Articles | Volume 15, issue 4
https://doi.org/10.5194/os-15-905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bathymetric properties of the Baltic Sea
Martin Jakobsson
CORRESPONDING AUTHOR
Department of Geological Sciences, Stockholm University, Stockholm, 10691, Sweden
Christian Stranne
Department of Geological Sciences, Stockholm University, Stockholm, 10691, Sweden
Matt O'Regan
Department of Geological Sciences, Stockholm University, Stockholm, 10691, Sweden
Sarah L. Greenwood
Department of Geological Sciences, Stockholm University, Stockholm, 10691, Sweden
Bo Gustafsson
The Baltic Sea Centre, Stockholm University, Stockholm, 10691, Sweden
Christoph Humborg
The Baltic Sea Centre, Stockholm University, Stockholm, 10691, Sweden
Elizabeth Weidner
Department of Geological Sciences, Stockholm University, Stockholm, 10691, Sweden
Department of Earth Science, University of New Hampshire, 56 College Road, Durham, NH, USA
Related authors
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini
Geosci. Instrum. Method. Data Syst., 9, 375–384, https://doi.org/10.5194/gi-9-375-2020, https://doi.org/10.5194/gi-9-375-2020, 2020
Short summary
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.
Francesco Muschitiello, Matt O'Regan, Jannik Martens, Gabriel West, Örjan Gustafsson, and Martin Jakobsson
Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, https://doi.org/10.5194/gchron-2-81-2020, 2020
Short summary
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Kelly A. Hogan, Martin Jakobsson, Larry Mayer, Brendan T. Reilly, Anne E. Jennings, Joseph S. Stoner, Tove Nielsen, Katrine J. Andresen, Egon Nørmark, Katrien A. Heirman, Elina Kamla, Kevin Jerram, Christian Stranne, and Alan Mix
The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, https://doi.org/10.5194/tc-14-261-2020, 2020
Short summary
Short summary
Glacial sediments in fjords hold a key record of environmental and ice dynamic changes during ice retreat. Here we use a comprehensive geophysical survey from the Petermann Fjord system in NW Greenland to map these sediments, identify depositional processes and calculate glacial erosion rates for the retreating palaeo-Petermann ice stream. Ice streaming is the dominant control on glacial erosion rates which vary by an order of magnitude during deglaciation and are in line with modern rates.
Martin Jakobsson, Matt O'Regan, Carl-Magnus Mörth, Christian Stranne, Elizabeth Weidner, Jim Hansson, Richard Gyllencreutz, Christoph Humborg, Tina Elfwing, Alf Norkko, Joanna Norkko, Björn Nilsson, and Arne Sjöström
Earth Surf. Dynam., 8, 1–15, https://doi.org/10.5194/esurf-8-1-2020, https://doi.org/10.5194/esurf-8-1-2020, 2020
Short summary
Short summary
We studied coastal sea floor terraces in parts of the Baltic Sea using various types of sonar data, sediment cores, and video. Terraces (~1 m high, > 100 m long) are widespread in depths < 15 m and are formed in glacial clay. Our study supports an origin from groundwater flow through silty layers, undermining overlying layers when discharged at the sea floor. Submarine groundwater discharge like this may be a significant source of freshwater to the Baltic Sea that needs to be studied further.
Christian Stranne, Matt O'Regan, Martin Jakobsson, Volker Brüchert, and Marcelo Ketzer
Solid Earth, 10, 1541–1554, https://doi.org/10.5194/se-10-1541-2019, https://doi.org/10.5194/se-10-1541-2019, 2019
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018, https://doi.org/10.5194/os-14-503-2018, 2018
Short summary
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Eva Ehrnsten, Oleg Pavlovitch Savchuk, and Bo Gustav Gustafsson
Biogeosciences, 19, 3337–3367, https://doi.org/10.5194/bg-19-3337-2022, https://doi.org/10.5194/bg-19-3337-2022, 2022
Short summary
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini
Geosci. Instrum. Method. Data Syst., 9, 375–384, https://doi.org/10.5194/gi-9-375-2020, https://doi.org/10.5194/gi-9-375-2020, 2020
Short summary
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.
