Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-745-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-745-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the role of the seawater absorption-to-attenuation ratio in the radiance polarization above the southern Baltic surface
Department of Physics, Gdynia Maritime University, Gdynia, 81-225,
Poland
Kamila Haule
Department of Physics, Gdynia Maritime University, Gdynia, 81-225,
Poland
Sławomir Sagan
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712,
Poland
Related authors
No articles found.
Anna Makarewicz, Piotr Kowalczuk, Sławomir Sagan, Mats A. Granskog, Alexey K. Pavlov, Agnieszka Zdun, Karolina Borzycka, and Monika Zabłocka
Ocean Sci., 14, 543–562, https://doi.org/10.5194/os-14-543-2018, https://doi.org/10.5194/os-14-543-2018, 2018
Cited articles
Benassai, G., Montuori, A., Migliaccio, M., and Nunziata, F.: Sea wave
modeling with X-band COSMO-SkyMed© SAR-derived wind field forcing
and applications in coastal vulnerability assessment, Ocean Sci., 9,
325–341, https://doi.org/10.5194/os-9-325-2013, 2013.
Berthon, J. F., Shybanov, E., Lee, M., and Zibordi, G.: Measurements and
modeling of the volume scattering function in the coastal northern Adriatic
Sea, Appl. Opt., 46, 5189–5203, https://doi.org/10.1364/AO.46.005189, 2007.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir K.: Natural variability of
phytoplanktonic absorption in oceanic waters: Influence of the size structure
of algal populations, J. Geophys. Res., 109, C11010,
https://doi.org/10.1029/2004JC002419, 2004.
Chami, M.: Importance of the polarization in the retrieval of oceanic
constituents from the remote sensing reflectance, J. Geophys. Res., 112,
C05026, https://doi.org/10.1029/2006JC003843, 2007.
Chami, M., Shybanov, E. B., Churilova, T. Y., Khomenko, G. A., Lee, M. E.-G.,
Martynov, O. V., Berseneva, G. A., and Korotaev, G. K.: Optical properties of
the particles in the Crimea coastal waters (Black Sea), J. Geophys. Res.,
110, C11020, https://doi.org/10.1029/2005JC003008, 2005.
Chami, M., Lafrance, B., Fougnie, B., Chowdhary, J., Harmel, T., and Waquet,
F.: OSOAA: a vector radiative transfer model of coupled atmosphere-ocean
system for a rough sea surface application to the estimates of the
directional variations of the water leaving reflectance to better process
multi-angular satellite sensors data over the ocean, Opt. Express, 23,
27829–27852, https://doi.org/10.1364/OE.23.027829, 2015.
Chowdhary, J., Cairns, B., and Travis, L. D.: Case studies of aerosol
retrievals over the ocean from multiangle, multispectral photopolarimetric
remote sensing data, J. Atmos. Sci., 59, 383–397, 2002.
Cox, C. and Munk, W.: Slopes of the Sea Surface Deduced from Photographs of
Sun Glitter; Bulletin of the Scripps Institution of Oceanography of the
University of California, La Jolla, University of California Press, Oakland,
CA, USA, 1956.
Cronin, T. W. and Marshall, J.: Patterns and properties of polarized light in
air and water, Philos. T. R. Soc. B, 366, 619–626,
https://doi.org/10.1098/rstb.2010.0201, 2011.
Cunningham, A., Wood, P., and McKee D.: Brewster-angle measurements of
sea-surface reflectance using a high resolution spectroradiometer, J. Opt. A,
4, S29–S33,
https://doi.org/10.1088/1464-4258/4/4/361, 2002.
D'Alimonte, D. and Kajiyama, T.: Effects of light polarization and waves slope
statistics on the reflectance factor of the sea surface, Opt. Express, 24,
7922–7942, https://doi.org/10.1364/OE.24.007922, 2016
Drozdowska, V., Wróbel, I., Markuszewski, P., Makuch, P., Raczkowska, A.,
and Kowalczuk, P.: Study on organic matter fractions in the surface
microlayer in the Baltic Sea by spectrophotometric and spectrofluorometric
methods, Ocean Sci., 13, 633–647, https://doi.org/10.5194/os-13-633-2017,
2017.
