Articles | Volume 16, issue 1
https://doi.org/10.5194/os-16-15-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-15-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait
Ivan Zavialov
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Roman Sedakov
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Department of Aerophysics and Space Research, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Bernard Barnier
Institut des Géosciences de l'Environment, UGA/CNRS/IRD, Grenoble INP, Grenoble, France
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Jean-Marc Molines
Institut des Géosciences de l'Environment, UGA/CNRS/IRD, Grenoble INP, Grenoble, France
Vladimir Belokopytov
Marine Hydrophysical Institute, Russian Academy of Science,
Sevastopol
Related authors
No articles found.
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024, https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
Short summary
This study examines how the ocean's chaotic variability and atmospheric fluctuations affect yearly changes in North Atlantic Subtropical Mode Water (STMW) properties, using an ensemble of realistic ocean simulations. Results show that while yearly changes in STMW properties are mostly paced by the atmosphere, a notable part of these changes are random in phase. This study also illustrates the value of ensemble simulations over single runs in understanding oceanic fluctuations and their causes.
Lara Börger, Michael Schindelegger, Mengnan Zhao, Rui M. Ponte, Anno Löcher, Bernd Uebbing, Jean-Marc Molines, and Thierry Penduff
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-21, https://doi.org/10.5194/esd-2024-21, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Flows in the ocean are driven either by atmospheric forces or by small-scale internal disturbances that are inherently chaotic. We use computer simulation results to show that these chaotic oceanic disturbances can attain spatial scales large enough to alter the motion of Earth’s pole of rotation. Given their size and unpredictable nature, the chaotic signals are a source of uncertainty when interpreting observed year-to-year polar motion changes in terms of other processes in the Earth system.
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff, and Pierre Brasseur
Ocean Sci., 18, 1619–1644, https://doi.org/10.5194/os-18-1619-2022, https://doi.org/10.5194/os-18-1619-2022, 2022
Short summary
Short summary
The goal of the study is to evaluate the predictability of the ocean circulation
at a kilometric scale, in order to anticipate the requirements of the future operational forecasting systems. For that purpose, ensemble experiments have been performed with a regional model for the Western Mediterranean (at 1/60° horizontal resolution). From these ensemble experiments, we show that it is possible to compute targeted predictability scores, which depend on initial and model uncertainties.
Georgy I. Shapiro, Jose M. Gonzalez-Ondina, and Vladimir N. Belokopytov
Ocean Sci., 17, 891–907, https://doi.org/10.5194/os-17-891-2021, https://doi.org/10.5194/os-17-891-2021, 2021
Short summary
Short summary
This paper presents an efficient method for high-resolution ocean modelling based on a combination of the deterministic and stochastic approaches. The method utilises mathematical tools similar to those developed for data assimilation in ocean modelling. The main difference is that instead of assimilating a relatively small number of observations, the SDD method assimilates all the data produced by a parent model. The method is applied to create an operational Stochastic Model of the Red Sea.
Sylvain Watelet, Jean-Marie Beckers, Jean-Marc Molines, and Charles Troupin
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-79, https://doi.org/10.5194/os-2020-79, 2020
Revised manuscript not accepted
Short summary
Short summary
In this study, we use a numerical hindcast at high resolution (1/12°) to examine the occurrence and properties of Rossby waves in the North Atlantic between 1970–2015. We show evidence of Rossby waves travelling at 39° N at a speed of 4.17 cm s−1. These results are consistent with baroclinic Rossby waves generated by the North Atlantic Oscillation in the central North Atlantic and travelling westward before interacting with the Gulf Stream transport with a time lag of about 2 years.
Pedro Colombo, Bernard Barnier, Thierry Penduff, Jérôme Chanut, Julie Deshayes, Jean-Marc Molines, Julien Le Sommer, Polina Verezemskaya, Sergey Gulev, and Anne-Marie Treguier
Geosci. Model Dev., 13, 3347–3371, https://doi.org/10.5194/gmd-13-3347-2020, https://doi.org/10.5194/gmd-13-3347-2020, 2020
Short summary
Short summary
In the ocean circulation model NEMO, the representation of the overflow of dense Arctic waters through the Denmark Strait is investigated. In this
z-coordinate context, sensitivity tests show that the mixing parameterizations preferably act along the model grid slope. Thus, the representation of the overflow is more sensitive to resolution than to parameterization and is best when the numerical grid matches the local topographic slope.
