Articles | Volume 16, issue 1
https://doi.org/10.5194/os-16-209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical modelling of the Caspian Sea tides
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow,
Russia
Roshydromet, Fedorov Institute of Applied Geophysics, Moscow, Russia
Evgueni A. Kulikov
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow,
Russia
Isaac V. Fine
Department of Fisheries and Oceans, Institute of Ocean Sciences, Sidney, B.C., Canada
Related authors
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci., 23, 1653–1663, https://doi.org/10.5194/nhess-23-1653-2023, https://doi.org/10.5194/nhess-23-1653-2023, 2023
Short summary
Short summary
The paper is dedicated to freak wave accidents which happened in the world ocean in 2005–2021 and that were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal and offshore structure damage and/or human losses. In agreement with each freak wave event, we put background wave and wind conditions extracted from the climate reanalysis ERA5. We analyse their statistics and discuss the favourable conditions for freak wave occurrence.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Stanislav Myslenkov, Vladimir Platonov, Alexander Kislov, Ksenia Silvestrova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-198, https://doi.org/10.5194/nhess-2020-198, 2020
Revised manuscript not accepted
Short summary
Short summary
The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A wave model is used to reconstruct wind wave fields for the period from 1979 to 2017. The maximum significant wave height for the whole period amounts to 9.9 m. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017.
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci., 23, 1653–1663, https://doi.org/10.5194/nhess-23-1653-2023, https://doi.org/10.5194/nhess-23-1653-2023, 2023
Short summary
Short summary
The paper is dedicated to freak wave accidents which happened in the world ocean in 2005–2021 and that were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal and offshore structure damage and/or human losses. In agreement with each freak wave event, we put background wave and wind conditions extracted from the climate reanalysis ERA5. We analyse their statistics and discuss the favourable conditions for freak wave occurrence.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Stanislav Myslenkov, Vladimir Platonov, Alexander Kislov, Ksenia Silvestrova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-198, https://doi.org/10.5194/nhess-2020-198, 2020
Revised manuscript not accepted
Short summary
Short summary
The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A wave model is used to reconstruct wind wave fields for the period from 1979 to 2017. The maximum significant wave height for the whole period amounts to 9.9 m. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017.
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
I. V. Fine and R. E. Thomson
Nat. Hazards Earth Syst. Sci., 13, 2863–2870, https://doi.org/10.5194/nhess-13-2863-2013, https://doi.org/10.5194/nhess-13-2863-2013, 2013
Cited articles
Badyukova, E. N.: Comparative analysis of the structure and genesis of the
Northern Caspian Sea islands and the island Ogurchinsky off the coast of
Turkmenistan, IGCP 610 Third Plenary Conference and Field Trip “From the
Caspian to Mediterranean: Environmental Change and Human Response during the
Quaternary”, edited by:
Gilbert, A., Yanko-Hombach, V., and Yanina, T., 22–30 September 2015, Astrakhan, Russia, Proceedings, MSU, Moscow, 18–20, 2015.
Baidin, S. S. and Kosarev, A. N. The Caspian Sea: Hydrology and
hydrochemistry, Nauka, Moscow, 262 pp., 1986.
Bolgov, M. V., Krasnozhon, G. F., and Lyubushin, A. A.: The Caspian Sea:
Extreme hydrological events, edited by: Khublatyan, M. G., Nauka, Moscow, 381
pp., 2007.
Defant, A.: Physical Oceanography (Vol. II), Pergamon Press, Oxford, 598 pp.,
1961.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
German, V. K.: Spectral analysis of water level oscillations in the Azov,
Black, and Caspian seas within the range from one cycle over few hours until
one cycle over few days, Tr. Gos. Okeanogr. Inst., 103, 52–73, 1970.
Hall, J. K.: Bathymetric compilations of the seas around Israel I: The
Caspian and Black Seas, Geological Survey of Israel, Current Research, 13,
105–108, 2002.
Kantha, L. H. and Clayson, C. A.: Numerical models of oceans and oceanic
processes, International Geophysics Series, 66, Academic Press, San Diego,
940 pp., 2000.
Kosarev, A. N. and Tsyganov, V. F.: Some statistical characteristics of the
water level oscillations in the Caspian Sea, Meteorol. Gidrol., 2, 49–56,
1972.
Levyant, A. S., Rabinovich, A. B., and Rabinovich, B. I.: Calculation of the
free-form seiches oscillations in the Caspian Sea, Oceanology, 33, 588–598,
1994.
Malinovsky, N. V.: The tides in the Caspian Sea, Meteorol. Vestn., 5,
116–117, 1926.
