Articles | Volume 16, issue 5
https://doi.org/10.5194/os-16-1261-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1261-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea-ice and water dynamics and moonlight impact the acoustic backscatter diurnal signal over the eastern Beaufort Sea continental slope
Igor A. Dmitrenko
CORRESPONDING AUTHOR
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, R3T 2N2, Canada
Vladislav Petrusevich
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, R3T 2N2, Canada
Gérald Darnis
Department of Biology, Laval University, Québec City, G1V 0A6,
Canada
Sergei A. Kirillov
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, R3T 2N2, Canada
Alexander S. Komarov
Data Assimilation and Satellite Meteorology Research Section,
Environment and Climate Change Canada, Ottawa, K1A 0H3, Canada
Jens K. Ehn
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, R3T 2N2, Canada
Alexandre Forest
Department of Biology, Laval University, Québec City, G1V 0A6,
Canada
Louis Fortier
Department of Biology, Laval University, Québec City, G1V 0A6,
Canada
deceased, 4 October 2020
Søren Rysgaard
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, R3T 2N2, Canada
Arctic Research Centre, Aarhus University, Aarhus, 8000, Denmark
David G. Barber
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, R3T 2N2, Canada
Related authors
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, and Lekima Yakuden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-227, https://doi.org/10.5194/essd-2024-227, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with a complex crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 01 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Jennifer V. Lukovich, Cathleen A. Geiger, and David G. Barber
The Cryosphere, 11, 1707–1731, https://doi.org/10.5194/tc-11-1707-2017, https://doi.org/10.5194/tc-11-1707-2017, 2017
Short summary
Short summary
In this study we develop a framework to characterize directional changes in sea ice drift and associated deformation in response to atmospheric forcing. Lagrangian dispersion statistics applied to ice beacons deployed in a triangular configuration in the Beaufort Sea capture a shift in ice dynamical regimes and local differences in deformation. This framework contributes to diagnostic development relevant for ice hazard assessments and forecasting required by indigenous communities and industry.
J.-C. Miquel, B. Gasser, J. Martín, C. Marec, M. Babin, L. Fortier, and A. Forest
Biogeosciences, 12, 5103–5117, https://doi.org/10.5194/bg-12-5103-2015, https://doi.org/10.5194/bg-12-5103-2015, 2015
Short summary
Short summary
POC fluxes obtained in the Eastern Beaufort Sea in August 2009 from drifting sediment traps were low (1-15 mg C m-2d-1), compared to long-term data which show higher but variable fluxes (10-40 mg C m-2d-1).
Composition of sinking particles, especially faecal pellets, highlighted the role of the zooplankton community and its trophic structure in the transition of carbon from the productive surface zone to the deep ocean. Carbon flux at this season results from a heterotrophic driven ecosystem.
J. Sievers, L. L. Sørensen, T. Papakyriakou, B. Else, M. K. Sejr, D. Haubjerg Søgaard, D. Barber, and S. Rysgaard
The Cryosphere, 9, 1701–1713, https://doi.org/10.5194/tc-9-1701-2015, https://doi.org/10.5194/tc-9-1701-2015, 2015
J. Sievers, T. Papakyriakou, S. E. Larsen, M. M. Jammet, S. Rysgaard, M. K. Sejr, and L. L. Sørensen
Atmos. Chem. Phys., 15, 2081–2103, https://doi.org/10.5194/acp-15-2081-2015, https://doi.org/10.5194/acp-15-2081-2015, 2015
