Articles | Volume 16, issue 5
https://doi.org/10.5194/os-16-1125-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1125-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of a medicane on the oceanic surface layer from a coupled, kilometre-scale simulation
Marie-Noëlle Bouin
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29840 Brest, France
Cindy Lebeaupin Brossier
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Related authors
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024, https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary
Short summary
In numerical models, the turbulent exchanges of heat and momentum at the air–sea interface are not represented explicitly but with parameterisations depending on the surface parameters. A new parameterisation of turbulent fluxes (WASP) has been implemented in the surface model SURFEX v8.1 and validated on four case studies. It combines a close fit to observations including cyclonic winds, a dependency on the wave growth rate, and the possibility of being used in atmosphere–wave coupled models.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
César Sauvage, Cindy Lebeaupin Brossier, and Marie-Noëlle Bouin
Atmos. Chem. Phys., 21, 11857–11887, https://doi.org/10.5194/acp-21-11857-2021, https://doi.org/10.5194/acp-21-11857-2021, 2021
Short summary
Short summary
Air–sea processes are key elements during Mediterranean heavy precipitation events. We aim to progress in their representation in high-resolution weather forecast. Using coupled ocean–air–wave simulations, we investigated air–sea mechanisms modulated by ocean and waves during a case that occurred in southern France. Results showed significant impact of the forecast on low-level dynamics and air–sea fluxes and illustrated potential benefits of coupled numerical weather prediction systems.
Marie-Noëlle Bouin and Cindy Lebeaupin Brossier
Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020, https://doi.org/10.5194/acp-20-6861-2020, 2020
Short summary
Short summary
A coupled, kilometre-scale simulation of a medicane is used to assess the impact of the ocean feedback and role of surface fluxes. Sea surface temperature (SST) drop is much weaker than for tropical cyclones, resulting in no impact on the cyclone. Surface fluxes depend mainly on wind and SST for evaporation and on air temperature for sensible heat. Processes in the Mediterranean, like advection of continental air, rain evaporation and dry air intrusion, play a role in cyclone development.
César Sauvage, Cindy Lebeaupin Brossier, Marie-Noëlle Bouin, and Véronique Ducrocq
Atmos. Chem. Phys., 20, 1675–1699, https://doi.org/10.5194/acp-20-1675-2020, https://doi.org/10.5194/acp-20-1675-2020, 2020
Short summary
Short summary
Air–sea exchanges during Mediterranean heavy precipitation events are key and their representation must be improved for high-resolution weather forecasts. This study investigates the mechanisms acting at the air–sea interface during a case that occurred in southern France. To focus on the impact of sea state, we developed and used an original coupled air–wave model. Results show modifications of the forecast for the air–sea fluxes, the near-surface wind and the location of precipitation.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024, https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary
Short summary
In numerical models, the turbulent exchanges of heat and momentum at the air–sea interface are not represented explicitly but with parameterisations depending on the surface parameters. A new parameterisation of turbulent fluxes (WASP) has been implemented in the surface model SURFEX v8.1 and validated on four case studies. It combines a close fit to observations including cyclonic winds, a dependency on the wave growth rate, and the possibility of being used in atmosphere–wave coupled models.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
César Sauvage, Cindy Lebeaupin Brossier, and Marie-Noëlle Bouin
Atmos. Chem. Phys., 21, 11857–11887, https://doi.org/10.5194/acp-21-11857-2021, https://doi.org/10.5194/acp-21-11857-2021, 2021
Short summary
Short summary
Air–sea processes are key elements during Mediterranean heavy precipitation events. We aim to progress in their representation in high-resolution weather forecast. Using coupled ocean–air–wave simulations, we investigated air–sea mechanisms modulated by ocean and waves during a case that occurred in southern France. Results showed significant impact of the forecast on low-level dynamics and air–sea fluxes and illustrated potential benefits of coupled numerical weather prediction systems.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Marie-Noëlle Bouin and Cindy Lebeaupin Brossier
Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020, https://doi.org/10.5194/acp-20-6861-2020, 2020
Short summary
Short summary
A coupled, kilometre-scale simulation of a medicane is used to assess the impact of the ocean feedback and role of surface fluxes. Sea surface temperature (SST) drop is much weaker than for tropical cyclones, resulting in no impact on the cyclone. Surface fluxes depend mainly on wind and SST for evaporation and on air temperature for sensible heat. Processes in the Mediterranean, like advection of continental air, rain evaporation and dry air intrusion, play a role in cyclone development.