Niels A. G. M. van Helmond, Elizabeth K. Robertson, Daniel J. Conley, Martijn Hermans, Christoph Humborg, L. Joëlle Kubeneck, Wytze K. Lenstra, and Caroline P. Slomp
Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020, https://doi.org/10.5194/bg-17-2745-2020, 2020
Short summary
Short summary
We studied the removal of phosphorus (P) and nitrogen (N) in the eutrophic Stockholm archipelago (SA). High sedimentation rates and sediment P contents lead to high P burial. Benthic denitrification is the primary nitrate-reducing pathway. Together, these mechanisms limit P and N transport to the open Baltic Sea. We expect that further nutrient load reduction will contribute to recovery of the SA from low-oxygen conditions and that the sediments will continue to remove part of the P and N loads.
Francesco Muschitiello, Matt O'Regan, Jannik Martens, Gabriel West, Örjan Gustafsson, and Martin Jakobsson
Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, https://doi.org/10.5194/gchron-2-81-2020, 2020
Short summary
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Kelly A. Hogan, Martin Jakobsson, Larry Mayer, Brendan T. Reilly, Anne E. Jennings, Joseph S. Stoner, Tove Nielsen, Katrine J. Andresen, Egon Nørmark, Katrien A. Heirman, Elina Kamla, Kevin Jerram, Christian Stranne, and Alan Mix
The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, https://doi.org/10.5194/tc-14-261-2020, 2020
Short summary
Short summary
Glacial sediments in fjords hold a key record of environmental and ice dynamic changes during ice retreat. Here we use a comprehensive geophysical survey from the Petermann Fjord system in NW Greenland to map these sediments, identify depositional processes and calculate glacial erosion rates for the retreating palaeo-Petermann ice stream. Ice streaming is the dominant control on glacial erosion rates which vary by an order of magnitude during deglaciation and are in line with modern rates.
Martin Jakobsson, Matt O'Regan, Carl-Magnus Mörth, Christian Stranne, Elizabeth Weidner, Jim Hansson, Richard Gyllencreutz, Christoph Humborg, Tina Elfwing, Alf Norkko, Joanna Norkko, Björn Nilsson, and Arne Sjöström
Earth Surf. Dynam., 8, 1–15, https://doi.org/10.5194/esurf-8-1-2020, https://doi.org/10.5194/esurf-8-1-2020, 2020
Short summary
Short summary
We studied coastal sea floor terraces in parts of the Baltic Sea using various types of sonar data, sediment cores, and video. Terraces (~1 m high, > 100 m long) are widespread in depths < 15 m and are formed in glacial clay. Our study supports an origin from groundwater flow through silty layers, undermining overlying layers when discharged at the sea floor. Submarine groundwater discharge like this may be a significant source of freshwater to the Baltic Sea that needs to be studied further.
Gabriel West, Darrell S. Kaufman, Francesco Muschitiello, Matthias Forwick, Jens Matthiessen, Jutta Wollenburg, and Matt O'Regan
Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, https://doi.org/10.5194/gchron-1-53-2019, 2019
Short summary
Short summary
We report amino acid racemization analyses of foraminifera from well-dated sediment cores from the Yermak Plateau, Arctic Ocean. Sample ages are compared with model predictions, revealing that the rates of racemization generally conform to a global compilation of racemization rates at deep-sea sites. These results highlight the need for further studies to test and explain the origin of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
Christian Stranne, Matt O'Regan, Martin Jakobsson, Volker Brüchert, and Marcelo Ketzer
Solid Earth, 10, 1541–1554, https://doi.org/10.5194/se-10-1541-2019, https://doi.org/10.5194/se-10-1541-2019, 2019
Filippa Fransner, Agneta Fransson, Christoph Humborg, Erik Gustafsson, Letizia Tedesco, Robinson Hordoir, and Jonas Nycander
Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, https://doi.org/10.5194/bg-16-863-2019, 2019
Short summary
Short summary
Although rivers carry large amounts of organic material to the oceans, little is known about what fate it meets when it reaches the sea. In this study we are investigating the fate of the carbon in this organic matter by the use of a numerical model in combination with ship measurements from the northern Baltic Sea. Our results suggests that there is substantial remineralization taking place, transforming the organic carbon into CO2, which is released to the atmosphere.