O. Crabeck, B. Delille, D. Thomas, N.-X. Geilfus, S. Rysgaard, and J.-L. Tison
Biogeosciences, 11, 6525–6538, https://doi.org/10.5194/bg-11-6525-2014, https://doi.org/10.5194/bg-11-6525-2014, 2014
R. K. Scharien, J. Landy, and D. G. Barber
The Cryosphere, 8, 2147–2162, https://doi.org/10.5194/tc-8-2147-2014, https://doi.org/10.5194/tc-8-2147-2014, 2014
R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber
The Cryosphere, 8, 2163–2176, https://doi.org/10.5194/tc-8-2163-2014, https://doi.org/10.5194/tc-8-2163-2014, 2014
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
J. V. Lukovich, D. G. Babb, R. J. Galley, R. L. Raddatz, and D. G. Barber
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-4281-2014, https://doi.org/10.5194/tcd-8-4281-2014, 2014
Revised manuscript not accepted
A. Forest, P. Coupel, B. Else, S. Nahavandian, B. Lansard, P. Raimbault, T. Papakyriakou, Y. Gratton, L. Fortier, J.-É. Tremblay, and M. Babin
Biogeosciences, 11, 2827–2856, https://doi.org/10.5194/bg-11-2827-2014, https://doi.org/10.5194/bg-11-2827-2014, 2014
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
A. Forest, M. Babin, L. Stemmann, M. Picheral, M. Sampei, L. Fortier, Y. Gratton, S. Bélanger, E. Devred, J. Sahlin, D. Doxaran, F. Joux, E. Ortega-Retuerta, J. Martín, W. H. Jeffrey, B. Gasser, and J. Carlos Miquel
Biogeosciences, 10, 2833–2866, https://doi.org/10.5194/bg-10-2833-2013, https://doi.org/10.5194/bg-10-2833-2013, 2013
S. Rysgaard, D. H. Søgaard, M. Cooper, M. Pućko, K. Lennert, T. N. Papakyriakou, F. Wang, N. X. Geilfus, R. N. Glud, J. Ehn, D. F. McGinnis, K. Attard, J. Sievers, J. W. Deming, and D. Barber
The Cryosphere, 7, 707–718, https://doi.org/10.5194/tc-7-707-2013, https://doi.org/10.5194/tc-7-707-2013, 2013
E. A. A. Versteegh, M. E. Blicher, J. Mortensen, S. Rysgaard, T. D. Als, and A. D. Wanamaker Jr.
Biogeosciences, 9, 5231–5241, https://doi.org/10.5194/bg-9-5231-2012, https://doi.org/10.5194/bg-9-5231-2012, 2012
Cited articles
Barber, D. G., Hop, H., Mundy, C. J., Else, B., Dmitrenko, I. A., Tremblay,
J.-E., Ehn, J. K., Assmy, P., Daase, M., Candlish, L. M., and Rysgaard, S.:
Selected physical, biological and biogeochemical implications of a rapidly
changing Arctic Marginal Ice Zone, Prog. Oceanogr., 139, 122–150,
https://doi.org/10.1016/j.pocean.2015.09.003, 2015.
Basedow, S., Eiane, K., Tverberg, V., and Spindler, M.: Advection of the
zooplankton in an Arctic fjord (Kongsfjorden, Svalbard), Estuar. Coast.
Shelf Sci., 60, 113–124, https://doi.org/10.1016/j.ecss.2003.12.004, 2004.
Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M., and Johnsen, G.:
Quantifying the light sensitivity of Calanus spp. during the polar night:
potential for orchestrated migrations conducted by ambient light from the
sun, moon, or aurora borealis?, Polar Biol., 38, 51–65, https://doi.org/10.1007/s00300-013-1415-4, 2013.
Berge, J., Cottier, F., Last, K. S., Varpe, Ø., Leu, E., Søreide, J.,
Eiane, K., Falk-Petersen, S., Willis, K., Nygård, H., Vogedes, D.,
Griffiths, C., Johnsen, G., Lorentzen, D., and Brierley, A. S.: Diel vertical
migration of Arctic the zooplankton during the polar night, Biol. Lett., 5,
69–72, https://doi.org/10.1098/rsbl.2008.0484, 2009.
Berge, J., Renaud, P. E., Darnis, G., Cottier, F., Last, K., Gabrielsen,
T. M., Johnsen, G., Seuthe, L., Weslawski, J. M., Leuc, E., Moline, M.,
Nahrgang, J., Søreide, J. E., Varpeb, Ø., Lønne, O. J., Daasea, M.,
and Falk-Petersen, S.: In the dark: A review of ecosystem processes during
the Arctic polar night, Prog. Oceanogr., 139, 258–271,
https://doi.org/10.1016/j.pocean.2015.08.005, 2015.