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
Alexander Osadchiev and Evgeniya Korshenko
Ocean Sci., 13, 465–482, https://doi.org/10.5194/os-13-465-2017, https://doi.org/10.5194/os-13-465-2017, 2017
Short summary
Short summary
This study shows how intense rainfall at the steep and narrow catchment area of the northeastern part of the Black Sea can cause flash-flooding events and significantly influence coastal water quality. They change the point-source spread of continental discharge, dominated by several large rivers, to the line-source discharge from numerous small rivers located along the coast and induce intense alongshore transport of suspended and dissolved constituents discharged with river waters.
Laurent Bessières, Stéphanie Leroux, Jean-Michel Brankart, Jean-Marc Molines, Marie-Pierre Moine, Pierre-Antoine Bouttier, Thierry Penduff, Laurent Terray, Bernard Barnier, and Guillaume Sérazin
Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, https://doi.org/10.5194/gmd-10-1091-2017, 2017
Short summary
Short summary
A new, probabilistic version of an ocean modelling system has been implemented in order to simulate the chaotic and the atmospherically forced contributions to the ocean variability. For that purpose, a large ensemble of global hindcasts has been performed. Results illustrate the importance of the oceanic chaos on climate-related oceanic indices, and the relevance of such probabilistic ocean modelling approaches to anticipating the behaviour of the next generation of coupled climate models.
C. Q. C. Akuetevi, B. Barnier, J. Verron, J.-M. Molines, and A. Lecointre
Ocean Sci., 12, 185–205, https://doi.org/10.5194/os-12-185-2016, https://doi.org/10.5194/os-12-185-2016, 2016
Short summary
Short summary
The NW Indian Ocean is the siege of two very intense anticyclonic eddies, the Great Whirl and the Southern Gyre, the rapid development of which makes their observation difficult. Model simulations propose an interaction scenario between the two eddies not described in observations up to now. When the summer monsoon intensifies, the Southern Gyre moves northward, collides with the Great Whirl and takes it place. The Great Whirl is pushed to the east of Socotra Island and forms the Socotra Eddy.
A. A. Osadchiev, K. A. Korotenko, P. O. Zavialov, W.-S. Chiang, and C.-C. Liu
Nat. Hazards Earth Syst. Sci., 16, 41–54, https://doi.org/10.5194/nhess-16-41-2016, https://doi.org/10.5194/nhess-16-41-2016, 2016
Short summary
Short summary
This research was motivated by damage of underwater cables and pipelines caused by turbidity flows which regularly take place along the eastern coast of Taiwan. Elevated discharge of terrigenous sediments during typhoons and their subsequent settling on the steep sea floor can cause submarine landslides which induce such turbidity flows. In this article we simulated the fate of sediments discharged from the Peinan River and identified areas which exhibit a high risk of turbidity flows.
K. A. Korotenko, A. A. Osadchiev, P. O. Zavialov, R.-C. Kao, and C.-F. Ding
Ocean Sci., 10, 863–879, https://doi.org/10.5194/os-10-863-2014, https://doi.org/10.5194/os-10-863-2014, 2014
A. M. Treguier, J. Deshayes, J. Le Sommer, C. Lique, G. Madec, T. Penduff, J.-M. Molines, B. Barnier, R. Bourdalle-Badie, and C. Talandier
Ocean Sci., 10, 243–255, https://doi.org/10.5194/os-10-243-2014, https://doi.org/10.5194/os-10-243-2014, 2014
M. Meinvielle, J.-M. Brankart, P. Brasseur, B. Barnier, R. Dussin, and J. Verron
Ocean Sci., 9, 867–883, https://doi.org/10.5194/os-9-867-2013, https://doi.org/10.5194/os-9-867-2013, 2013
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Current Field
X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling
A. Montuori, P. de Ruggiero, M. Migliaccio, S. Pierini, and G. Spezie
Ocean Sci., 9, 121–132, https://doi.org/10.5194/os-9-121-2013, https://doi.org/10.5194/os-9-121-2013, 2013
Cited articles
Aleskerovà, A. A., Kubryakov, A. A., Goryachkin, Y. N., and Stanichny, S.
V.: Propagation of waters from the Kerch Strait in the Black Sea,
Phys. Oceanogr., 6, 47–57, https://doi.org/10.22449/1573-160X-2017-6-47-57, 2017.
Altiok, H., Sur, H. I., and Yuce, H.: Variation of the cold intermediate
water in the Black Sea exit of the Strait of Istanbul (Bosphorus) and its
transfer through the strait, Oceanologia, 54, 233–254,
https://doi.org/10.5697/oc.54-2.233, 2012.