Medvedev, I. P.: Tides in the Black Sea: Observations and Numerical
Modelling, Pure Appl. Geophys., 175, 1951,
https://doi.org/10.1007/s00024-018-1878-x, 2018.
Medvedev, I. P., Rabinovich, A. B., and Kulikov, E. A.: Tidal oscillations
in the Baltic Sea, Oceanology, 53, 526–538,
https://doi.org/10.1134/S0001437013050123, 2013.
Medvedev, I. P., Rabinovich, A. B., and Kulikov, E. A.: Tides in three
enclosed basins: the Baltic, Black and Caspian seas, Front. Mar.
Sci., 3, 1–7, https://doi.org/10.3389/fmars.2016.00046, 2016.
Medvedev, I. P., Kulikov, E. A., and Rabinovich, A. B.: Tidal oscillations
in the Caspian Sea, Oceanology, 57, 360–375,
https://doi.org/10.1134/S0001437017020138, 2017.
Medvedev, I. P., Kulikov, E. A., Fine, I. V., and Kulikov, A. E.: Numerical
modelling of sea level oscillations in the Caspian Sea, Russ. Meteorol.
Hydro.+, 44, 529–539, https://doi.org/10.3103/S1068373919080041,
2019.
Medvedev, I. P., Kulikov, E. A., and Fine, I. V.: The Caspian Sea tides data, https://doi.org/10.29006/datasets.2020.cst.1, 2020.
Mellor, G. L.: Users guide for a three-dimensional, primitive equation,
numerical ocean model. Program in Atmospheric and Oceanic Sciences,
Princeton, Princeton University, NJ, 08544-0710, 56 pp., 2004.
Munk, W. H. and Cartwright, D. E.: Tidal spectroscopy and prediction,
Philos. T. Roy. Soc. Lond. A, 259, 533–581,
https://doi.org/10.1098/rsta.1966.0024, 1966.
Nikiforov, L. G.: On the question of coastal bar formation, Oceanology, 4,
654–658, 1964.
Pugh, D. T. and Woodworth, P. L.: Sea-level science: Understanding tides,
surges, tsunamis and mean sea-level changes, Cambridge University Press,
Cambridge, ISBN 9781107028197, 408 pp., 2014.
Saha, S., Moorthi, S., Pan, H. L., Wu, X. R., Wang, J. D., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H. X., Stokes, D.,
Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H. Y., Juang, H. M.
H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser,
D., Derber, J., Ek, M., Meng, J., Wei, H. L., Yang, R. Q., Lord, S., Van den
Dool, H., Kumar, A., Wang, W. Q., Long, C., Chelliah, M., Xue, Y., Huang, B.
Y., Schemm, J. K., Ebisuzaki, W., Lin, R., Xie, P. P., Chen, M. Y., Zhou, S.
T., Higgins, W., Zou, C. Z., Liu, Q. H., Chen, Y., Han, Y., Cucurull, L.,
Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Forecast
System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057,
https://doi.org/10.1175/2010BAMS3001.1, 2010.
Spidchenko, A. N.: The tides in the Caspian Sea, Meteorol. Gidrol., 5,
98–100, 1973.
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W.,
Carrièe, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D.,
Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A.,
Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J.,
Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K.,
Taguchi, E., and Yi, Y.: Accuracy assessment of global barotropic ocean tide
models, Rev. Geophys., 52, 243–282, https://doi.org/10.1002/2014RG000450, 2014.
Tuzhilkin, V. S. and Kosarev, A. N.: Thermohaline structure and general
circulation of the Caspian Sea waters, in:
The Caspian Sea Environment, The Handbook of Environmental Chemistry, edited by: Kostianoy, A. G. and Kosarev, A. N.,
vol. 5P, Springer, Berlin, Heidelberg, 33–57,
https://doi.org/10.1007/698_5_003, 2005.
Wahr, J.: Body tides on an elliptical, rotating, elastic and oceanless
Earth, Geophys. J. Roy. Astr. S., 6, 677–703,
https://doi.org/10.1111/j.1365-246X.1981.tb02690.x, 1981.
Short summary
The Caspian Sea is the largest enclosed basin on Earth and a unique subject for the analysis of the tidal dynamics. Using numerical modelling, we examine details of the spatial and temporal features of the tidal dynamics in the Caspian Sea. We present tidal charts of the amplitudes and phase lags of the major tidal constituents. The maximum tidal range, of up to 21 cm, has been found in Turkmen Bay. The tidal currents in this area have speeds of up to 22 cm s-1.
The Caspian Sea is the largest enclosed basin on Earth and a unique subject for the analysis of...