Blachowiak-Samolyk, K., Kwasniewski, S., Richardson, K., Dmoch, K., Hansen, E., Hop, H., Falk-Petersen, S., and Mouritsen, L. T.: Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun, Mar. Ecol. Prog. Ser., 308, 101–116, https://doi.org/10.3354/meps308101, 2006.
Brierley, A. S.: Diel vertical migration, Curr. Biol., 24, R1074–R1076,
https://doi.org/10.1016/j.cub.2014.08.054, 2014.
Brierley, A. S., Brandon, M. A., and Watkins, J. L.: An assessment of the
utility of an acoustic Doppler current profiler for biomass estimation, Deep-Sea Res. Pt. I, 45, 1555–1573, https://doi.org/10.1016/S0967-0637(98)00012-0,
1998.
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua Daily L3 12.5 km
Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids,
Version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center
Distributed Active Archive Center, https://doi.org/10.5067/AMSR-E/AE_SI12.003, 2014.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwel, G. R., Hogan,
P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM (Hybrid
Coordinate Ocean Model) data assimilative system, J. Mar. Syst.,
65, 60–83, https://doi.org/10.1016/j.jmarsys.2005.09.016, 2007.
Cohen, J. H. and Forward, R. B.: Zooplankton Diel Vertical Migration – A
Review Of Proximate Control, Oceanogr. Mar. Biol., 47, 77–109, 2009.
Cohen, J. H. and Forward, R. B.: Vertical Migration of Aquatic Animals,
Encyclopedia of Animal Behavior (Second Edition), Elsevier, 546–552, https://doi.org/10.1016/B978-0-12-809633-8.01257-7, 2019.
Cohen, J. H., Berge, J., Moline, M. A., Sørensen, A. J., Last, K.,
Falk-Petersen, S., Renaud, P. E., Leu, E. S., Grenvald, J., Cottier, F.,
Cronin, H., Menze, S., Norgren, P., Varpe, Ø., Daase, M., Darnis, G., and
Johnsen, G.: Is Ambient Light during the High Arctic Polar Night Sufficient
to Act as a Visual Cue for Zooplankton?, PLoS ONE, 10, e0126247, https://doi.org/10.1371/journal.pone.0126247, 2015.
Cottier F. R., Tarling, G. A., Wold, A., and Falk-Petersen, S.: Unsynchronised
and synchronised vertical migration of the zooplankton in a high Arctic
fjord, Limnol. Oceanogr., 51, 2586–2599, https://doi.org/10.4319/lo.2006.51.6.2586,
2006.
Darnis, G., Hobbs, L., Geoffroy, M., Grenvald, J. C., Renaud, P. E., Berge,
J., Cottier, F., Kristiansen, S., Daase, M., Søreide, J. E., Wold, A.,
Morata, N., and Gabrielsen, T.: From polar night to midnight sun: Diel
vertical migration, metabolismand biogeochemical role of the zooplankton in
a high Arctic fjord (Kongsfjorden, Svalbard), Limnol. Oceanogr., 62,
1586–1605, https://doi.org/10.1002/lno.10519, 2017.
Deines, K. L.: Backscatter estimation using Broadband acoustic Doppler
current profilers, in Proceedings of the IEEE Sixth Working Conference on
Current Measurement (Cat. No.99CH36331), IEEE, San Diego,
Calif, 249–253, 1999.
Dmitrenko, I. A., Kirillov, S. A., Ivanov, V. V., and Woodgate, R. A.: Mesoscale
Atlantic water eddy off the Laptev Sea continental slope carries the
signature of upstream interaction, J. Geophys. Res., 113, C07005, https://doi.org/10.1029/2007JC004491, 2008.