César Sauvage, Cindy Lebeaupin Brossier, Marie-Noëlle Bouin, and Véronique Ducrocq
Atmos. Chem. Phys., 20, 1675–1699, https://doi.org/10.5194/acp-20-1675-2020, https://doi.org/10.5194/acp-20-1675-2020, 2020
Short summary
Short summary
Air–sea exchanges during Mediterranean heavy precipitation events are key and their representation must be improved for high-resolution weather forecasts. This study investigates the mechanisms acting at the air–sea interface during a case that occurred in southern France. To focus on the impact of sea state, we developed and used an original coupled air–wave model. Results show modifications of the forecast for the air–sea fluxes, the near-surface wind and the location of precipitation.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Cited articles
Arsouze, T., Beuvier, J., Béranger, K., Somot, S., Brossier, C. L.,
Bourdallé-Badie, R., and Drillet, Y.: Sensibility analysis of the Western
Mediterranean Transition inferred by four companion simulations, CIESM,
Marseille, France, Vol. 27, 2013. a
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M.,
Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., et al.:
Impact of partial steps and momentum advection schemes in a global ocean
circulation model at eddy-permitting resolution, Ocean Dynam., 56,
543–567, 2006. a, b
Béjaoui, B., Ben Ismail, S., Othmani, A., Ben Abdallah-Ben Hadj Hamida, O.,
Chevalier, C., Feki-Sahnoun, W., Harzallah, A., Ben Hadj Hamida, N., Bouaziz,
R., Dahech, S., Diaz, F.,
Tounsi, K., Sammari, C., Pagano, M., and Bel Hassen, M.: Synthesis review of the Gulf of Gabes (eastern
Mediterranean Sea, Tunisia): Morphological, climatic, physical oceanographic,
biogeochemical and fisheries features, Estuar. Coast. Shelf S.,
219, 395–408, 2019. a
Belamari, S.: Report on uncertainty estimates of an optimal bulk formulation
for surface turbulent fluxes, Marine EnviRonment and Security for the
European Area–Integrated Project (MERSEA IP), Deliverable D, Vol. 4, 2005. a
Belamari, S. and Pirani, A.: Validation of the optimal heat and momentum fluxes
using the ORCA2-LIM global ocean-ice model, Marine EnviRonment and Security
for the European Area–Integrated Project (MERSEA IP), Deliverable D, Vol. 4,
2007. a
Bender, M. A., Ginis, I., and Kurihara, Y.: Numerical simulations of tropical
cyclone-ocean interaction with a high-resolution coupled model, J.
Geophys. Res.-Atmos., 98, 23245–23263, 1993. a
Ben Ismail, S.,
Chevalier, C., Atoui, A., Devenon, J. L., Sammari, C., and Pagano, M.: Water Masses
Exchanges Within Boughrara Lagoon-Gulf of Gabes System (Southeastern Tunisia), in:
Recent Advances in Environmental
Science from the Euro-Mediterranean and Surrounding Regions, edited by: Kallel, A., Ksibi, M., Ben Dhia, H., Khélifi, N., EMCEI 2017. Advances
in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable
Development), Springer, Cham, https://doi.org/10.1007/978-3-319-70548-4_461, 2017. a
Beuvier, J., Béranger, K., Lebeaupin Brossier, C., Somot, S., Sevault, F.,
Drillet, Y., Bourdallé-Badie, R., Ferry, N., and Lyard, F.: Spreading of
the Western Mediterranean Deep Water after winter 2005: Time scales and deep
cyclone transport, J. Geophys. Res.-Oceans, 117, C07022, https://doi.org/10.1029/2011JC007679, 2012. a
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic Ocean
simulated by a general circulation model with two different mixed-layer
physics, J. Phys. Oceanogr., 23, 1363–1388, 1993. a
Carrió, D., Homar, V., Jansa, A., Romero, R., and Picornell, M.:
Tropicalization process of the 7 November 2014 Mediterranean cyclone:
Numerical sensitivity study, Atmos. Res., 197, 300–312, 2017. a
Chen, S., Campbell, T. J., Jin, H., Gaberšek, S., Hodur, R. M., and
Martin, P.: Effect of two-way air–sea coupling in high and low wind speed
regimes, Mon. Weather Rev., 138, 3579–3602, 2010. a
Chiang, T.-L., Wu, C.-R., and Oey, L.-Y.: Typhoon Kai-Tak: An ocean's perfect
storm, J. Phys. Oceanogr., 41, 221–233, 2011. a
Ciappa, A. C.: Surface circulation patterns in the Sicily Channel and Ionian
Sea as revealed by MODIS chlorophyll images from 2003 to 2007, Cont.