Erik Gustafsson, Mathilde Hagens, Xiaole Sun, Daniel C. Reed, Christoph Humborg, Caroline P. Slomp, and Bo G. Gustafsson
Biogeosciences, 16, 437–456, https://doi.org/10.5194/bg-16-437-2019, https://doi.org/10.5194/bg-16-437-2019, 2019
Short summary
Short summary
This work highlights that iron (Fe) dynamics plays a key role in the release of alkalinity from sediments, as exemplified for the Baltic Sea. It furthermore demonstrates that burial of Fe sulfides should be included in alkalinity budgets of low-oxygen basins. The sedimentary alkalinity generation may undergo large changes depending on both organic matter loads and oxygen conditions. Enhanced release of alkalinity from the seafloor can increase the CO2 storage capacity of seawater.
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Lauren M. Simkins, Sarah L. Greenwood, and John B. Anderson
The Cryosphere, 12, 2707–2726, https://doi.org/10.5194/tc-12-2707-2018, https://doi.org/10.5194/tc-12-2707-2018, 2018
Short summary
Short summary
Using thousands of grounding line landforms in the Ross Sea, Antarctica, we observe two distinct landform types associated with contrasting styles of grounding line retreat. We characterise landform morphology, examine factors that control landform morphology and distribution, and explore drivers of grounding line (in)stability. This study highlights the importance of understanding thresholds which may destabilise a system and of controls on grounding line retreat over a range of timescales.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018, https://doi.org/10.5194/os-14-503-2018, 2018
Short summary
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Erik Gustafsson, Christoph Humborg, Göran Björk, Christian Stranne, Leif G. Anderson, Marc C. Geibel, Carl-Magnus Mörth, Marcus Sundbom, Igor P. Semiletov, Brett F. Thornton, and Bo G. Gustafsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-115, https://doi.org/10.5194/bg-2017-115, 2017
Preprint withdrawn
Short summary
Short summary
In this study we quantify key carbon cycling processes on the East Siberian Arctic Shelf. A specific aim is to determine the pathways of terrestrial organic carbon (OC) supplied by rivers and coastline erosion – and particularly to what extent degradation of terrestrial OC contributes to air-sea CO2 exchange. We estimate that the shelf is a weak CO2 sink, although this sink is considerably reduced mainly by degradation of eroded OC and to a lesser extent by degradation of riverine OC.
Anna Ruth W. Halberstadt, Lauren M. Simkins, Sarah L. Greenwood, and John B. Anderson
The Cryosphere, 10, 1003–1020, https://doi.org/10.5194/tc-10-1003-2016, https://doi.org/10.5194/tc-10-1003-2016, 2016
Short summary
Short summary
Geomorphic features on the Ross Sea sea floor provide a record of ice-sheet behaviour during the Last Glacial Maximum and subsequent retreat. Based on extensive mapping of these glacial landforms, a large embayment formed in the eastern Ross Sea. This was followed by complex, late-stage retreat in the western Ross Sea where banks stabilised the ice sheet. Physiography and sea floor geology act as regional controls on ice-sheet dynamics across the Ross Sea.
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Approach: Numerical Models | Depth range: Shelf-sea depth | Geographical range: Baltic Sea | Phenomena: Turbulence and Mixing
Very high-resolution modelling of submesoscale turbulent patterns and processes in the Baltic Sea
Reiner Onken, Burkard Baschek, and Ingrid M. Angel-Benavides
Ocean Sci., 16, 657–684, https://doi.org/10.5194/os-16-657-2020, https://doi.org/10.5194/os-16-657-2020, 2020
Short summary
Short summary
In order to provide an aid for the interpretation of observations of
the formation, structure, and dynamics of submesoscale
patterns, a numerical model is applied in a double-offline-nested
setup to a sub-area of the Baltic Sea. A model with 500 m horizontal
resolution is nested into an existing operational model in order to
create a realistic mesoscale environment. Turbulent patterns with
horizontal scales < 1 km are resolved by a second nest with 100 m resolution.