Dmitrenko, I. A., Wegner, C., Kassens, H., Kirillov, S. A., Krumpen, T.,
Heinemann, G., Helbig, A., Schröder, D., Hölemann, J. A., Klagge, T.,
Tyshko, K. P., and Busche, T.: Observations of supercooling and frazil ice
formation in the Laptev Sea coastal polynya, J. Geophys. Res., 115, C05015,
https://doi.org/10.1029/2009JC005798, 2010.
Dmitrenko, I. A., Kirillov, S. A., Rysgaard, S., Barber, D. G., Babb, D. G.,
Pedersen, L. T., Koldunov, N. V., Boone, W., Crabeck, O., and Mortensen, J.:
Polynya impacts on water properties in a Northeast Greenland Fiord,
Estuar. Coast. Shelf Sci., 153, 10–17, https://doi.org/10.1016/j.ecss.2014.11.027,
2015.
Dmitrenko, I. A., Kirillov, S. A., Forest, A., Gratton, Y., Volkov, D. L.,
Williams, W. J., Lukovich, J. V., Belanger, C., and Barber, D. G.: Shelfbreak
current over the Canadian Beaufort Sea continental slope: Wind-driven events
in January 2005, J. Geophys. Res., 121, 2447–2468, https://doi.org/10.1002/2015JC011514, 2016.
Dmitrenko, I. A., Kirillov, S. A., Myers, P. G., Forest, A., Tremblay, B.,
Lukovich, J. V., Gratton, Y., Rysgaard, S., and Barber, D. G.: Wind-forced
depth-dependent currents over the eastern Beaufort Sea continental slope:
Implications for Pacific water transport, Elem. Sci. Anth., 6, 66, https://doi.org/10.1525/elementa.321, 2018.
Eiane, K., Aksnes, D., and Ohman, M.: Advection and the zooplankton fitness,
SARSIA, 83, 87–93, https://doi.org/10.1080/00364827.1998.10413674, 1998.
Falk-Petersen, S., Leu, E., Berge, J., Kwasniewski, S., Nygårdb, H.,
Røstad, A., Keskinen, E., Thormar, J., Quillfeldt, C., Wold, A., and
Gulliksen, B.: Vertical migration in high Arctic waters during autumn 2004,
Deep-Sea Res. Pt. II, 55, 2275–2284, https://doi.org/10.1016/j.dsr2.2008.05.010, 2008.
Fielding, S., Griffiths, G., and Roe, H. S. J.: The biological validation of
ADCP acoustic backscatter through direct comparison with net samples and
model predictions based on acoustic-scattering models, ICES J. Mar. Sci. J.
Cons., 61, 184–200, https://doi.org/10.1016/j.icesjms.2003.10.011, 2004.
Fortier, M., Fortier, L., Hattori, H., Saito, H., and Legendre, L.: Visual
predators and the diel vertical migration of cope-pods under Arctic sea ice
during the midnight sun, J. Plankton Res., 23, 1263–1278, https://doi.org/10.1093/plankt/23.11.1263, 2001.
Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J., and Davies, T. W.: Human
alteration of natural light cycles: causes and ecological consequences,
Oecologia, 176, 917–931, https://doi.org/10.1007/s00442-014-3088-2, 2014.
Gliwicz, Z. M.: A Lunar Cycle in The Zooplankton, Ecology, 67, 883–897,
https://doi.org/10.2307/1939811, 1986.
Gratton, Y., Ingram, G., Carmack, E., Van Hardengerget, B., Forest, A.,
Fortier, L., Blondeau, S., Massot, P., and Michaud, L.: Long-term oceanic
observatories (moorings) in the Beaufort Sea during the Canadian Arctic
Shelf Exchange Study, 2002–2004, https://doi.org/10.5884/11653, 2020.
Grenfell, C. G. and Maykut, G. A.: The optical properties of ice and snow in
the Arctic Basin, J. Glaciol., 18, 445–463, https://doi.org/10.3189/S0022143000021122, 1977.
