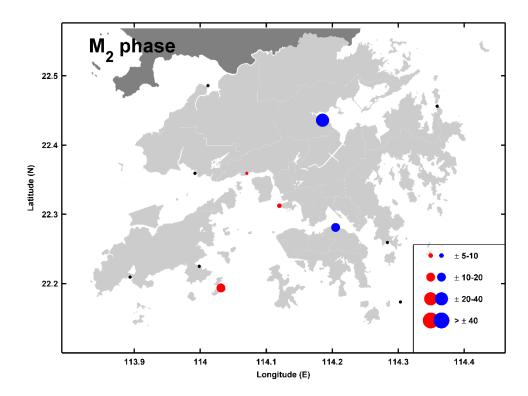
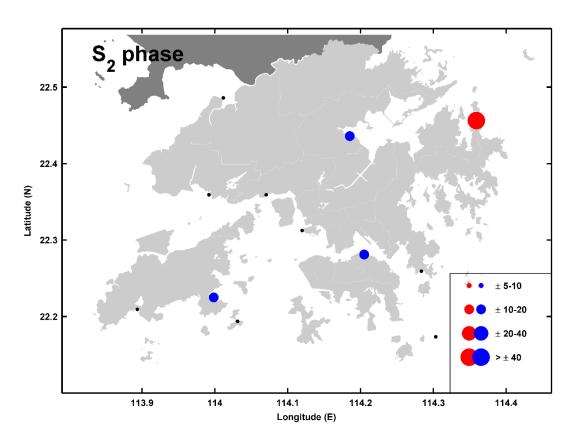
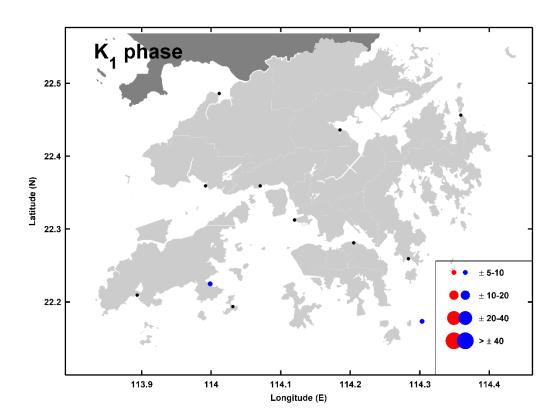
Supplement of Ocean Sci., 15, 853–864, 2019 https://doi.org/10.5194/os-15-853-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.


Supplement of

Tidal variability in the Hong Kong region


Adam T. Devlin et al.

Correspondence to: Jiayi Pan (panj@cuhk.edu.hk)


The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

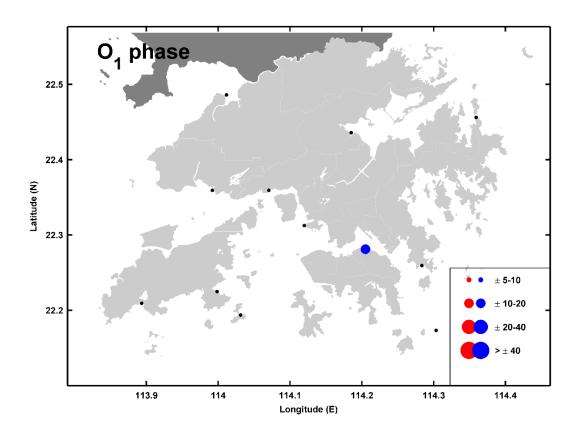

Figure S1 Semidiurnal tidal anomaly correlations (TACs) of detrended M₂ phase to detrended MSL in Hong Kong, with the marker size showing the relative magnitude according to the legend, in units of deg m⁻¹. Red/blue markers indicate positive/negative TACs, and black markers indicate TACs which are not significantly different from zero.

Figure S2 Semidiurnal tidal anomaly correlations (TACs) of detrended S_2 phase to detrended MSL in Hong Kong, with the marker size showing the relative magnitude according to the legend, in units of deg m⁻¹. Red/blue markers indicate positive/negative TACs, and black markers indicate TACs which are not significantly different from zero.

Figure S3 Diurnal tidal anomaly correlations (TACs) of detrended K_1 phase to detrended MSL in Hong Kong, with the marker size showing the relative magnitude according to the legend, in units of deg m⁻¹. Red/blue markers indicate positive/negative TACs, and black markers indicate TACs which are not significantly different from zero.

Figure S4 Diurnal tidal anomaly correlations (TACs) of detrended O₁ phase to detrended MSL in Hong Kong, with the marker size showing the relative magnitude according to the legend, in units of deg m⁻¹. Red/blue markers indicate positive/negative TACs, and black markers indicate TACs which are not significantly different from zero.

Table S1 Phase TACs for M_2 , S_2 , K_1 , and O_1 . All values given are in units of degree change in the tidal phase for a 1-meter fluctuation in sea-level (deg m⁻¹). Statistically significant values are given in bold italic text.

Station	M ₂ TAC	S ₂ TAC	K ₁ TAC	O ₁ TAC
Quarry Bay (QB)	-15 ± 2	-17 ± 5	-4 ± 2	-11 ± 1
Tai Po Kau (TPK)	-28 ± 6	-18 ± 3	-6 ± 4	-13 ± 4
Tsim Bei Tusi (TBT)	$+19 \pm 13$	$+19 \pm 17$	$+6 \pm 5$	$+5 \pm 4$
Chi Ma Wan (CMW)	-5 ± 5	-16 ± 2	-7 ± 4	-3 ± 1
Cheung Chau (CHC)	$+13 \pm 2$	$+23 \pm 15$	$+39 \pm 36$	$+1 \pm 13$
Lok On Pai (LOP)	-2 ± 4	-15 ± 9	$+1 \pm 6$	$+3 \pm 6$
Ma Wan (MW)	+9 ± 2	+9 ± 8	$+2 \pm 13$	-4 ± 5
Tai Miu Wan (TMW)	$+4 \pm 8$	$+2 \pm 9$	$+1 \pm 7$	$+2 \pm 3$
Shek Pik (SP)	-11 ± 6	-10 ± 12	-6 ± 6	$+12 \pm 2$
Waglan Island (WAG)	-40 ± 30	$+12 \pm 2$	+6 ± 1	$+4 \pm 3$
Ko Lau Wan (KLW)	$+7 \pm 3$	+43 ± 22	$+10 \pm 15$	-3 ± 5
Kwai Chung (KC)	+8 ± 2	$+45 \pm 20$	$+29 \pm 52$	-9 ± 23