Cited articles
Bendtsen, J., Gustafsson, K. E., Söderkvist, J., and Hansen, J. L. S.:
Ventilation of bottom water in the North Sea–Baltic Sea transition zone,
J. Mar. Syst., 75, 138–149, https://doi.org/10.1016/j.jmarsys.2008.08.006, 2009.
Chu, D., Eastwood, R. L., Stanton, T. K., Martin, L., Benfield, M. C., Wiebe, P. H., and Scanlon, L.: On acoustic estimates of zooplankton biomass, ICES J. Mar. Sci., 51, 505–512, https://doi.org/10.1006/jmsc.1994.1051, 1994.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L.,
Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007,
https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Dargahi, B., Kolluru, V., and Cvetkovic, V.: Multi-Layered Stratification in
the Baltic Sea: Insight from a Modeling Study with Reference to Environmental Conditions, J. Mar. Sci. Eng., 5, 1–26, https://doi.org/10.3390/jmse5010002, 2017.
Ehlin, U. and Ambjörn, C.: Water Transport through the Åland Sea,
in: 3rd Soviet-Swedish Symposium on the Pollution of the Baltic, in: Ambio
Special Reports, Royal Swedish Academy of Sciences, Springer, Rosenön, Stockholm, Sweden, 117–125, 1977.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM), European Marine Observation and Data Network, https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6, 2018.
Farmer, D. M. and Dungan Smith, J.: Tidal interaction of stratified flow
with a sill in Knight Inlet, Deep-Sea Res. Pt. A, 27, 239–254,
https://doi.org/10.1016/0198-0149(80)90015-1, 1980.
Fonselius, S.: Västerhavets och Östersjöns oceanografi, Sveriges meteorologiska och hydrologiska Institut (SMHI), Norrköping, Sweden, 1995.
Gogina, M. and Zettler, M. L.: Diversity and distribution of benthic
macrofauna in the Baltic Sea: Data inventory and its use for species
distribution modelling and prediction, J. Sea Res., 64, 313–321,
https://doi.org/10.1016/j.seares.2010.04.005, 2010.
Greenwood, S. L., Clason, C. C., Nyberg, J., Jakobsson, M., and Holmlund, P.: The Bothnian Sea ice stream: early Holocene retreat dynamics of the
south-central Fennoscandian Ice Sheet, Boreas, 46, 346–362, https://doi.org/10.1111/bor.12217, 2017.
Grigelis, A.: Research of the Bedrock Geology of the Central Baltic Sea,
Baltica, 24, 1–12, 2011.
Gustafsson, B. G.: Time-Dependent Modeling of the Baltic Entrance Area.
1. Quantification of Circulation and Residence Times in the Kattegat and the
Straits of the Baltic Sill, Estuaries, 23, 231–252, https://doi.org/10.2307/1352830, 2000.
Hay, A. E. and Sheng, J.: Vertical profiles of suspended sand concentration
and size from multifrequency acoustic backscatter, J. Geophys. Res.-Oceans, 97, 15661–15677, https://doi.org/10.1029/92JC01240, 1992.
HELCOM: State of the Baltic Sea – Second HELCOM holistic assessment 2011–2016, Baltic Marine Environment Protection Commission – HELCOM, Helsinki, Finland, 2018.
Hell, B. and Öiås, H.: A New Bathymetry Model for the Baltic Sea,
Int. Hydrogr. Rev., 12, 21–31, 2014.
Hell, B., Broman, B., Jakobsson, L., Jakobsson, M., Magnusson, Å., and
Wiberg, P.: The Use of Bathymetric Data in Society and Science: A Review
from the Baltic Sea, Ambio, 41, 138–150, https://doi.org/10.1007/s13280-011-0192-y, 2012.