Grenvald, J. C., Callesen, T. A., Daase, M., Hobbs, L., Darnis, G., Renaud,
P. E., Cottier, F., Nielsen, T. G., and Berge, J.: Plankton community
composition and vertical migration during polar night in Kongsfjorden, Polar
Biol., 39, 1879–1895, https://doi.org/10.1007/s00300-016-2015-x, 2016.
Hanelt, D., Tüg, H., Bischof, K., Groß, C., Lippert, H., Sawall, T.,
and Wiencke, C.: Light regime in an Arctic fjord: a study related to
stratospheric ozone depletion as a basis for determination of UV effects on
algal growth, Mar. Biol., 138, 649–658, https://doi.org/10.1007/s002270000481,
2001.
Hays, G. C.: A review of the adaptive significance and ecosystem consequences
of the zooplankton diel vertical migrations, Hydrobiologia, 503, 163–170,
https://doi.org/10.1023/B:HYDR.0000008476.23617.b0, 2003.
Hobbs, L., Cottier, F. R., Last, K. S., and Berge, J.: Pan-Arctic diel
vertical migration during the polar night, Mar. Ecol. Prog. Ser., 605, 61–72, https://doi.org/10.3354/meps12753, 2018.
Hunke, E. C.: Viscous-plastic sea ice dynamics with the EVP model:
linearization issues, Comput. Phys., 170, 18–38, https://doi.org/10.1006/jcph.2001.6710, 2001.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Am.
Meteorol. Soc., 77, 437–471, 1996.
Kirillov, S., Dmitrenko, I., Tremblay, B., Gratton, Y., Barber, D., and
Rysgaard, S.: Upwelling of Atlantic Water along the Canadian Beaufort Sea
continental slope: Favorable atmospheric conditions and seasonal and
interannual variations, J. Climate, 29, 4509–4523, https://doi.org/10.1175/JCLI-D-15-0804.1, 2016.
Kosobokova, K. N.: Diurnal vertical distribution of Calanus Hyperboreus
Kroyer and Calanus Glacialis Jaschnov in Central Polar Basin,
Okeanologiya, 18, 722–728, 1978.
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack,
E. C., McLaughlin, F. A., and Timmermans, M.-L.: Deterioration of perennial
sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic
freshwater cycle, J. Geophys. Res.-Ocean., 119, 1271–1305, https://doi.org/10.1002/2013JC008999, 2014.
Kulikov, E. A., Carmack, E. C., and Macdonald, R. W.: Flow variability at the
continental shelf break of the Mackenzie Shelf in the Beaufort Sea, J.
Geophys. Res., 103, 12725–12741, https://doi.org/10.1029/97JC03690, 1998.
Kwok, R., Cunningham, G. F., Zwally, H. J., and Yi, D.: Ice, Cloud, and land
Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard, J.
Geophys. Res., 112, C12013, https://doi.org/10.1029/2006JC003978, 2007.
Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi,
D.: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008,
J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312, 2009.
La, H. S., Ha, H. K., Kang, C. Y., Wåhlin, A. K., and Shin, H. C.: Acoustic
backscatter observations with implications for seasonal and vertical
migrations of the zooplankton and nekton in the Amundsen shelf (Antarctica),
Estuarine, Coast. Shelf Sci., 152, 124–133, https://doi.org/10.1016/j.ecss.2014.11.020, 2015.
La, H. S., Shimada, K., Yang, E. J., Cho, K.-H., Ha, S.-Y., Jung, J., Min,
J.-O., Kang, S.-H., and Ha, H. K.: Further evidence of diel vertical
migration of copepods under Arctic sea ice during summer, Mar. Ecol. Prog.
Ser., 592, 283–289, https://doi.org/10.3354/meps12484, 2018.
Last, K. S., Hobbs, L., Berge, J., Brierley, A. S., and Cottier, F.: Moonlight
drives ocean-scale mass vertical migration of the zooplankton during the
Arctic Winter, Curr. Biol., 26, 244–251, https://doi.org/10.1016/j.cub.2015.11.038,
2016.