Shelf Res., 29, 2099–2109, 2009. a
Cione, J. J., Black, P. G., and Houston, S. H.: Surface observations in the
hurricane environment, Mon. Weather Rev., 128, 1550–1561, 2000. a
Copernicus: Marine Environment Monitoring Service portal, available at: http://marine.copernicus.eu, last access: 18 September 2020. a
D'Asaro, E. A., Sanford, T. B., Niiler, P. P., and Terrill, E. J.: Cold wake of
hurricane Frances, Geophys. Res. Lett., 34, L15609,
https://doi.org/10.1029/2007GL030160, 2007. a
d'Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D.,
Marullo, S., Santoleri, R., and Madec, G.: Seasonal variability of the mixed
layer depth in the Mediterranean Sea as derived from in situ profiles,
Geophys. Res. Lett., 32, L12605,
https://doi.org/10.1029/2005GL022463, 2005. a, b
Drago, A., Sorgente, R., and Olita, A.: Sea temperature, salinity and total
velocity climatological fields for the south-central Mediterranean Sea,
Gcp/Rer/010/Ita/Msm-Td-14,
MedSudMed Technical Documents, 35 pp., 2010. a
Estournel, C., Testor, P., Damien, P., d'Ortenzio, F., Marsaleix, P., Conan,
P., Kessouri, F., Durrieu de Madron, X., Coppola, L., Lellouche, J.-M.,
Belamari, S., Mortier, L.,
Ulses, C., Bouin, M.-N., and Prieur, L.: High resolution modeling of dense water formation in the
north-western Mediterranean during winter 2012–2013: Processes and budget,
J. Geophys. Res.-Oceans, 121, 5367–5392, 2016. a
French research community (Laboratoire d'Aérologie and CNRM): Meso NH-5.4, available at: http://mesonh.aero.obs-mip.fr/mesonh54, last access: 18 September 2020. a
Giordani, H., Caniaux, G., and Voldoire, A.: Intraseasonal mixed-layer heat
budget in the equatorial Atlantic during the cold tongue development in 2006,
J. Geophys. Res.-Oceans, 118, 650–671, 2013. a
Godfrey, J. and Lindstrom, E.: The heat budget of the equatorial western
Pacific surface mixed layer, J. Geophys. Res.-Oceans, 94,
8007–8017, 1989. a
Greatbatch, R. J.: On the response of the ocean to a moving storm: The
nonlinear dynamics, J. Phys. Oceanogr., 13, 357–367, 1983. a
Hamad, N., Millot, C., and Taupier-Letage, I.: The surface circulation in the
eastern basin of the Mediterranean Sea, Sci. Mar., 70, 457–503, 2006. a
Houpert, L., Durrieu de Madron, X., Testor, P., Bosse, A., d'Ortenzio, F.,
Bouin, M.-N., Dausse, D., Le Goff, H., Kunesch, S., Labaste, M.,
Coppola, L., Mortier, L., and Raimbault, P.:
Observations of open-ocean deep convection in the northwestern M editerranean
Sea: Seasonal and interannual variability of mixing and deep water masses
for the 2007–2013 Period, J. Geophys. Res.-Oceans, 121,
8139–8171, 2016. a
Huang, P., Sanford, T. B., and Imberger, J.: Heat and turbulent kinetic energy
budgets for surface layer cooling induced by the passage of Hurricane Frances
(2004), J. Geophys. Res.-Oceans, 114, C12023,
https://doi.org/10.1029/2009JC005603, 2009. a, b
Jourdain, N. C., Lengaigne, M., Vialard, J., Madec, G., Menkes, C. E., Vincent,
E. M., Jullien, S., and Barnier, B.: Observation-based estimates of surface
cooling inhibition by heavy rainfall under tropical cyclones, J.