Hollister, C. D. and Heezen, B. C.: Geologic effects of ocean bottom currents, in: Studies in physical oceanography, edited by: Gordon, A. L.,
Gordon & Breach, New York, 37–66, 1972.
INSPIRE Thematic Working Group Coordinate Reference Systems and Geographical Grid Systems: D2.8.I.1 INSPIRE Specification on Coordinate Reference Systems – Guidelines, European Commission, Dublin, Ireland, 22 pp.,
https://inspire.ec.europa.eu/id/document/tg/gg (last access: 2 July 2019), 2010.
International Hydrographic Organization: Limits of Oceans and Seas,
International Hydrographic Organization, Monaco, 1–38, 1953.
Irish, J. D., Stanton, T. K., Chu, D., and Jech, J. M.: New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder, ICES J. Mar. Sci., 67, 365–378, https://doi.org/10.1093/icesjms/fsp262, 2010.
Jakobsson, M.: Calculated seafloor ruggedness index (TRI) of the Baltic Sea, The Bolin Centre Database, Stockholm University, available at: https://bolin.su.se/data/jakobsson-2019, 2019.
Jakobsson, M., Calder, B., and Mayer, L.: On the effect of random errors in
gridded bathymetric compilations, J. Geophys. Res., 107, 1–11, 2002.
Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J.,
Schenke, H. W., and Johnson, P.: An improved bathymetric portrayal of the
Arctic Ocean: Implications for ocean modeling and geological, geophysical
and oceanographic analyses, Geophys. Res. Lett., 35, L07602,
https://doi.org/10.1029/2008gl033520, 2008.
Jakobsson, M., Greenwood, S. L., Hell, B., and Öiås, H.: Drumlins in
the Gulf of Bothnia, Geological Society, London, Memoirs, 46, 197–198,
https://doi.org/10.1144/m46.43, 2016a.
Jakobsson, M., Gyllencreutz, R., Mayer, L. A., Dowdeswell, J. A., Canals, M., Todd, B. J., Dowdeswell, E. K., Hogan, K. A., and Larter, R. D.: Mapping
submarine glacial landforms using acoustic methods, Memoirs, Geological Society, London, 46, 17–40, https://doi.org/10.1144/m46.182, 2016b.
Jayne, S. R., Laurent, L. C. S., and Gille, S. T.: Connections Between Ocean
Bottom Topography and Earth's Climate, Oceanography, 17, 65–74, https://doi.org/10.5670/oceanog.2004.68, 2015.
Jilbert, T., Conley, D. J., Gustafsson, B. G., Funkey, C. P., and Slomp, C. P.: Glacio-isostatic control on hypoxia in a high-latitude shelf basin,
Geology, 43, 427–430, https://doi.org/10.1130/g36454.1, 2015.
Kaskela, A. M. and Kotilainen, A. T.: Seabed geodiversity in a glaciated shelf area, the Baltic Sea, Geomorphology, 295, 419–435, https://doi.org/10.1016/j.geomorph.2017.07.014, 2017.
Kenyon, N. H. and Belderson, R. H.: Bed forms of the Mediterranean undercurrent observed with side-scan sonar, Sediment. Geol., 9, 77–99,
https://doi.org/10.1016/0037-0738(73)90027-4, 1973.
Kietzig, A.-M., Hatzikiriakos, S. G., and Englezos, P.: Ice friction: The
effects of surface roughness, structure, and hydrophobicity, J.
Appl. Phys., 106, 024303, https://doi.org/10.1063/1.3173346, 2009.
Laanearu, J. and Lundberg, P.: Topographic control of rotating deep water flow through the combination of a sill and a horizontal constriction,
J. Geophys. Res.-Oceans, 105, 28663–28669, https://doi.org/10.1029/2000JC900136, 2000.
Lappe, C. and Umlauf, L.: Efficient boundary mixing due to near-inertial waves in a nontidal basin: Observations from the Baltic Sea, J.
Geophys. Res.-Oceans, 121, 8287–8304, https://doi.org/10.1002/2016JC011985, 2016.