Andersen, S., Jakobsen, Fl., and Alpar, B.: The water level in the Bosphorus
Strait and its dependence on atmospheric forcing, German Journal of
Hydrography, 49, 466–475, https://doi.org/10.1007/BF02764341, 1997.
Barnier B., Madec G., Penduff T., Molines J.-M., Treguier A.-M., Sommer J.
Le, Beckmann A., Biastoch A., Böning C., Dengg J., Derval C., Durand E.,
Gulev S., Remy E., Talandier C., Theetten S., Maltrud M., McClean J., and De
Cuevas B.: Impact of partial steps and momentum advection schemes in a
global ocean circulation model at eddy permitting resolution, Ocean
Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006.
Belokopytov, V. N.: Retrospective analysis of the Black Sea thermohaline
fields on the basis of empirical orthogonal functions, Phys. Oceanogr., 25, 380–389, https://doi.org/10.22449/1573-160X-2018-5-380-389, 2018.
Beranger, K., Mortier, L., and Crepon, M.: Seasonal variability of water
transport through the Straits of Gibraltar, Sicily and Corsica, derived from
a high-resolution model of the Mediterranean circulation, Prog.
Oceanogr., 66, 341–364, https://doi.org/10.1016/j.pocean.2004.07.013, 2005.
Castelao, R. M. and Moller Jr., O. O.: A modeling study of Patos lagoon
(Brazil) flow response to idealized wind and river discharge: dynamical
analysis, Braz. J. Oceanogr., 54, 1–17,
https://doi.org/10.1590/S1679-87592006000100001, 2006.
Chepyzhenko, A. A., Chepyzhenko, A. I., and Kushnir, V. M.: Strait of Kerch
water structure derived from the data of contact measurements and satellite
imagery, Oceanology, 55, 47–55, https://doi.org/10.1134/S0001437015010038, 2015.
Cherkesov, L. V. and Shul'ga, T. Y.: Numerical Analysis of the Effect of
Active Wind Speed and Direction on Circulation of Sea of Azov Water with and
without Allowance for the Water Exchange through the Kerch Strait,
Oceanology, 58, 19–27, https://doi.org/10.1134/S0001437018010022, 2018.
Dai, A., and Trenberth, K. E.: Estimates of freshwater discharge from
continents: Latitudinal and seasonal variations, J.
Hydrometeorol., 3, 660–687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002.
Danielson, S. L., Weingartner, T. W., Hedstrom, K., Aagaard, K., Woodgate,
R.,Curchitser, E., and Stabeno, P.: Coupled wind-forced controls of the
Bering–Chukchi shelf circulation and the Bering Strait through-flow: Ekman
transport,continental shelf waves, and variations of the Pacific-Arctic sea
surface height gradient, Prog. Oceanogr., 125, 40–61,
https://doi.org/10.1016/j.pocean.2014.04.006, 2014.
Doerffer, R. and Schiller, H.: The MERIS Case 2 Water Algorithm, Int. J. Remote Sensing, 28, 517–535, https://doi.org/10.1080/01431160600821127, 2007.
Enriquez, C. E., Shapiro, G. I., Souza, A. J., and Zatsepin, A. G.: Hydrodynamic
modelling of mesoscale eddies in the Black Sea, Ocean Dynam., 55,
479–489, https://doi.org/10.1007/s10236-005-0031-4, 2005.
European Space Agency: MERIS full resolution data repository, available at: https://earth.esa.int/web/guest/-/meris-full-resolution-full-swath-4215, last access: 20 November 2019.
Falina, A., Sarafanov, A., Ozsoy, E., and Turuncoglu, U. U.: Observed
basin-wide propagation of Mediterranean water in the Black Sea, J.
Geophys. Res., 122, 3141–3151, https://doi.org/10.1002/2017JC012729, 2017.
Federal Service for Hydrometeorology
and Environmental Monitoring of Russia repositories: Information system for water resources and water management of Russian river basins, available at: http://gis.vodinfo.ru, last access: 20 November 2019.
Ferrain, C., Bellafiore, D., Sannino, G., Bajo, M., and Umgiesser, G.:
Tidal dynamics in the inter-connected Mediterranean, Marmara, Black and Azov
seas, Prog. Oceanogr., 161, 102–115, https://doi.org/10.1016/j.pocean.2018.02.006, 2018.