Foster, R. and Gilerson, A.: Polarized Transfer Functions of the Ocean Surface
for Above-Surface Determination of the Vector Submarine Light Field, Appl.
Optics, 55, 9476–9494, https://doi.org/10.1364/AO.55.009476, 2016.
Freda, W.: Spectral dependence of the correlation between the backscattering
coefficient and the volume scattering function measured in the Southern
Baltic Sea, Oceanologia, 54, 355–367, https://doi.org/10.5697/oc.54-3.355, 2012.
Freda, W.: Results of Monte Carlo model for seawater absortion-to-attenuation ratio impact on DoP, Gdynia Maritime University, available at: http://kepler.umg.edu.pl/~wfreda/AtoCinDoP/start.html, last access: 30 May 2019.
Freda, W.: Comparison of the spectral-angular properties of light scattered
in the Baltic Sea and oil emulsions, J. Eur. Opt. Soc.-Rapid, 9,
14017, https://doi.org/10.2971/jeos.2014.14017, 2014.
Freda, W. and Piskozub, J.: Improved method of Fournier-Forand marine phase
function parameterization, Opt. Express, 15, 12763–12768,
https://doi.org/10.1364/OE.15.012763, 2007.
Freda, W., Król, T., Martynov, O. V., Shybanov, E. B., and Hapter, R.:
Measurements of scattering function of sea water in southern Baltic, Eur.
Phys. J.-Spec. Top., 144, 147–154, https://doi.org/10.1140/epjst/e2007-00119-6, 2007.
Freda, W., Piskozub, J., and Toczek H.: Polarization imaging over sea surface
– a method for measurements of Stokes components angular distribution, J. Eur. Opt. Soc.-Rapid, 10, 15060, https://doi.org/10.2971/jeos.2015.15060, 2015.
Frouin, R., Pouliquen, E., and Breon, F.-M.: Ocean color remote sensing using
polarization properties of reflected sunlight, in: CNES, Proceedings of 6th
International Symposium on Physical Measurements and Signatures in Remote
Sensing, Val D'Isere, France, 17–22 January 1994, 665–674, 1994.
Gilerson, A., Zhou, J., Oo, M., Chowdhary, J., Gross, B. M., Moshary, F., and
Ahmedet, S.: Retrieval of chlorophyll fluorescences from reflectance spectra
through polarization discrimination: modeling and experiments, Appl. Optics,
45, 5568–5581, https://doi.org/10.1364/AO.45.005568, 2006.
Hajnsek, I., Pottier, E., and Cloude, S. R.: Inversion of surface parameters
from polarimetric SAR, IEEE T. Geosci. Remote Sens.,
41, 727–744, https://doi.org/10.1109/TGRS.2003.810702, 2003.
Harmel, T. and Chami, M.: Influence of Polarimetric Satellite Data Measured
in the Visible Region on Aerosol Detection and on the Performance of
Atmospheric Correction Procedure over Open Ocean Waters, Opt. Express, 19,
20960–20983, https://doi.org/10.1364/OE.19.020960, 2008.
Harmel, T. and Chami, M.: Estimation of the sunglint radiance field from
optical satellite imagery over open ocean: Multidirectional approach and
polarization aspects, J. Geophys. Rese.-Ocean., 118, 76–90,
https://doi.org/10.1029/2012JC008221, 2013.
Harmel, T., Tonizzo, A., Ibrahim, A., Gilerson, A., Chowdhary, J., and Ahmed S.: Measuring underwater polarization field from above-water hyperspectral instrumentation for water composition retrieval, in: Proc. SPIE 8175, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 7 817509, https://doi.org/10.1117/12.898261, 2011.
Harmel, T., Gilerson, A., Tonizzo, A., Chowdhary, J., Weidemann, A., Arnone,
R., and Ahmed, S.: Polarization impacts on the water-leaving radiance
retrieval from above-water radiometric measurements, Appl. Optics, 51,
8324–8340, https://doi.org/10.1364/AO.51.008324, 2012.
