Buchanan, M. K., Oppenheimer, M., and Kopp, R. E.: Amplification of flood
frequencies with local sea level rise and emerging flood regimes, Environ. Res. Lett., 12, 064009, https://doi.org/10.1088/1748-9326/aa6cb3, 2017.
Cartwright, D. E.: Secular changes in the oceanic tides at Brest, 1711–1936,
Geophysical J. Int., 30, 433–449, https://doi.org/10.1111/j.1365-246X.1972.tb05826.x, 1972.
Cartwright, D. E. and Tayler, R. J.: New computations of the tide-generating
potential, Geophys. J. Roy. Astron. Soc., 23, 45–74, https://doi.org/10.1111/j.1365-246X.1971.tb01803.x, 1971.
Chernetsky, A. S., Schuttelaars, H. M., and Talke, S. A.: The effect of
tidal asymmetry and temporal settling lag on sediment trapping in tidal
estuaries, Ocean Dynam., 60, 1219–1241, https://doi.org/10.1007/s10236-010-0329-8, 2010.
Cherqui, F., Belmeziti, A., Granger, D., Sourdril, A., and Le Gauffre, P.:
Assessing urban potential flooding risk and identifying effective
risk-reduction measures, Sci. Total Environ., 514, 418–425, 2015.
Chinn, B. S., Girton, J. B., and Alford, M. H.: Observations of internal
waves and parametric subharmonic instability in the Philippines
archipelago, J. Geophys. Res.-Oceans, 117, C05019, https://doi.org/10.1029/2011JC007392, 2012.
Church, J. A. and White, N. J.: A 20th century acceleration in global
sea-level rise, Geophys. Res. Lett., 33, L01602, https://doi.org/10.1029/2005GL024826, 2006.
Church, J. A. and White, N. J.: Sea level rise from the late 19th to the
early 21st century, Surv. Geophys., 32, 585–602, https://doi.org/10.1007/s10712-011-9119-1, 2011.
Colosi, J. A. and Munk, W.: Tales of the venerable Honolulu tide
gauge, J. Phys. Oceanogr., 36, 967–996, https://doi.org/10.1175/JPO2876.1, 2006.
Craik, A. D. D.: Wave Interactions and Fluid Flows, Cambridge Univ. Press,
Cambridge, UK, ISBN: 978-0521368292, 1985.
Devlin, A. T., Jay, D. A., Talke, S. A., and Zaron, E.: Can tidal
perturbations associated with sea level variations in the western Pacific
Ocean be used to understand future effects of tidal evolution?, Ocean Dynam., 64, 1093–1120, https://doi.org/10.1007/s10236-014-0741-6, 2014.
Devlin, A. T., Jay, D. A., Zaron, E. D., Talke, S. A., Pan, J., and Lin,
H.: Tidal variability related to sea level variability in the Pacific
Ocean, J. Geophys. Res.-Oceans, 122, 8445–8463, https://doi.org/10.1002/2017JC013165, 2017a.
Devlin, A. T., Jay, D. A., Talke, S. A., Zaron, E. D., Pan, J., and Lin, H.: Coupling of sea level and tidal range changes, with implications for future water levels, Scient. Rep., 7, 17021, https://doi.org/10.1038/s41598-017-17056-z, 2017b.
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S.
E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean
warming and multi-decadal sea level rise, Nature, 453, 1090, https://doi.org/10.1038/nature07080, 2008.
Familkhalili, R. and Talke, S. A.: The effect of channel deepening on tides and storm surge: A case study of Wilmington, NC, Geophys. Res. Lett., 43, 9138–9147, https://doi.org/10.1002/2016GL069494, 2016.
Feng, X., Tsimplis, M. N., and Woodworth, P. L.: Nodal variations and
long-term changes in the main tides on the coasts of China, J. Geophys. Rese.-Oceans, 120, 1215–1232, https://doi.org/10.1002/2014JC010312, 2015.
Haigh, I. D., Wijeratne, E. M. S., MacPherson, L. R., Pattiaratchi, C. B.,
Mason, M. S., Crompton, R. P., and George, S.: Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level, Clim. Dynam., 42, 121–138, https://doi.org/10.1007/s00382-012-1652-1, 2014.
Ip, S. F. and Wai, H. G.: An application of harmonic method to tidal analysis and prediction in Hong Kong, Royal Observatory,
provided by the Hong Kong Observatory, available at:
https://www.hko.gov.hk/publica/publist.htm
(last access: 1 June 2019), 1990.
Jan, S., Chern, C. S., Wang, J., and Chao, S. Y.: Generation of diurnal
K1 internal tide in the Luzon Strait and its influence on surface tide
in the South China Sea, J. Geophys. Res.-Oceans, 112, C06019, https://doi.org/10.1029/2006JC004003, 2007.
Jan, S., Lien, R. C., and Ting, C. H.: Numerical study of baroclinic tides
in Luzon Strait, J. Oceanogr., 64, 789–802, https://doi.org/10.1007/s10872-008-0066-5, 2008.
Jay, D. A.: Evolution of tidal amplitudes in the eastern Pacific
Ocean, Geophys. Res. Lett., 36, L04603, https://doi.org/10.1029/2008GL036185, 2009.
Jay, D. A., Leffler, K., and Degens, S.:, Long-term evolution of Columbia River tides, ASCE J. Waterway Port Coast. Ocean Eng., 137, 182–191,
https://doi.org/10.1061/(ASCE)WW.1943- 5460.0000082, 2011.
Leffler, K. E. and Jay, D. A.: Enhancing tidal harmonic analysis: Robust
(hybrid L1/L2) solutions, Cont. Shelf Res., 29, 78–88, https://doi.org/10.1016/j.csr.2008.04.011, 2009.