Filippov, Y. G.: The impact of the Don River runoff on the water level in the
Taganrog Bay, Russ. Meteorol. Hydrol., 40, 127–130,
https://doi.org/10.3103/S1068373915020090, 2015.
Fomin, V. V., Polozok, A. A., and Fomina, I. N.: Simulation of the Azov Sea
Water circulation subject to the river discharge, Phys. Oceanogr., 1,
15–26, https://doi.org/10.22449/1573-160X-2015-1-15-26, 2015.
Fomin, V. V., Lazorenko, D. I., and Fomina, I. N.: Numerical modeling of water
exchange through the Kerch Strait for various types of the atmospheric
impact, Phys. Oceanogr., 4, 79–89, https://doi.org/10.22449/1573-160X-2017-4-79-89,
2017.
Fong, D. A. and Geyer, W. R.: The alongshore transport of freshwater in a
surface-trapped river plume, J. Phys. Oceanogr., 32, 957–972,
https://doi.org/10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2,
2002.
Fong, D. A., Geyer, W. R., and Signell, R. P.: The wind-forced response on
a buoyant coastal current, Observations of the western Gulf of Maine plume,
J. Mar. Syst., 12, 69–81,
https://doi.org/10.1016/S0924-7963(96)00089-9, 1997.
Garmashov, A. V., Kubryakov, A. A., Shokurov, M. V., Stanichny, S. V.,
Toloknov, Y. N., and Korovushkin, A. I.: Comparing satellite and
meteorological data on wind velocity over the Black Sea. Izvestiya,
Atmospheric and Oceanic Physics, 52, 309–316,
https://doi.org/10.1134/S000143381603004X, 2016.
Garrett, C.: The role of the Strait of Gibraltar in the evolution of Mediterranean water, properties and circulation, Bulletin de l'Institut Océanographique de Monaco, 17, 1–19, 1996
Garvine, R. W.: Estuary plumes and fronts in shelf waters: A layer model,
J. Phys. Oceanogr., 17, 1877–1896,
https://doi.org/10.1175/1520-0485(1987)017<1877:EPAFIS>2.0.CO;2,
1987.
Ginzburg, A. I. Kostianoy, A. G., Krivosheya, V. G., Nezlin, N. P., Soloviev,
D. M., Stanichny, S. V., and Yakubenko, V. G.: Mesoscale eddies and related
processes in the northeastern Black Sea, J. Mar. Syst., 32,
71–90, https://doi.org/10.1016/S0924-7963(02)00030-1, 2002.
Goptarev, N. P., Simonov, A. I., Zatuchnaya, B. M., and Gershanovich, D. E.:
Hydrometeorology and Hydrochemistry of the Soviet Seas, Vol. 5, The Sea of
Azov., St. Petersburg, Gidrometeoizdat, 1991 (in Russian).
Gregg, M. C. and Ozsoy, E.: Flow, water mass changes, and hydraulics in the
Bosphorus, J. Geophys. Res.-Oceans, 107, 2-1–2-23,
https://doi.org/10.1029/2000JC000485, 2002.
Gregg, M. C., Ozsoy, E., and Latif, M. A.: Quasi-steady exchange flow in the
Bosphorus, Geophys. Res. Lett., 26, 83–86,
https://doi.org/10.1029/1998GL900260, 1999.
Hallock, Z. R. and Marmorino, G. O.: Observations of the response of a buoyant
estuarine plume to upwelling favourable winds, J. Geophys.
Res., 107, 3066, https://doi.org/10.1029/2000JC000698, 2002.
Horner-Devine, A. R., Hetland, R. D., and MacDonald, D. G.: Mixing and
transport in coastal river plumes, Annu. Rev. Fluid Mech., 47,
569–594, https://doi.org/10.1146/annurev-fluid-010313-141408, 2015.
Ilyin, Yu. P., Fomin, V. V., D'yakov, N. N., and Gorbach, S. B.:
Hydrometeorological Conditions of the Ukraine Seas. Vol. 1. The Azov Sea,
Sevastopol, ECOSI-Gidrofizika, 2009 (in Russian).
Ivanov, V. A. and Belokopytov, V. N.: Oceanography of the Black Sea,
Sevastopol, ECOSI-Gidrofizika, 2013.
Ivanov, V. A., Cherkesov, L. V., and Shul'ga, T. Y.: Extreme deviations of the
sea level and the velocities of currents induced by constant winds in the
Azov Sea, Phys. Oceanogr., 21, 98–105, https://doi.org/10.1007/s11110-011-9107-5,
2011.