Hasekamp, O. P., and Landgraf, J.: Retrieval of aerosol properties over the
ocean from multispectral single-viewing-angle measurements of intensity and
polarization: Retrieval approach, information content, and sensitivity study,
J. Geophys. Res., 110, https://doi.org/10.1029/2005JD006212, 2005.
Haule, K. and Freda W.: The effect of dispersed Petrobaltic oil droplet size
on photosynthetically active radiation in marine environment, Environ. Sci.
Pollut. R., 23, 6506–6516, https://doi.org/10.1007/s11356-015-5886-4, 2016.
Haule, K., Freda, W., Darecki, M., and Toczek, H.: Possibilities of optical
remote sensing of dispersed oil in coastal waters, Estuar. Coast. Shelf
Sci., 195, 76–87, https://doi.org/10.1016/j.ecss.2016.07.013, 2017.
He, X., Pan, D., Bai, Y., Wang, D., and Hao, Z.: A new simple concept for
ocean colour remote sensing using parallel polarisation radiance, Sci. Rep.,
4, 3748, https://doi.org/10.1038/srep03748, 2014.
Hieronymi, M.: Polarized reflectance and transmittance distribution functions
of the ocean surface, Opt. Express, 24, A1045–A1068, https://doi.org/10.1364/OE.24.0A1045, 2016.
Hu, Y., Stamnes, K., Vaughan, M., Pelon, J., Weimer, C., Wu, D., Cisewski,
M., Sun, W., Yang, P., Lin, B., Omar, A., Flittner, D., Hostetler, C.,
Trepte, C., Winker, D., Gibson, G., and Santa-Maria, M.: Sea surface wind
speed estimation from space-based lidar measurements, Atmos. Chem. Phys., 8,
3593–3601, https://doi.org/10.5194/acp-8-3593-2008, 2008.
Ibrahim, A., Gilerson, A., Harmel, T., Tonizzo, A., Chowdhary, J., and Ahmed,
S.: The relationship between upwelling underwater polarization and
attenuation/absorption ratio, Opt. Express, 23, 25662–25680,
https://doi.org/10.1364/OE.20.025662, 2012.
Ibrahim, A., Gilerson, A., Chowdhary, J., and Ahmed, S.: Retrieval of macro-
and micro-physical properties of oceanic hydrosols from polarimetric
observations, Remote Sens. Environ., 186, 548–566,
https://doi.org/10.1016/j.rse.2016.09.004, 2016.
Ivanoff, A. and Waterman, T. H.: Factors, mainly depth and wavelength,
affecting underwater polarized light, J. Mar. Res., 16, 283–307, 1958.
Kattawar, G. W., Plass, G. N., and Guinn, J. A.: Monte Carlo Calculations of
the Polarization of Radiation in the Earth's Atmosphere-Ocean System, J.
Phys. Oceanogr., 3, 353–372, 1973.
Kokhanovsky, A. A., Budak, V. P., Cornet, C., Duan, M., Emde, C., Katsev, I.
L., Klyukov, D. A., Korkin S. V., C-Labonnote, L., Mayer, B., Ming, Q.,
Nakajima, T., Ota Y., Prikhach, A. S., Rozanov, V. V., Yokota, T., and Zege,
E. P.: Benchmark results in vector atmospheric radiative transfer, J. Quant.
Spectros. Ra., 111, 1931–1946, https://doi.org/10.1016/j.jqsrt.2010.03.005, 2010.
Korkin, S., Lyapustin, A., Sinyuk, A., Holben, B., and Kokhanovsky, A.: Vector radiative transfer code SORD: Performance analysis and quick start guide, J. Quant. Spectrosc. Ra., 200, 295–310, https://doi.org/10.1016/j.jqsrt.2017.04.035, 2017
Kowalczuk, P.: Seasonal variability of yellow substances absorption in the
surface layer of the Baltic Sea, J. Geophys. Res., 104, 30047–30058,
https://doi.org/10.1029/1999JC900198, 1999.
Kowalczuk, P. and Kaczmarek, S.: Analysis of temporal and spatial variability
of ”yellow substance” absorption in the Southern Baltic, Oceanologia, 38,
3–32, 1996.