Leise, T. L., Indic, P., Paul, M. J., and Schwartz, W. J.: Wavelet meets
actogram, J. Biol. Rhythms, 28, 62–68, https://doi.org/10.1177/0748730412468693,
2013.
Lemon, D. D., Gower, J. F. R., and Clarke, M. R.: The acoustic water column
profiler: a tool for long-term monitoring of zooplankton populations, in:
MTS/IEEE Oceans 2001. An Ocean Odyssey, Conference Proceedings (IEEE Cat.
No.01CH37295), Honolulu, HI, USA, Vol. 3, 1904–1909, https://doi.org/10.1109/OCEANS.2001.968137, 2001.
Lemon, D. D., Billenness, D., and Buermans, J.: Comparison of acoustic
measurements of zooplankton populations using an Acoustic Water Column
Profiler and an ADCP, in: OCEANS 2008, Quebec City, QC, 1–8, https://doi.org/10.1109/OCEANS.2008.5152009, 2008.
Lemon, D. D., Johnston, P., Buermans, J., Loos, E., Borstad, G., and Brown, L.,
Multiple-frequency moored sonar for continuous observations of zooplankton
and fish, in: 2012 Oceans, Hampton Roads, VA, 1–6, https://doi.org/10.1109/OCEANS.2012.6404918, 2012.
Liu, Y. and Key, J. R.: Assessment of Arctic Cloud Cover Anomalies in
Atmospheric Reanalysis Products Using Satellite Data, J. Clim., 29,
6065–6083, https://doi.org/10.1175/JCLI-D-15-0861.1, 2016.
Lorke, A., Mcginnis, D. F., Spaak, P., and Wüest, A.: Acoustic
observations of zooplankton in lakes using a Doppler current profiler,
Freshw. Biol., 49, 1280–1292, https://doi.org/10.1111/j.1365-2427.2004.01267.x, 2004.
Madsen, K. S., Rasmussen, T. A. S., Ribergaard, M. H., and Ringgaard, I. M.: High
resolution sea ice modelling and validation of the Arctic with focus on
south Greenland waters, 2004–2013, Polarforschung, 85, 101–105, https://doi.org/10.2312/polfor.2016.006, 2015.
Marcus, N. H. and Scheef, L. P.: Photoperiodism in Copepods, in:
Photoperiodism: The Biological Calendar, edited by: Nelson, R. J., Denlinger,
D. L., and Sommers, D. E., Oxford University Press, Oxford, UK, 193–217, 2009.
Markus, T. and Cavalieri, D.: Snow Depth Distribution over Sea Ice in the
Southern Ocean from Satellite Passive Microwave Data, in: Antarctic Sea Ice:
Physical Processes, Interactions, and Variability, Washington, DC, American Geophysical Union, Antarct. Res.
Ser., 74, 19–39, 1998.
Melling, H., Riedel, D. A., and Gedalof, Z.: Trends in the draft and extent
of seasonal pack ice, Canadian Beaufort Sea, Geophys. Res. Lett., 32,
L24501, https://doi.org/10.1029/2005GL024483, 2005.
O'Brien, M. C., Melling, H., Pedersen, T. F., and Macdonald, R. W.: The role of
eddies and energetic ocean phenomena in the transport of sediment from shelf
to basin in the Arctic, J. Geophys. Res., 116, C08001, https://doi.org/10.1029/2010JC006890, 2011.
Ott, M. J.: The accuracy of acoustic vertical velocity measurements:
instrument biases and the effect of Zooplankton migration, Cont. Shelf
Res., 25, 243–257, https://doi.org/10.1016/j.csr.2004.09.007, 2005.
Perovich, D. K.: The optical properties of sea ice, CRREL Monogr., Vol. 96-1, Cold Reg. Res. and Eng. Lab., Hanover, N. H., 25 pp., 1996.