Phys. Oceanogr., 43, 205–221, 2013. a
Kobashi, F., Doi, H., and Iwasaka, N.: Sea surface cooling induced by
extratropical cyclones in the subtropical North Pacific: Mechanism and
interannual variability, J. Geophys. Res.-Oceans, 124,
2179–2195, 2019. a
Kowaleski, A. M. and Evans, J. L.: Thermodynamic observations and flux
calculations of the tropical cyclone surface layer within the context of
potential intensity, Weather Forecast., 30, 1303–1320, 2015. a
Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P., Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier, G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois, Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E., Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour, M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vionnet, V., and Wautelet, P.: Overview of the Meso-NH model version 5.4 and its applications, Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, 2018. a
Lazar, A., Madec, G., and Delecluse, P.: The deep interior downwelling, the
Veronis effect, and mesoscale tracer transport parameterizations in an OGCM,
J. Phys. Oceanogr., 29, 2945–2961, 1999. a
Lebeaupin Brossier, C., Drobinski, P., Béranger, K., Bastin, S., and Orain,
F.: Ocean memory effect on the dynamics of coastal heavy precipitation
preceded by a mistral event in the northwestern Mediterranean, Q.
J. Roy. Meteor. Soc., 139, 1583–1597, 2013. a
Lebeaupin Brossier, C., Arsouze, T., Béranger, K., Bouin, M.-N., Bresson,
E., Ducrocq, V., Giordani, H., Nuret, M., Rainaud, R., and Taupier-Letage,
I.: Ocean Mixed Layer responses to intense meteorological events during
HyMeX-SOP1 from a high-resolution ocean simulation, Ocean Model., 84,
84–103, 2014. a, b
Leipper, D. F.: Observed ocean conditions and Hurricane Hilda, 1964, J. Atmos. Sci., 24, 182–186, 1967. a
Leipper, D. F. and Volgenau, D.: Hurricane heat potential of the Gulf of
Mexico, J. Phys. Oceanogr., 2, 218–224, 1972. a
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A., and De Nicola, C.: Evaluation of global monitoring and forecasting systems at Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013. a
Lin, I., Wu, C.-C., Emanuel, K. A., Lee, I.-H., Wu, C.-R., and Pun, I.-F.: The
interaction of Supertyphoon Maemi (2003) with a warm ocean eddy, Mon.
Weather Rev., 133, 2635–2649, 2005. a
Lin, I., Wu, C.-C., Pun, I.-F., and Ko, D.-S.: Upper-ocean thermal structure
and the western North Pacific category 5 typhoons. Part I: Ocean features and
the category 5 typhoons' intensification, Mon. Weather Rev., 136,
3288–3306, 2008. a
Lloyd, I. D. and Vecchi, G. A.: Observational evidence for oceanic controls on
hurricane intensity, J. Climate, 24, 1138–1153, 2011. a
Lonfat, M., Marks Jr., F. D., and Chen, S. S.: Precipitation distribution in
tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM)
microwave imager: A global perspective, Mon. Weather Rev., 132,
1645–1660, 2004. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
2006. a
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole
singularity, Clim. Dynam., 12, 381–388, 1996. a
Madec, G. and the NEMO team: NEMO ocean engine, Note
du Pôle de modélisation de l'Institut Pierre-Simon Laplace No. 27, ISSN No 1288-1619, 2015. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a
Mei, W. and Pasquero, C.: Spatial and temporal characterization of sea surface
temperature response to tropical cyclones, J. Climate, 26,
3745–3765, 2013. a
Miglietta, M., Laviola, S., Malvaldi, A., Conte, D., Levizzani, V., and Price,
C.: Analysis of tropical-like cyclones over the Mediterranean Sea through a
combined modeling and satellite approach, Geophys. Res. Lett., 40,
2400–2405, 2013. a
Morcrette, J.-J.: Radiation and cloud radiative properties in the ECMWF
operational weather forecast model, J. Geophys. Res., 96,
9121–9132, 1991. a
NEMO Consortium: NEMO, available at: https://www.nemo-ocean.eu/, last access: 18 September 2020. a
Omrani, H., Arsouze, T., Béranger, K., Boukthir, M., Drobinski, P.,
Lebeaupin-Brossier, C., and Mairech, H.: Sensitivity of the sea circulation
to the atmospheric forcing in the Sicily Channel, Prog. Oceanogr.,
140, 54–68, 2016. a
Piolle, J.-F., Autret, E., Arino, O., Robinson, I. S., and Le Borgne, P.:
Medspiration:
toward the sustained delivery of satellite SST products and services over regional seas,
ESASP, 686, p. 361, 2010. a
Poulain, P.-M. and Zambianchi, E.: Surface circulation in the central
Mediterranean Sea as deduced from Lagrangian drifters in the 1990s,
Cont. Shelf Res., 27, 981–1001, 2007. a
Pytharoulis, I.: Analysis of a Mediterranean tropical-like cyclone and its
sensitivity to the sea surface temperatures, Atmos. Res., 208,
167–179, 2018. a
Rainaud, R., Lebeaupin Brossier, C., Ducrocq, V., and Giordani, H.:
High-resolution air–sea coupling impact on two heavy precipitation events in
the Western Mediterranean, Q. J. Roy. Meteor.