Kowalczuk, P., Olszewski, J., Darecki, M., and Kaczmarek, S.: Empirical
relationships between coloured dissolved organic matter (CDOM) absorption and
apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26,
345–370, https://doi.org/10.1080/01431160410001720270, 2005.
Kowalczuk, P., Stedmon, C. A., and Markager, S.: Modeling absorption by CDOM
In the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101,
1–11, https://doi.org/10.1016/j.marchem.2005.12.005, 2006.
Kowalczuk, P., Darecki, M., Zabłocka, M., and Górecka, I.: Validation
of empirical and semi-analytical remote sensing algorithms for estimating
absorption by Coloured Dissolved Organic Matter in the Baltic Sea from
SeaWiFS and MODIS imagery, Oceanologia, 52, 171–196,
https://doi.org/10.5697/oc.52-2.171, 2010.
Lee, M. E. and Lewis, M. R.: A new method for the measurement of the optical
volume scattering function in the upper ocean, J. Atmos. Ocean. Technol., 20,
563–571, 2003.
Liu, J., He, X., Liu, J., Bai, Y., Wang, D., Chen, T., Wang, Y., and Zhu, F.:
Polarization-based enhancement of ocean color signal for estimating suspended
particulate matter: radiative transfer simulations and laboratory
measurements, Opt. Express, 25, A323–A337, https://doi.org/10.1364/OE.25.00A323, 2017.
Loisel, H., Duforet, L., Dessailly, D., Chami, M., and Dubuisson, P.:
Investigation of the Variations in the Water Leaving Polarized Reflectance
from the POLDER Satellite Data over two Biogeochemical Contrasted Oceanic
Areas, Opt. Express, 16, 12905–12918, https://doi.org/10.1364/OE.16.012905, 2008.
McKee, D., Piskozub, J., and Brown, I.: Scattering error corrections for in
situ absorption and attenuation measurements, Opt. Express, 16, 19480–19492,
https://doi.org/10.1364/OE.16.019480, 2008.
McKee, D., Piskozub J., Rottgers, R., and Reynolds, R. A.: Evaluation and
Improvement of an Iterative Scattering Correction Scheme for in situ
Absorption and Attenuation Measurements, J. Atmos. Ocean. Technol., 30,
1527–1541, https://doi.org/10.1175/JTECH-D-12-00150.1, 2013.
Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zabłocka, M., and
Zdun, A.: Parameterization of the light absorption properties of chromophoric
dissolved organic matter in the Baltic Sea and Pomeranian lakes, Ocean Sci.,
12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, 2016a.
Meler, J., Ostrowska, M., and Stoń-Egiert, J.: Seasonal and spatial
variability of phytoplankton and non-algal absorption in the surface layer of
the Baltic, Estuar. Coast. Shelf Sci., 180, 123–135,
https://doi.org/10.1016/j.ecss.2016.06.012, 2016b.
Mishchenko, M. I. and Travis, L. D.: Satellite retrieval of aerosol
properties over the ocean using polarization as well as intensity of
reflected sunlight, J. Geophys. Res., 102, 16989–17013,
https://doi.org/10.1029/96JD02425, 1997.
Mobley, C. D.: Polarized Reflectance and Transmittance Properties of
Wind-blown Sea Surfaces, Appl. Optics, 54, 4828–4849,
https://doi.org/10.1364/AO.54.004828, 2015.
Olszewski, J., Sagan S., and Darecki M.: Spatial and temporal changes in some
optical parameters in the southern Baltic, Oceanologia, 33, 87–103, 1992.
Ota, Y., Higurashi, A., Nakajima, T., and Yokota, T.: Matrix formulations of
radiative transfer including the polarization effect in a coupled
atmosphere–ocean system, J. Quant. Spectrosc. Ra., 111, 878–894,
https://doi.org/10.1016/j.jqsrt.2009.11.021, 2010.
Otremba, Z.: Oil droplets as light absorbents in seawater, Opt. Express, 15, 8592–8597, https://doi.org/10.1364/OE.15.008592, 2007.