Petrusevich, V., Dmitrenko, I. A., Kirillov, S. A., Rysgaard, S.,
Falk-Petersen, S., Barber, D. G., Boone, W., and Ehn, J. K.: Wintertime water
dynamics and moonlight disruption of the acoustic backscatter diurnal signal
in an ice-covered Northeast Greenland fjord, J. Geophys. Res.-Ocean., 121,
4804–4818, https://doi.org/10.1002/2016JC011703, 2016.
Petrusevich, V. Y., Dmitrenko, I. A., Niemi, A., Kirillov, S. A., Kamula, C. M.,
Kuzyk, Z. Z. A., Barber, D. G., and Ehn, J. K.: Impact of tidal dynamics on diel
vertical migration of zooplankton in Hudson Bay, Ocean Sci., 16,
337–353, https://doi.org/10.5194/os-16-337-2020, 2020.
Pickart, R. S.: Shelfbreak circulation in the Alaskan Beaufort Sea: Mean
structure and variability, J. Geophys. Res., 109, C04024, https://doi.org/10.1029/2003JC001912, 2004.
Pickart, R. S., Weingartner, T. J., Pratt, L. J., Zimmermann, S., and Torres,
D. J.: Flow of winter-transformed Pacific water into the western Arctic, Deep-Sea Res. Pt. II, 52, 3175–3198, https://doi.org/10.1016/j.dsr2.2005.10.009, 2005.
Pnyushkov, A., Polyakov, I. V., Padman, L., and Nguyen, A. T.: Structure and
dynamics of mesoscale eddies over the Laptev Sea continental slope in the
Arctic Ocean, Ocean Sci., 14, 1329–1347, https://doi.org/10.5194/os-14-1329-2018, 2018.
Poulin, E., Palma, A. T., Leiva, G., Narvaez, D., Pacheco, R., Navarrete,
S. A., and Castilla, J. C.: Avoiding offshore transport of competent larvae
during upwelling events: The case of the gastropod Concholepas concholepas
in Central Chile, Limnol. Oceanogr., 47, 1248–1255, https://doi.org/10.4319/lo.2002.47.4.1248, 2002a.
Poulin, E., Palma, A. T., Leiva, G., Hernández, E., Martínez, P.,
Navarrete, S. A., and Castilla, J. C.: Temporal and spatial variation in the
distribution ofepineustonic competent larvae of Concholepas concholepas along the central coast of
Chile, Mar. Ecol. Prog. Ser., 229, 95–104, 2002b.
Queiroga, H., Cruz, T., dos Santos, A., Dubert, J., Gonzalez-Gordillo, J. I.,
Paula, J., Peliz, A., and Santos, A. M. P.: Oceanographic and behavioural
processes affectinginvertebrate larval dispersal and supply in the
westernIberia upwelling ecosystem, Prog. Oceanogr., 74, 174–19,
https://doi.org/10.1016/j.pocean.2007.04.007, 2007.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., and Stern, H.: Uncertainty in
modeled arctic sea ice volume, J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084,
2011.
Shanks, A. L. and Brink, L.: Upwelling, downwelling, and cross-shelf
transportof bivalve larvae: test of a hypothesis, Mar. Ecol. Prog. Ser.,
302, 1–12, https://doi.org/10.3354/meps302001, 2005.
Spall, M., Pickart, R., Fratantoni, P., and Plueddemann, A.: Western Arctic
shelfbreak eddies: Formation and transport, J. Phys. Oceanogr., 38,
1644–1668, https://doi.org/10.1175/2007JPO3829.1, 2008.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89 GHz channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Stanton, T. K., Wiebe, P. H., Chu, D., Benfield, M. C., Scanlon, L., Martin,
L., and Eastwood, R. L.: On acoustic estimates of zooplankton biomass, ICES
J. Mar. Sci., 51, 505–512, https://doi.org/10.1006/jmsc.1994.1051, 1994.
Sun, H., Hendry, D. C., Player, M. A., and Watson, J.: In Situ Underwater
Electronic Holographic Camera for Studies of Plankton, IEEE J.
Ocean. Eng., 32, 373–382, https://doi.org/10.1109/JOE.2007.891891, 2007.