Ivanov, V. A., Morozov, A. N., Kushnir, V. M., Shutov, S. A., and Zima, V. V.:
Currents in the Kerch Strait, adcp-observations, September, 2011, Ecological
safety of coastal and shelf zones and complex usage of shelf resources,
26-1, 170–178, 2012 (in Russian).
Izhitskiy, A. S. and Zavialov, P. O.: Hydrophysical state of the Gulf of
Feodosia in May 2015, Oceanology, 57, 485–491,
https://doi.org/10.1134/S0001437017040105, 2017.
Jakobsen, F. and Trébuchet, C.: Observations of the transport through
the Belt Sea and an investigation of the momentum balance, Cont. Shelf
Res., 20, 293–311, https://doi.org/10.1016/S0278-4343(99)00073-4, 2000.
Jaoshvili, S.: The rivers of the Black Sea, European Environmental Agency,
edited by: Chomeriki, I., Gigineishvili, G., and Kordzadze, A., Technical Report No. 71, 2002.
Kolyuchkina, G. A., Belyaev, V. A., Spiridonov, V. A., and Simakova, U. V.:
Long-term effects of Kerch Strait residual oil-spill: hydrocarbon
concentration in bottom sediments and biomarkers in Mytilus
galloprovincialis (Lamarck, 1819), Turk. J. Fish. Aquat.
Sc., 12, 461–469, https://doi.org/10.4194/1303-2712-v12_2_37, 2012.
Korotaev, G., Oguz, T., Nikiforov, A., and Koblinsky, C.: Seasonal,
interannual, and mesoscale variability of the Black Sea upper layer
circulation derived from altimeter data, J. Geophys. Res.,
108, 3122, https://doi.org/10.1029/2002JC001508, 2003.
Korotenko, K. A.: Modeling processes of the protrusion of near-coastal
anticyclonic eddies through the Rim Current in the Black Sea, Oceanology,
57, 394–401, https://doi.org/10.1134/S0001437017020114, 2017.
Korotenko, K. A., Malcolm, J. B, and David, E. D.: High-resolution
numerical model for predicting the transport and dispersal of oil spilled in
the Black Sea, Terr. Atmos. Oceanic Sci., 21, 123–136,
https://doi.org/10.3319/TAO.2009.04.24.01(IWNOP), 2010.
Kourafalou, V. H., Lee, T. N., Oey, L., and Wang, J.: The fate of river
discharge on the continental shelf: 2.Transport of coastal low-salinity
waters under realistic wind and tidal forcing, J. Geophys.
Res., 101, 3435–3456, https://doi.org/10.1029/95JC03025, 1996.
Kubryakov, A. A., Aleskerova A. A., Goryachkin, Yu. N., Stanichny, S. V.,
Latushkin, A. A., and Fedirko A. V.: Propagation of the Azov Sea waters in
the Black sea under impact of variable winds, geostrophic currents and
exchange in the Kerch Strait, Prog. Oceanogr., 176, 102119,
https://doi.org/10.1016/j.pocean.2019.05.011, 2019.
Large, W. G. and Yeager, S. G. Diurnal to decadal global forcing for ocean
and sea-ice models: the data sets and flux climatologies, NCAR Technical
Note, NCAR/TN-460+STR, National Center for Atmospheric Research, 2004.
Lomakin, P. D., Panov, D. B., and Spiridonova, E. O.: Specific features of
the inter-annual and seasonal variations of hydrometeorological conditions
in the region of Kerch Strait for the last two decades, Phys. Oceanogr., 20, 109–121, https://doi.org/10.1007/s11110-010-9071-5, 2010.
Lomakin, P. D., Chepyzhenko, A. I., and Chepyzhenko, A. A.: Field of the colored
dissolved organic matter concentration in the Sea of Azov and the Kerch
Strait waters based on optical observations, Phys. Oceanogr., 5, 71–83, https://doi.org/10.22449/1573-160X-2016-5-71-83, 2016.
Lomakin, P. D., Chepyzhenko, A. I., and Chepyzhenko, A. A.: The total suspended
matter concentration field in the Kerch strait based on optical
observations, Phys. Oceanogr., 6, 58–69, https://doi.org/10.22449/1573-160X-2017-6-58-69,
2017.
Madec, G. and the NEMO team: NEMO ocean engine. Note du Pôle de
modélisation, Institut Pierre-Simon Laplace (IPSL), France, 27,
1288–1619, 2016.