Li, K. W. and Mok, H. Y.: Long term trends of the regional sea level
changes in Hong Kong and the adjacent waters, in: Asian And Pacific Coasts 2011, published by the Hong Kong Observatory, in: The
6th International Conference on Asian and Pacific Coasts (APAC2011), 14 December 2011, Hong Kong, China, 349–359, https://doi.org/10.1142/9789814366489_0040, 2012.
Lien, R. C., Tang, T. Y., Chang, M. H., and d'Asaro, E. A.: Energy of
nonlinear internal waves in the South China Sea, Geophys. Res. Lett., 32,
L05615, https://doi.org/10.1029/2004GL022012, 2005.
MacKinnon, J. A. and Winters, K. B.: Subtropical catastrophe: Significant
loss of low-mode tidal energy at 28.9
∘, Geophys. Res. Lett., 32,
L15605, https://doi.org/10.1029/2005GL023376, 2005.
Mawdsley, R. J., Haigh, I. D., and Wells, N. C.: Global changes in mean
tidal high water, low water and range, J. Coast. Res., 70, 343–348,
https://doi.org/10.2112/SI70-058.1, 2014.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Feldman, D. L., Sweet,
W., Matthew, R. A., and Luke, A.: Increased nuisance flooding along the
coasts of the United States due to sea level rise: Past and future, Geophys. Res. Lett., 42, 9846–9852, https://doi.org/10.1002/2015GL066072, 2015.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.:
Cumulative hazard: The case of nuisance flooding, Earth's Future, 5, 214–223, https://doi.org/10.1002/2016EF000494, 2017.
Müller, M.: The influence of changing stratification conditions on
barotropic tidal transport and its implications for seasonal and secular
changes of tides, Cont. Shelf Res., 47, 107–118, https://doi.org/10.1016/j.csr.2012.07.003, 2012.
Müller, M., Arbic, B. K., and Mitrovica, J. X.: Secular trends in ocean
tides: Observations and model results, J. Geophys. Res.-Oceans, 116, C05013, https://doi.org/10.1029/2010JC006387, 2011.
Müller, M., Cherniawsky, J. Y., Foreman, M. G. G., and Storch, J. S.:
Global
M2 internal tide and its seasonal variability from high
resolution ocean circulation and tide modeling, Geophys. Res. Lett., 39,
L19607, https://doi.org/10.1029/2012GL053320, 2012.
Pan, J., Gu, Y., and Wang, D.: Observations and numerical modeling of the
Pearl River plume in summer season, J. Geophys. Res., 119, 2480–2500, https://doi.org/10.1002/2013JC009042, 2014.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic
analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Rasheed, A. S. and Chua, V. P.: Secular trends in tidal parameters along
the coast of Japan, Atmos.-Ocean, 52, 155–168, https://doi.org/10.1080/07055900.2014.886031, 2014.
Ray, R. D.: Secular changes of the
M2 tide in the Gulf of
Maine, Cont. Shelf Res., 26, 422–427, https://doi.org/10.1016/j.csr.2005.12.005, 2006.
Ray, R. D. and Foster, G.: Future nuisance flooding at Boston caused by
astronomical tides alone, Earth's Future, 4, 578–587, https://doi.org/10.1002/2016EF000423, 2016.
Ross, A. C., Najjar, R. G., Li, M., Lee, S. B., Zhang, F., and Liu, W.:
Fingerprints of Sea Level Rise on Changing Tides in the Chesapeake and
Delaware Bays, J. Geophys. Res.-Oceans, 122, 8102–8125, https://doi.org/10.1002/2017JC012887, 2017.
Sweet, W. V. and Park, J.: From the extreme to the mean: Acceleration and
tipping points of coastal inundation from sea level rise, Earth's Future, 2, 579–600, 2014.
Vellinga, N. E., Hoitink, A. J. F., van der Vegt, M., Zhang, W., and
Hoekstra, P.: Human impacts on tides overwhelm the effect of sea level rise
on extreme water levels in the Rhine–Meuse delta, Coast. Eng., 90, 40–50, https://doi.org/10.1016/j.coastaleng.2014.04.005, 2014.
Woodworth, P. L.: A survey of recent changes in the main components of the
ocean tide, Cont. Shelf Res., 30, 1680–1691, https://doi.org/10.1016/j.csr.2010.07.002, 2010.
Xie, X. H., Chen, G. Y., Shang, X. D., and Fang, W. D.: Evolution of the
semidiurnal (M2) internal tide on the continental slope of the northern
South China Sea, Geophys. Res. Lett., 35, L13604, https://doi.org/10.1029/2008GL034179, 2008.
Xie, X. H., Shang, X. D., van Haren, H., Chen, G. Y., and Zhang, Y. Z.:
Observations of parametric subharmonic instability-induced near-inertial
waves equatorward of the critical diurnal latitude, Geophys. Res. Lett., 38, L05603, https://doi.org/10.1029/2010GL046521, 2011.
Xie, X., Shang, X., Haren, H., and Chen, G.: Observations of enhanced
nonlinear instability in the surface reflection of internal
tides, Geophys. Res. Lett., 40, 1580–1586, https://doi.org/10.1002/grl.50322, 2013.
Zaron, E. D. and Jay, D. A.: An analysis of secular change in tides at
open-ocean sites in the Pacific, J. Phys. Oceanogr., 44, 1704–1726,
https://doi.org/10.1175/JPO-D-13-0266.1, 2014.
Zhang, H., Wang, T., Liu, M., Jia, M., Lin, H., Chu, L. M., and Devlin, A.
T.: Potential of Combining Optical and Dual Polarimetric SAR Data for
Improving Mangrove Species Discrimination Using Rotation Forest, Remote Sensing, 10, 467–481, https://doi.org/10.3390/rs10030467, 2018.