Otremba, Z.: Oil Droplet clouds suspended in the sea: can they be remotely
detected?, Remote Sens., 8, 857, https://doi.org/10.3390/rs8100857, 2016.
Otremba, Z., Zielinski, O., and Hu, C.: Optical contrast of oil dispersed in
seawater under windy conditions, J. Eur. Opt. Soc.-Rapid, 8, 13051,
https://doi.org/10.2971/jeos.2013.13051, 2013.
Piskozub, J. and Freda, W.: Signal of single scattering albedo in water
leaving polarization, J. Eur. Opt. Soc.-Rapid, 8, 13055,
https://doi.org/10.2971/jeos.2013.13055, 2013.
Piskozub, J., Flatau, P. J., and Zaneveld, J. R. V.: Monte Carlo study of the
scattering error of a quartz reflective absorption tube, J. Ocean. Atmos.
Technol., 18, 438–445, 2001.
Piskozub, J. and McKee, D.: Effective scattering phase functions for the
multiple scattering regime, Opt. Express, 19, 4786–4794,
https://doi.org/10.1364/OE.19.004786, 2011.
Pope, R. M. and Fry, E. S.: Absorption spectrum (380–700 nm) of pure water,
II Integrating cavity measurements, Appl. Optics, 36, 8710–8723,
https://doi.org/10.1364/AO.36.008710, 1997.
Pust, N. J., Dahlberg, A. R., Thomas, M. J., and Shaw, J. A.: Comparison of
full-sky polarization and radiance observations to radiative transfer
simulations which employ AERONET products, Opt. Express, 19, 18602–18613,
https://doi.org/10.1364/OE.19.018602, 2011.
Rudź, K., Darecki, M., and Toczek, H.: Modelling the influence of oil
content on optical properties of seawater in the Baltic Sea, J. Eur. Opt.
Soc.-Rapid, 8, 13063, https://doi.org/10.2971/jeos.2013.13063, 2013.
Sagan, S.: The inherent water optical properties of Baltic waters, Diss.
Monogr., 21, IOPAS Sopot, Poland, 244 pp., 2008 (in Polish).
Sammartino, M., Di Cicco, A., Marullo, S., and Santoleri, R.: Spatio-temporal
variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea
from satellite ocean colour data of SeaWiFS, Ocean Sci., 11, 759–778,
https://doi.org/10.5194/os-11-759-2015, 2015.
Schulz, F. M., Stamnes, K., and Weng, F.: VDISORT: An improved and
generalized discrete ordinate method for polarized (vector) radiative
transfer, J. Quant. Spectrosc. Ra., 61, 105–122,
https://doi.org/10.1016/S0022-4073(97)00215-X, 1999.
Shaw, J. A. and Vollmer, M.: Blue sun glints on water viewed through a
polarizer, Appl. Optics, 56, G36–G41, https://doi.org/10.1364/AO.56.000G36, 2017.
Siegel, D. A., Wang, M., Maritorena, S., and Robinson, W.: Atmospheric
correction of satellite ocean color imagery: the black pixel assumption,
Appl. Optics, 39, 3582–3591, https://doi.org/10.1364/AO.39.003582, 2000.
Smith, R. and Baker, K.: Optical properties of the clearest natural waters
(200–800 nm), Appl. Optics, 20, 177–184, https://doi.org/10.1364/AO.20.000177, 1981.
Soloviev, A., Maingot, C., Matt, S., Dodge, R. E., Lehner, S., Velotto, D.,
Brusch, S., Perrie, W., and Hochberg, E.: Fine-scale features on the sea
surface in SAR satellite imagery – Part 1: Simultaneous in-situ
measurements, Ocean Sci. Discuss., 9, 2885–2914,
https://doi.org/10.5194/osd-9-2885-2012, 2012.
Stramski, D. and Piskozub, J.: Estimation of scattering error in
spectrophotometric measurements of light absorption by aquatic particles from
3-D radiative transfer simulations, Appl. Optics, 42, 3634–3646,
https://doi.org/10.1364/AO.42.003634, 2003.