Soc., 143, 2448–2462, 2017. a
Ren, X., Perrie, W., Long, Z., and Gyakum, J.: Atmosphere–ocean coupled
dynamics of cyclones in the midlatitudes, Mon. Weather Rev., 132,
2432–2451, 2004. a
Renault, L., Chiggiato, J., Warner, J. C., Gomez, M., Vizoso, G., and
Tintoré, J.: Coupled atmosphere-ocean-wave simulations of a storm event
over the Gulf of Lion and Balearic Sea, J. Geophys. Res.-Oceans, 117, C09019,
https://doi.org/10.1029/2012JC007924, 2012. a, b, c
Roullet, G. and Madec, G.: Salt conservation, free surface, and varying levels:
a new formulation for ocean general circulation models, J.
Geophys. Res.-Oceans, 105, 23927–23942, 2000. a
Sanford, T. B., Black, P. G., Haustein, J. R., Feeney, J. W., Forristall,
G. Z., and Price, J. F.: Ocean response to a hurricane. Part I: Observations,
J. Phys. Oceanogr., 17, 2065–2083, 1987. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,
F., Lac, C., and Masson, V.: The AROME-France convective-scale operational
model, Mon. Weather Rev., 139, 976–991, 2011. a
Shay, L. K.: Air-sea interactions in tropical cyclones, in: Global Perspectives
on Tropical Cyclones: From Science to Mitigation, 93–131, World
Scientific, 93–131, 2010. a
Sorgente, R., Olita, A., Oddo, P., Fazioli, L., and Ribotti, A.: Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion, Ocean Sci., 7, 503–519, https://doi.org/10.5194/os-7-503-2011, 2011. a
Vialard, J. and Delecluse, P.: An OGCM study for the TOGA decade. Part I: Role
of salinity in the physics of the western Pacific fresh pool, J.
Phys. Oceanogr., 28, 1071–1088, 1998. a
Vincent, E. M., Lengaigne, M., Madec, G., Vialard, J., Samson, G., Jourdain,
N. C., Menkes, C. E., and Jullien, S.: Processes setting the characteristics
of sea surface cooling induced by tropical cyclones, J. Geophys.
Res.-Oceans, 117, C02020,
https://doi.org/10.1029/2011JC007396, 2012a. a, b, c, d, e, f, g, h
Vincent, E. M., Lengaigne, M., Vialard, J., Madec, G., Jourdain, N. C., and
Masson, S.: Assessing the oceanic control on the amplitude of sea surface
cooling induced by tropical cyclones, J. Geophys. Res.-Oceans, 117, C05023,
https://doi.org/10.1029/2011JC007705, 2012b. a
Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F., Seyfried, L., Garnier, V., Bielli, S., Valcke, S., Alias, A., Accensi, M., Ardhuin, F., Bouin, M.-N., Ducrocq, V., Faroux, S., Giordani, H., Léger, F., Marsaleix, P., Rainaud, R., Redelsperger, J.-L., Richard, E., and Riette, S.: SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales, Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, 2017. a
Wroe, D. R. and Barnes, G. M.: Inflow layer energetics of Hurricane Bonnie
(1998) near landfall, Mon. Weather Rev., 131, 1600–1612, 2003. a
Yao, Y., Perrie, W., Zhang, W., and Jiang, J.: Characteristics of
atmosphere-ocean interactions along North Atlantic extratropical storm
tracks, J. Geophys. Res.-Atmos., 113, D14124,
https://doi.org/10.1029/2007JD008854, 2008. a
Zhang, J. A., Black, P. G., French, J. R., and Drennan, W. M.: First direct
measurements of enthalpy flux in the hurricane boundary layer: The CBLAST
results, Geophys. Res. Lett., 35, L14813,
https://doi.org/10.1029/2008GL034374, 2008. a
Short summary
A kilometre-scale coupled ocean–atmosphere simulation is used to study the impact of a medicane on the oceanic upper layer. The processes responsible for the surface cooling are comparable to those of weak tropical cyclones. The oceanic response is influenced by the dynamics of the central Mediterranean. In particular, a cyclonic eddy leads to weaker cooling. Heavy rain occuring early in the event creates a salinity barrier layer, reinforcing the effects of the surface fluxes on the cooling.
A kilometre-scale coupled ocean–atmosphere simulation is used to study the impact of a...