Marques, W. C., Fernandes, E. H., Monteiro, I. O., and Moller, O. O.: Numerical
modeling of the Patos Lagoon coastal plume, Brazil, Cont. Shelf
Res., 29, 556–571, https://doi.org/10.1016/j.csr.2008.09.022, 2009.
Matthäus, W. and Lass H. U.: The Recent Salt Inflow into the Baltic Sea,
J. Phys. Oceanogr., 25, 280–288,
1995.
Medvedev, I. P.: Tides in the Black Sea: observations and numerical
modelling, Pure Appl. Geophys., 175, 1951–1969,
https://doi.org/10.1007/s00024-018-1878-x, 2018.
Medvedev, I. P., Rabinovich, A. B., and Kulikov, E. A.: Tides in three
enclosed basins: the Baltic, Black, and Caspian seas, Front. Mar.
Sci., 3, 46, https://doi.org/10.3389/fmars.2016.00046, 2016.
Met Office: Weather forecast website in Russia, available at: http://rp5.ru, last access: 20 November 2019.
Miranda, L. B., Andutta, F. P., Kjerfve, B., and de Castro Filho, B. M.:
Fundamentals of estuarine physical oceanography, 8, Springer,
Singapore, https://doi.org/10.1007/978-981-10-3041-3, 2017.
Moller, O. O. and Castaing, P.: Hydrographical Characteristics of the
Estuarine Area of Patos Lagoon (30∘ S, Brazil), in: Estuaries of
South America. Their Geomorphology and Dynamics, edited by: Perillo, G. M. E.,
Piccolo, M. C., and Quivira, M. P., Berlin, Springer-Verlag, 83–100, 1999.
NASA: National Aeronautics and Space Administration repository of LANCE-MODIS satellite data, available at: https://lance3.modaps.eosdis.nasa.gov, last access: 20 November 2019.
NOAA National Center for Environmental Prediction: NCEP/NCAR Reanalysis 1, availale at: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html, last access: 20 November 2019.
Officer, C. B.: Physical Oceanography of Estuaries (and associated coastal
waters), Wiley, New York, https://doi.org/10.4319/lo.1977.22.5.0975, 1976.
Oguz, T., La Violette, P. E., and Unluata, U.: The upper layer circulation
of the Black Sea: its variability as inferred from hydrographic and
satellite observations, J. Geophys. Res.-Oceans, 97, 12569–12584,
https://doi.org/10.1029/92jc00812, 1992.
Oguz, T., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., Markov,
A. A., Ozsoy, E., Kotovshchikov B. B., Eremeev, V. V., and Unluata, U.:
Circulation in the surface and intermediate layers of the Black Sea, Deep-Sea Res. Pt. I, 40, 1597–1612, https://doi.org/10.1016/0967-0637(93)90018-X, 1993.
Oguz, T., Malanotte-Rizzoli, P., and Aubrey, D.: Wind and thermohaline
circulation of the Black Sea driven by yearly mean climatological forcing,
J. Geophys. Res.-Oceans, 100, 6845–6863, https://doi.org/10.1029/95JC00022, 1995.
Osadchiev, A. and Korshenko, E.: Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions, Ocean Sci., 13, 465–482, https://doi.org/10.5194/os-13-465-2017, 2017.
Osadchiev, A. A.: A method for quantifying freshwater discharge rates from
satellite observations and Lagrangian numerical modeling of river plumes,
Environ. Res. Lett., 10, 085009,
https://doi.org/10.1088/1748-9326/10/8/085009, 2015.
Osadchiev, A. A.: Spreading of the Amur river plume in the Amur Liman, the
Sakhalin Gulf, and the Strait of Tartary, Oceanology, 57, 376–382, https://doi.org/10.1134/S0001437017020151, 2017.
Osadchiev, A. A. and Sedakov, R. O.: Spreading dynamics of small river
plumes off the northeastern coast of the Black Sea observed by Landsat 8 and
Sentinel-2, Remote Sens. Environ., 221, 522–533,
https://doi.org/10.1016/j.rse.2018.11.043, 2019.
Osadchiev, A. A. and Zavialov, P. O.: Lagrangian model for surface-advected
river plume, Cont. Shelf Res., 58, 96–106, https://doi.org/10.1016/j.csr.2013.03.010,
2013.