Lass, H. U. and Mohrholz, V.: On dynamics and mixing of inflowing saltwater in the Arkona Sea, J. Geophys. Res.-Oceans, 108, 3042, https://doi.org/10.1029/2002JC001465, 2003.
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St. Laurent, L. C., Schmitt, R. W., and Toole, J. M.: Evidence for enhanced mixing over rough
topography in the abyssal ocean, Nature, 403, 179–182, https://doi.org/10.1038/35003164, 2000.
Leppäranta, M. and Myrberg, K.: Physical Oceanography of the Baltic Sea, Springer-Praxis, Heidelberg, Germany, 2009.
Lessin, G., Raudsepp, U., and Stips, A.: Modelling the Influence of Major Baltic Inflows on Near-Bottom Conditions at the Entrance of the Gulf of
Finland, PLOS ONE, 9, e112881, https://doi.org/10.1371/journal.pone.0112881, 2014.
Li, Z.: Digital Terrain Modeling: Principles and Methodology, 1st Edn.,
CRC Press, Boca Raton, 323 pp., 2004.
Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., and Weatherall, P.: The Nippon Foundation – GEBCO Seabed 2030 Project: The Quest to See the World's Oceans Completely Mapped by 2030, Geosciences, 8, 63, https://doi.org/10.3390/geosciences8020063, 2018.
Meier, H. E. M., Döscher, R., and Faxén, T.: A multiprocessor coupled ice-ocean model for the Baltic Sea: Application to salt inflow, J. Geophys. Res.-Oceans, 108, 3273, https://doi.org/10.1029/2000JC000521, 2003.
Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L., and Vagle, S.: Structure
and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf, J. Phys. Oceanogr., 33, 2093–2112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2, 2003.
National Geophysical Data Center: ETOPO-5 Bathymetry/Topography (Data Data Announcement 88–MGG–02, National Oceanic and Atmospheric Administration, US Department of Commerce), National Geophysical Data Center, Boulder, CO, 1988.
Nohr, C. and Gustafsson, B. G.: Computation of energy for diapycnal mixing in the Baltic Sea due to internal wave drag acting on wind-driven barotropic
currents, Oceanologia, 41, 461–494, https://doi.org/10.5697/oc.51-4.461 2009.
Omstedt, A., Elken, J., Lehmann, A., Leppäranta, M., Meier, H. E. M.,
Myrberg, K., and Rutgersson, A.: Progress in physical oceanography of the
Baltic Sea during the 2003–2014 period, Prog. Oceanogr., 128, 139–171, https://doi.org/10.1016/j.pocean.2014.08.010, 2014.
Pike, R. J., Evans, I., and Hengl, T.: Geomorphometry: A Brief Guide, in:
Geomorphometry-Concepts, Software, Applications, edited by: Hengl, T. and
Reuter, H. I., Series Developments in Soil Science, Elsevier, Amsterdam, 3–33, 2008.
QGIS Development Team: QGIS Geographic Information System, Open Source Geospatial Foundation Project, Version 3.4.1, Madeira, available at:
https://qgis.org (last access: 2 July 2019), 2018.
Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H. U., Mohrholz, V., Nausch, G., Umlauf, L., and Wieczorek, G.: Vertical mixing in
the Baltic Sea and consequences for eutrophication – A review, Prog. Oceanogr., 82, 47–80, https://doi.org/10.1016/j.pocean.2007.10.004, 2009.
Riley, S. J., De Gloria, S. D., and Elliot, R.: A Terrain Ruggedness that
Quantifies Topographic Heterogeneity, Intermount. J. Sci., 5, 23–27, 1999.
Rolff, C. and Elfwing, T.: Increasing nitrogen limitation in the Bothnian Sea, potentially caused by inflow of phosphate-rich water from the Baltic
Proper, Ambio, 44, 601–611, https://doi.org/10.1007/s13280-015-0675-3, 2015.
Seifert, T. and Kayser, B.: A high resolution sperical grid topography of
the Baltic Sea, Leibniz Institute for Baltic Sea Research, Warnermünde,
72–88, 1995.
