel, A. B. K., Schädel, C., Schaefer, K., Sky, J., Subin, Z. M.,
Tarnocai, C., Turetsky, M. R., Waldrop, M. P., Walter Anthony, K. M.,
Wickland, K. P., Wilson, C. J., and Zimov, S. A.: Expert assessment of
vulnerability of permafrost carbon to climate change, Climatic Change, 119,
359–374, https://doi.org/10.1007/s10584-013-0730-7, 2013.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, W.
J., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, 2015.
Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and
implications for seasonal ice forecasting, Philos. T. Roy. Soc. A, 373, 20140159, https://doi.org/10.1098/rsta.2014.0159, 2015.
Serreze, M. C., Stroeve, J., Barrett, A. P., and Boisvert, L. N.: Summer
atmospheric circulation anomalies over the Arctic Ocean and their influences
on September sea ice extent: A cautionary tale, J. Geophys.
Res.-Atmos., 121, 11463–11485, https://doi.org/10.1002/2016JD025161, 2016.
Shen, C.-C., Cheng, H., Edwards, R. L., Moran, S. B., Edmonds, H. N., Hoff,
J. A., and Thomas, R. B.: Measurement of Attogram Quantities of 231Pa in Dissolved and Particulate Fractions of Seawater by Isotope Dilution Thermal Ionization Mass Spectroscopy, Anal. Chem., 75, 1075–1079,
https://doi.org/10.1021/ac026247r, 2003.
Slagter, H. A., Reader, H. E., Rijkenberg, M. J. A., Rutgers van der Loeff,
M., de Baar, H. J. W., and Gerringa, L. J. A.: Organic Fe speciation in the
Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM,
Mar. Chem., 197, 11–25, https://doi.org/10.1016/j.marchem.2017.10.005, 2017.
Tanhua, T., Jones, E. P., Jeansson, E., Jutterström, S., Smethie, W. M.,
Wallace, D. W. R., and Anderson, L. G.: Ventilation of the Arctic Ocean:
Mean ages and inventories of anthropogenic CO2 and CFC-11, J. Geophys. Res., 114, C01002, https://doi.org/10.1029/2008JC004868, 2009.
Trimble, S. M., Baskaran, M., and Porcelli, D.: Scavenging of thorium
isotopes in the Canada Basin of the Arctic Ocean, Earth Planet. Sc. Lett., 222, 915–932, 2004.
Ulfsbo, A., Cassar, N., Korhonen, M., van Heuven, S., Hoppema, M., Kattner,
G., and Anderson, L. G.: Late summer net community production in the central
Arctic Ocean using multiple approaches, Global Biogeochem. Cy., 28, 1129–1148, https://doi.org/10.1002/2014GB004833, 2014.
Ulfsbo, A., Jones, E. M., Casacuberta, N., Korhonen, M., Rabe, B., Karcher,
M., and van Heuven, S. M. A. C.: Rapid changes in anthropogenic carbon
storage and ocean acidification in the intermediate layers of the Eurasian
Arctic Ocean: 1996–2015, Global Biogeochemical Cycles, 32, 1254–1275,
https://doi.org/10.1029/2017GB005738, 2018.
Valk, O., Rutgers van der Loeff, M. M., Geibert, W., Gdaniec, S.,
Rijkenberg, M. J. A., Moran, S. B., Lepore, K., Edwards, R. L., Lu, Y., and
Puigcorbé, V.: Importance of Hydrothermal Vents in Scavenging Removal of
230Th in the Nansen Basin, Geophys. Res. Lett., 45, 10539–10548, https://doi.org/10.1029/2018GL079829, 2018.
Valk, O., Rutgers van der Loeff, M. M., and Geibert, W.: Thorium isotopes in the water column in Nansen Basin during POLARSTERN cruises PS70 (ARK-XXII/2) in 2007 and PS94 (ARK-XXIX/3) in 2015, PANGAEA, https://doi.org/10.1594/PANGAEA.893871, 2018b.
Valk, O., Rutgers van der Loeff, M. M., Geibert, W., Gdaniec, S., Moran, S. B., Lepore, K., Edwards, R. L., Lu, Y., Puigcorbé, V., Casacuberta, N., Paffrath, R., Smethie, W., and Roy-Barman, M.: Thorium isotopes in the water column in Amundsen Basin during POLARSTERN cruises PS70 (ARK-XXII/2) in 2007 and PS94 (ARK-XXIX/3) in 2015, PANGAEA, https://doi.org/10.1594/PANGAEA.908068, 2019.
Vogler, S., Scholten, J., Rutgers van der Loeff, M., and Mangini, A.:
230Th in the eastern North Atlantic: the importance of water mass
ventilation in the balance of 230Th, Earth Planet. Sc. Lett., 156, 61–74, https://doi.org/10.1016/S0012-821X(98)00011-9, 1998.
Wang, Q., Wekerle, C., Danilov, S., Koldunov, N., Sidorenko, D., Sein, D.,
Rabe, B., and Jung, T.: Arctic Sea Ice Decline Significantly Contributed to
the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the
Arctic Ocean, Geophys. Res. Lett., 45, 4956–4964,
https://doi.org/10.1029/2018GL077901, 2018.
Wheeler, P. A., Watkins, J. M., and Hansing, R. L.: Nutrients, organic
carbon and organic nitrogen in the upper water column of the Arctic Ocean:
implications for the sources of dissolved organic carbon, Deep Sea Res. Pt. II, 44, 1571–1592, https://doi.org/10.1016/S0967-0645(97)00051-9, 1997.
Worthington, L. V.: Oceanographic results of project Skijump I and Skijump II in the Polar Sea, 1951–1952, Eos T. Am. Geophys. Un., 34, 543–551, https://doi.org/10.1029/TR034i004p00543, 1953.
Short summary
After 2007 230Th decreased significantly in the central Amundsen Basin. This decrease is accompanied by a circulation change, indicated by changes in salinity. Ventilation of waters is most likely not the reason for the observed depletion in 230Th as atmospherically derived tracers do not reveal an increase in ventilation rate. It is suggested that these interior waters have undergone enhanced scavenging of Th during transit from Fram Strait and the Barents Sea to the central Amundsen Basin.
After 2007 230Th decreased significantly in the central Amundsen Basin. This decrease is...