Osadchiev, A. A., Korotenko, K. A., Zavialov, P. O., Chiang, W.-S., and Liu, C.-C.: Transport and bottom accumulation of fine river sediments under typhoon conditions and associated submarine landslides: case study of the Peinan River, Taiwan, Nat. Hazards Earth Syst. Sci., 16, 41–54, https://doi.org/10.5194/nhess-16-41-2016, 2016.
Osadchiev, A. A., Izhitskiy, A. S., Zavialov, P. O., Kremenetskiy, V. V.,
Polukhin, A. A., Pelevin, V. V., and Toktamysova, Z. M.: Structure of the
buoyant plume formed by Ob and Yenisei river discharge in the southern part
of the Kara Sea during summer and autumn, J. Geophys. Res.-Oceans, 122, 5916–5935, https://doi.org/10.1002/2016JC012603, 2017.
Ostrander, C. E., McManus, M. A., Decarlo, E. H., and Mackenzie, F. T.:
Temporal and spatial variability of freshwater plumes in a semi-enclosed
estuarine–bay system, Estuar. Coast., 31, 192–203,
https://doi.org/10.1007/s12237-007-9001-z, 2008.
Ross, D. A.: The Black Sea and the Sea of Azov, in: The Ocean Basins and Margins, edited by: Nairn, A. E. M., Kanes,
W. H., and Stehli, F. G.: 4A, 445–481, Springer, Boston, MA, https://doi.org/10.1007/978-1-4684-3036-3_11, 1977.
Sannino, G., Bargagli, A., and Artale, V.: Numerical modelling of the mean
exchange through the Strait of Gibraltar, J. Geophys. Res.,
107, 1–24, https://doi.org/10.1029/2001JC000929, 2002.
Sapozhnikov, V. V., Kumantsov, M. I., Agatova, A. I., Arzhanova, N. V.,
Lapina, N. M., Roi, V. I., Stolyarskii, S. I., Bondarenko, L. G., Panov, B. N., Grishin, A. N., and Zhugailo, S. V.: Complex investigations of the Kerch
Strait, Oceanology, 51, 896, https://doi.org/10.1134/S0001437011050146, 2011.
Sayin, E. and Krauß, W.: A numerical study of the water exchange
through the Danish Straits, Tellus A, 48, 324–341,
https://doi.org/10.1034/j.1600-0870.1996.t01-1-00009.x, 1996.
Sellschoppa, J., Arneborgb, L., Knolla, M., Fiekasa, V., Gerdesa, F.,
Burchardc, H., Lass, H. U., Mohrholz, V., and Umlauf, L.: Direct observations of a medium-intensity inflow into
the Baltic Sea, Cont. Shelf Res., 26, 2393–2414, https://doi.org/10.1016/j.csr.2006.07.004, 2006.
She, J., Berg, P., and Berg, J.: Bathymetry impacts on water exchange
modelling through the Danish Straits, J. Mar. Syst., 65,
450–459, https://doi.org/10.1016/j.jmarsys.2006.01.017, 2007.
Sheldon, J. E. and Alber, M.: A comparison of residence time calculations
using simple compartment models of the Altamaha River estuary, Georgia,
Estuaries, 25, 1304–1317, https://doi.org/10.1007/BF02692226, 2002.
Simonov, A. I. and Altman, E. N.: Hydrometeorology and Hydrochemistry of
the USSR seas. Vol. 4. The Black Sea, St. Petersburg, Gidrometeoizdat, 1991 (in
Russian).
Soto-Navarro, J., Somot, S., Sevault, F., Beuvier, J., Criado-Aldeanueva,
F., Garca-Lafuente, J., and Béranger, K.: Evaluation of regional ocean
circulation models for the Mediterranean Sea at the Strait of Gibraltar:
volume transport and thermohaline properties of the outflow,
Clim. Dynam., 44, 1277–1292, https://doi.org/10.1007/s00382-014-2179-4, 2015.
Sozer, A. and Ozsoy, E.: Modeling of the Bosphorus exchange flow dynamics, Ocean
Dynam., 67, 321–343, https://doi.org/10.1007/s10236-016-1026-z, 2017.
Stanev, E. V.: On the mechanisms of the Black Sea circulation, Earth-Sci.
Rev., 28, 285–319, https://doi.org/10.1016/0012-8252(90)90052-W, 1990.
Stanev, E. V. and Staneva, J. V.: The impact of the baroclinic eddies and
basin oscillations on the transitions between different quasi-stable states
of the Black Sea circulation, J. Mar. Syst., 24, 3–26,
https://doi.org/10.1016/S0924-7963(99)00076-7, 2000.