Seifert, T., Tauber, F., and Kayser, B.: A high resolution spherical grid
topography of the Baltic Sea – 2nd edition, Baltic Sea Science Congress,
25–29 November 2001, Stockholm, 2001.
Smith, W. H. F. and Sandwell, D. T.: Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277, 1957–1962,
https://doi.org/10.1126/science.277.5334.1956, 1997.
Stanton, T. K. and Chu, D.: Calibration of broadband active acoustic systems using a single standard spherical target, J. Acoust. Soc. Am., 124, 128–136, https://doi.org/10.1121/1.2917387, 2008.
Stigebrandt, A.: Physical oceanography of the Baltic Sea, in: A Systems Analysis of the Baltic Sea, edited by: Wulff, F. V., Rahm, L., and Larsson,
P., Springer, Berlin, Heidelberg, 353–372, 2001.
Stow, D. A. V., Hernández-Molina, F. J., Llave, E., Sayago-Gil, M., Río, V. D. D., and Branson, A.: Bedform-velocity matrix: The estimation
of bottom current velocity from bedform observations, Geology, 37, 327–330,
https://doi.org/10.1130/G25259A.1, 2009.
Stranne, C.: Acoustic midwater data from the Southern Quark, Baltic Sea, 2017, The Bolin Centre Database, Stockholm University, available at: https://bolin.su.se/data/jakobsson-2019-2, 2019.
Stranne, C., Mayer, L., Weber, T. C., Ruddick, B. R., Jakobsson, M., Jerram,
K., Weidner, E., Nilsson, J., and Gårdfeldt, K.: Acoustic Mapping of
Thermohaline Staircases in the Arctic Ocean, Scient. Rep., 7, 15192,
https://doi.org/10.1038/s41598-017-15486-3, 2017.
Tuomi, L., Miettunen, E., Alenius, P., and Myrberg, K.: Evaluating hydrography, circulation and transport in a coastal archipelago using a
high-resolution 3D hydrodynamic model, J. Mar. Syst., 180, 24–36, https://doi.org/10.1016/j.jmarsys.2017.12.006, 2018.
Umlauf, L., Holtermann, P. L., Gillner, C. A., Prien, R. D., Merckelbach, L., and Carpenter, J. R.: Diffusive Convection under Rapidly Varying Conditions, J. Phys. Oceanogr., 48, 1731–1747, https://doi.org/10.1175/jpo-d-18-0018.1, 2018.
Uścinowicz, S.: Chapter 7 The Baltic Sea continental shelf, Memoirs, Geological Society, London, 41, 69–89, https://doi.org/10.1144/M41.7, 2014.
Weidner, E., Weber, T. C., Mayer, L., Jakobsson, M., Chernykh, D., and
Semiletov, I.: A wideband acoustic method for direct assessment of
bubble-mediated methane flux, Cont. Shelf Res., 173, 104–115,
https://doi.org/10.1016/j.csr.2018.12.005, 2019.
Wilson, M. F. J., O'Connell, B., Brown, C., Guinan, J. C., and Grehan, A. J.: Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope, Mar. Geodesy, 30, 3–35, https://doi.org/10.1080/01490410701295962, 2007.
Wunsch, C. and Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281–314,
https://doi.org/10.1146/annurev.fluid.36.050802.122121, 2004.
Young, R. A., Merrill, J. T., Clarke, T. L., and Proni, J. R.: Acoustic profiling of suspended sediments in the marine bottom boundary layer, Geophys. Res. Lett., 9, 175–178, https://doi.org/10.1029/GL009i003p00175, 1982.
Short summary
The bottom topography of the Baltic Sea is analysed using the digital depth model from the European Marine Observation and Data Network (EMODnet) published in 2018. Analyses include depth distribution vs. area and seafloor depth variation on a kilometre scale. The limits for the Baltic Sea and analysed sub-basins are from HELCOM. EMODnet is compared with the previously most widely used depth model and the area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper.
The bottom topography of the Baltic Sea is analysed using the digital depth model from the...