Tonizzo, A., Zhou, J., Gilerson, A., Twardowski, M. S., Gray, D. J., Arnone,
R. A., Gross, B. M., Moshary, F., and Ahmed, S. A.: Polarized light in
coastal waters: hyperspectral and multiangular analysis, Opt. Express, 17,
5666–5683, https://doi.org/10.1364/OE.17.005666, 2009.
Tonizzo, A., Gilerson, A., Harmel, T., Ibrahim, A., Chowdhary, J., Gross, B.,
Moshary, F., and Ahmed S.: Estimating particle composition and size
distribution from polarized water-leaving radiance, Appl. Optics, 50,
5047–5058, https://doi.org/10.1364/AO.50.005047, 2011.
Volpe, G., Colella, S., Forneris, V., Tronconi, C., and Santoleri, R.: The
Mediterranean Ocean Colour Observing System – system development and product
validation, Ocean Sci., 8, 869–883, https://doi.org/10.5194/os-8-869-2012, 2012.
Volten, H., Muñoz, O., Rol, E., de Haan, J. F., Vassen, W., Hovenier, J.,
Muinonen, K., and Nousiainen, T.: Scattering matrices of mineral aerosol
particles at 441.6 nm and 632.8 nm, J. Geophys. Res., 106, 17375–17401,
https://doi.org/10.1029/2001JD900068, 2001.
Voss, K. J. and Fry, E. S.: Measurement of the Mueller matrix for ocean
water, Appl. Optics, 23, 4427–4439, https://doi.org/10.1364/AO.23.004427, 1984.
Wang, M.: Remote sensing of the ocean contributions from ultraviolet to
near-infrared using the shortwave infrared bands: simulations, Appl. Optics,
46, 1535–1547, https://doi.org/10.1364/AO.46.001535, 2007.
Wood, P. and Cunningham, A.: Ship-borne measurements of ocean colour:
Development of a CCD-based reflectance radiometer and trials on a
longitudinal transect of the Atlantic Ocean, Int. J. Remote Sens., 22,
99–111, https://doi.org/10.1080/014311601750038875, 2001.
Woźniak, S. B., Meler, J., Lednicka, B., Zdun, A., and Stoń-Egiert,
J.: Inherent optical properties of suspended particulate matter in the
southern Baltic Sea, Oceanologia, 53, 691–729, https://doi.org/10.5697/oc.53-3.691,
2011.
Zaneveld, J. R. V., Kitchen, J. C., and Moore, C.: The scattering error
correction of reflecting tube absorption meters, Proc. SPIE, 2258, 44–55,
https://doi.org/10.1117/12.190095, 1994.
Zhai, P., Knobelspiesse, K., Ibrahim, A., Franz, B., Hu, Y., Gao, M., and
Frouin, R.: Water-leaving contribution to polarized radiation field over
ocean, Opt. Express, 25, A689–A708, https://doi.org/10.1364/OE.25.00A689, 2017.
Zhou, G., Xu, W., Niu, C., and Zhao, H.: The polarization patterns of
skylight reflected off wave water surface, Opt. Express, 21, 32549–32565,
https://doi.org/10.1364/OE.21.032549, 2013.
Zhou, G., Xu, W., Niu, C., Zhang, K., Ma, Z., Wang, J., and Zhang,Y.:
Versatile time-dependent spatial distribution model of sun glint for
satellite-based ocean imaging, J. Appl. Rem. Sens., 11, 016020,
https://doi.org/10.1117/1.JRS.11.016020, 2017.
Zibordi, G., Mélin, F., Berthon, J.-F., and Canuti, E.: Assessment of
MERIS ocean color data products for European seas, Ocean Sci., 9, 521–533,
https://doi.org/10.5194/os-9-521-2013, 2013.
Short summary
The paper presents a correlation that can potentially improve the signal obtained from ocean color remote sensing. Results come from a modeling applied to the atmosphere–ocean system in different regions of the southern Baltic, two seasons and two wind speeds, each for nine visible spectral bands. The results show that the variability of the maximum of DoP depends more on seasonal than regional changes and can be explained to a large degree by the seawater absorption-to-attenuation ratio.
The paper presents a correlation that can potentially improve the signal obtained from ocean...