Stanev, E. V., Roussenov, V. M., Rachev, N. H., and Staneva, J. V.: Sea
response to atmospheric variability. Model study for the Black Sea, J. Mar.
Syst., 6, 241–267, https://doi.org/10.1016/0924-7963(94)00026-8, 1995.
Stanev, E. V., Grashorn, S., and Zhang, Y. J.: Cascading ocean basins:
numerical simulations of the circulation and interbasin exchange in the
Azov-Black-Marmara-Mediterranean Seas system, Ocean Dynam., 67, 1003–1025,
https://doi.org/10.1007/s10236-017-1071-2, 2017.
Staneva, J. V., Dietrich, D. E., Stanev, E. V., and Bowman, M. J.:
Rim Current and coastal eddy mechanisms in an eddy-resolving Black Sea
general circulation model, J. Mar. Syst., 31, 137–157,
https://doi.org/10.1016/S0924-7963(01)00050-1, 2001.
Titov, V. B.: Characteristics of the Main Black Sea Current and near-shore
anticyclonic eddies in the Russian sector of the Black Sea, Oceanology, 42,
637–645, 2002.
Wang, C. F., Hsu, M. H., and Kuo, A. Y.: Residence time of the Danshuei
River estuary, Taiwan, Estuar. Coast. Shelf Sci., 60, 381–393,
https://doi.org/10.1016/j.ecss.2004.01.013, 2004.
Washburn, L., McClure, K. A., Jones, B. H., and Bay, S. M.: Spatial scales
and evolution of stormwater plumes in Santa Monica Bay, Mar. Environ.
Res., 56, 103–125, https://doi.org/10.1016/S0141-1136(02)00327-6, 2003.
Woodgate, R. A., Aagaard, K., and Weingartner, T. J.: Interannual changes in the
Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004,
Geophys. Res. Lett., 33, L15609, https://doi.org/10.1029/2006GL026931, 2006.
Woodgate, R. A., Weingartner, T., and Lindsay, R.: The 2007 Bering Strait
oceanic heat flux and anomalous Arctic sea-ice retreat, Geophys. Res.
Lett., 37, L01602, https://doi.org/10.1029/2009GL041621, 2010.
Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in
Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to
2011 and their impacts on the Arctic Ocean water column, Geophys.
Res. Lett., 39, L24603, https://doi.org/10.1029/2012GL054092, 2012.
Xia, M., Xie, L., and Pietrafesa, L. J.: Modeling of the Cape Fear River estuary
plume, Estuar. Coast., 30, 698–709, https://doi.org/10.1007/BF02841966, 2007.
Yankovsky, A. E. and Chapman, D. C.: A simple theory for the fate of
buoyant coastal discharges, J. Phys. Oceanogr., 27, 1386–1401,
https://doi.org/10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2,
1997.
Yuce, H.: Mediterranean water in the Strait of Istanbul (Bosphorus) and the
Black Sea exit, Estuar. Coast. Shelf Sci., 43, 597–616,
https://doi.org/10.1006/ecss.1996.0090, 1996.
Zatsepin, A. G., Ginzburg, A. I., Kostianoy, A. G., Kremenitskiy, V. V.,
Krivosheya, V. G., Stanichny, S. V., and Poulain, P.-M.: Observations of Black
Sea mesoscale eddies and associated horizontal mixing, J.
Geophys. Res., 108, 3246, https://doi.org/10.1029/2002JC001390, 2003.
Zavialov, P. O., Izhitskiy, A. S., and Sedakov, R. O.: Sea of Azov waters
in the Black Sea: Do they enhance wind-driven flows on the shelf?, in:
The Ocean in Motion, edited by: Velarde, M., Tarakanov, R., and Marchenko, A.,
Springer Oceanography, Springer, Cham, 461–474,
https://doi.org/10.1007/978-3-319-71934-4_28, 2018.
Short summary
This study is focused on water exchange between the Sea of Azov and the Black Sea. The Sea of Azov is a small freshened sea that receives a large freshwater discharge and, therefore, can be regarded as a large river estuary connected by narrow Kerch Strait with the Black Sea. In this work we show that water transport through the Kerch Strait is governed by wind forcing and does not depend on the river discharge rate to the Sea of Azov on an intra-annual timescale.
This study is focused on water exchange between the Sea of Azov and the Black Sea. The Sea of...