Tran, D., Sow, M., Camus, L., Ciret, P., Berge, J., and Massabuau, J.-C.: In
the darkness of the polar night, scallops keep on a steady rhythm, Sci.
Reports, 6, 32435, https://doi.org/10.1038/srep32435, 2016.
van Haren, H. and Compton, T. J.: Diel Vertical Migration in Deep Sea
Plankton Is Finely Tuned to Latitudinal and Seasonal Day Length, PLoS One,
8, e64435, https://doi.org/10.1371/journal.pone.0064435, 2013.
Vestheim, H., Røstad, A., Klevjer, T. A., Solberg, I., and Kaartvedt, S.:
Vertical distribution and diel vertical migration of krill beneath
snow-covered ice and in ice-free waters, J. Plankton Res., 36, 503–512,
https://doi.org/10.1093/plankt/fbt112, 2014.
Wallace, M. I., Cottier, F. R., Berge, J., Tarling, G. A., Griffiths, C., and
Brierley, A. S.: Comparison of the zooplankton vertical migration in an
ice-free and a seasonally ice-covered Arctic fjord: An insight into the
influence of sea ice cover on the zooplankton behavior, Limnol. Oceanogr.,
55, 831–845, https://doi.org/10.4319/lo.2010.55.2.0831, 2010.
Wang, H., Chen, H., Xue, L., Liu, N., and Liu, Y.: The zooplankton diel
vertical migration and influence of upwelling on the biomass in the Chukchi
Sea during summer, Acta Oceanol. Sin., 34, 68–74, https://doi.org/10.1007/s13131-015-0668-x, 2015.
Wang, X., Key, J., Kwok, R., and Zhang, J.: Comparison of Arctic Sea Ice
Thickness from Satellites, Aircraft, and PIOMAS Data, Remote Sens., 8, 713,
https://doi.org/10.3390/rs8090713, 2016.
Webster, C., Varpe, Ø., Falk-Petersen, S., Berge, J., Stübner, E.,
and Brierley, A.: Moonlit swimming: Vertical distributions of macrothe
zooplankton and nekton during the polar night, Polar Biol., 38, 75–85,
https://doi.org/10.1007/s00300-013-1422-5, 2015.
Weingartner, T., Cavalieri, D., Aagaard, K., and Sasaki, Y.: Circulation,
dense water formation, and outflow on the northeast Chukchi shelf, J.
Geophys. Res., 103, 7647–7661, https://doi.org/10.1029/98JC00374, 1998.
Williams, W. J., Carmack, E. C., Shimada, K., Melling, H., Aagaard, K.,
Macdonald, R. W., and Ingram, R. G.: Joint effects of wind and ice motion in
forcing upwelling in Mackenzie Trough, Beaufort Sea, Cont. Shelf Res., 26,
2352–2366, https://doi.org/10.1016/j.csr.2006.06.012, 2006.
Wood, T. M. and Gartner, J. W.: Use of Acoustic Backscatter and Vertical
Velocity to Estimate Concentration and Dynamics of Suspended Solids in Upper
Klamath Lake, South-Central Oregon: Implications for Aphanizomenon
flos-aquae, Scientific Investigations Report 2010–5203, US Geological
Survey, Reston, Virginia, 20 pp., 2010.
Woodgate, R. A., Aagaard, K., and Weingartner, T. J.: Monthly temperature,
salinity, and transport variability of the Bering Strait through flow,
Geophys. Res. Lett., 32, L04601, https://doi.org/10.1029/2004GL021880, 2005.
Yi, D. and Zwally, H. J.: Arctic Sea Ice Freeboard and Thickness, Version 1.
Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed
Active Archive Center, https://doi.org/10.5067/SXJVJ3A2XIZT 2009, 2014.
Zhang, J. L. and Rothrock, D. A.: Modeling global sea ice with a thickness and
enthalpy distribution model in generalized curvilinear coordinates, Mon.
Weather Rev., 131, 845–861, 2003.
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM...