Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-651-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-651-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The long-term variability of extreme sea levels in the German Bight
Andreas Lang
CORRESPONDING AUTHOR
Max Planck Institute for Meteorology, 20146 Hamburg, Germany
International Max Planck Research
School on Earth System Modelling (IMPRS-ESM), 20146 Hamburg, Germany
Uwe Mikolajewicz
Max Planck Institute for Meteorology, 20146 Hamburg, Germany
Related authors
No articles found.
Malena Andernach, Marie-Luise Kapsch, and Uwe Mikolajewicz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-24, https://doi.org/10.5194/esd-2024-24, 2024
Preprint under review for ESD
Short summary
Short summary
Using a comprehensive set of simulations with the Max Planck Institute for Meteorology Earth System Model, we disentangle and quantify the impacts of a disintegrated Greenland Ice Sheet on the global climate, including the deep ocean. We find that most of the climate response is driven by Greenland’s lower elevation and enhanced by changed surface-properties, although regional differences exist. The altered climate conditions constrain a potential ice-sheet regrowth to high-bedrock elevations.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-55, https://doi.org/10.5194/cp-2024-55, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A fully coupled atmosphere-ocean-ice sheet-solid earth model was applied to simulate the time from the last glacial maximum to the preindustrial. The model simulations are compared to proxy data. During the glacial and deglaciation the model simulates several abrupt changes in North Atlantic climate. The underlying meachanisms are analysed and described.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Clemens Schannwell, Uwe Mikolajewicz, Florian Ziemen, and Marie-Luise Kapsch
Clim. Past, 19, 179–198, https://doi.org/10.5194/cp-19-179-2023, https://doi.org/10.5194/cp-19-179-2023, 2023
Short summary
Short summary
Heinrich-type ice-sheet surges are recurring events over the course of the last glacial cycle during which large numbers of icebergs are discharged from the Laurentide ice sheet into the ocean. These events alter the evolution of the global climate. Here, we use model simulations of the Laurentide ice sheet to identify and quantify the importance of various climate and ice-sheet parameters for the simulated surge cycle.
Katharina Dorothea Six and Uwe Mikolajewicz
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-27, https://doi.org/10.5194/bg-2022-27, 2022
Preprint withdrawn
Short summary
Short summary
We developed a global ocean biogeochemical model with a zoom on the Benguela upwelling system. We show that the high spatial resolution is necessary to capture long-term trends of oxygen of the recent past. The regional anthropogenic carbon uptake over the last century is lower than compared to a coarser resolution ocean model as used in Earth system models. This suggests that, at least for some regions, the changes projected by these Earth system models are associated with high uncertainty.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Marie-Luise Kapsch, Uwe Mikolajewicz, Florian A. Ziemen, Christian B. Rodehacke, and Clemens Schannwell
The Cryosphere, 15, 1131–1156, https://doi.org/10.5194/tc-15-1131-2021, https://doi.org/10.5194/tc-15-1131-2021, 2021
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Suzanne Alice Ghislaine Leroy, Klaus Arpe, Uwe Mikolajewicz, and Jing Wu
Clim. Past, 16, 2039–2054, https://doi.org/10.5194/cp-16-2039-2020, https://doi.org/10.5194/cp-16-2039-2020, 2020
Short summary
Short summary
The biodiversity of temperate deciduous trees in eastern Asia is greater than in Europe. During the peak of the last ice age, their distribution was obtained based on pollen data literature. A climate model, after validation on the present, was used to calculate the potential distribution of such trees in the past. It shows that the shift of the tree belt was only 2° latitude to the south. Moreover, greater population connectivity was shown for the Yellow Sea and southern Himalayas.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Moritz Mathis and Uwe Mikolajewicz
Ocean Sci., 16, 167–193, https://doi.org/10.5194/os-16-167-2020, https://doi.org/10.5194/os-16-167-2020, 2020
Short summary
Short summary
In a strong global warming scenario, declining nutrient concentrations of Atlantic water masses flushing the NWES lead to a reduction in the biological productivity on the shelf. We show that meltwater discharge from the Greenland ice sheet induces a change in the subpolar ocean circulation, resulting in a nutrient increase of deeper Atlantic water masses. These are mixed up at the shelf break and spread over the shelf, mitigating both the expected nutrient decline and productivity reduction.
Florian Andreas Ziemen, Marie-Luise Kapsch, Marlene Klockmann, and Uwe Mikolajewicz
Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, https://doi.org/10.5194/cp-15-153-2019, 2019
Short summary
Short summary
Heinrich events are among the dominant modes of glacial climate variability. They are caused by massive ice discharges from the Laurentide Ice Sheet into the North Atlantic. In previous studies, the climate changes were either seen as resulting from freshwater released from the melt of the discharged icebergs or by ice sheet elevation changes. With a coupled ice sheet–climate model, we show that both effects are relevant with the freshwater effects preceding the ice sheet elevation effects.
Virna Loana Meccia and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4677–4692, https://doi.org/10.5194/gmd-11-4677-2018, https://doi.org/10.5194/gmd-11-4677-2018, 2018
Thomas Riddick, Victor Brovkin, Stefan Hagemann, and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4291–4316, https://doi.org/10.5194/gmd-11-4291-2018, https://doi.org/10.5194/gmd-11-4291-2018, 2018
Short summary
Short summary
During the Last Glacial Maximum, many rivers were blocked by the presence of large ice sheets and thus found new routes to the sea. This resulted in changes in the pattern of freshwater discharge into the oceans and thus would have significantly affected ocean circulation. Also, rivers found routes across the vast exposed continental shelves to the lower coastlines of that time. We propose a model for such changes in river routing suitable for use in wider models of the last glacial cycle.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Valerie Menke, Werner Ehrmann, Yvonne Milker, Swaantje Brzelinski, Jürgen Möbius, Uwe Mikolajewicz, Bernd Zolitschka, Karin Zonneveld, Kay Christian Emeis, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-139, https://doi.org/10.5194/cp-2017-139, 2017
Preprint withdrawn
Short summary
Short summary
This study examines changes in the marine ecosystem during the past 1300 years in the Gulf of Taranto (Italy) to unravel natural and anthropogenic forcing. Our data suggest, that processes at the sea floor are linked to the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation. During the past 200 years, the effects of rising northern hemisphere temperature and increasing anthropogenic activity enhanced nutrient and organic matter fluxes leading to more eutrophic conditions.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Marlene Klockmann, Uwe Mikolajewicz, and Jochem Marotzke
Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016, https://doi.org/10.5194/cp-12-1829-2016, 2016
Short summary
Short summary
We study the response of the glacial AMOC to different forcings in a coupled AOGCM. The depth of the upper overturning cell remains almost unchanged in response to the full glacial forcing. This is the result of two opposing effects: a deepening due to the ice sheets and a shoaling due to the low GHG concentrations. Increased brine release in the Southern Ocean is key to the shoaling. With glacial ice sheets, a shallower cell can be simulated with GHG concentrations below the glacial level.
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
F. A. Ziemen, C. B. Rodehacke, and U. Mikolajewicz
Clim. Past, 10, 1817–1836, https://doi.org/10.5194/cp-10-1817-2014, https://doi.org/10.5194/cp-10-1817-2014, 2014
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein
Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, https://doi.org/10.5194/bg-10-3767-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Related subject area
Approach: Numerical Models | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Sea Level
An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate
A. Sterl, H. van den Brink, H. de Vries, R. Haarsma, and E. van Meijgaard
Ocean Sci., 5, 369–378, https://doi.org/10.5194/os-5-369-2009, https://doi.org/10.5194/os-5-369-2009, 2009
Cited articles
Araújo, I. B. and Pugh, D. T.: Sea levels at Newlyn 1915–2005: analysis of
trends for future flooding risks, J. Coast. Res., 24, 203–212,
2008. a
Arns, A., Wahl, T., Haigh, I., Jensen, J., and Pattiaratchi, C.: Estimating
extreme water level probabilities: A comparison of the direct methods and
recommendations for best practise, Coast. Engin., 81, 51–66, 2013. a
Barriopedro, D., García-Herrera, R., Lionello, P., and Pino, C.: A
discussion of the links between solar variability and high-storm-surge events
in Venice, J. Geophys. Res.-Atmos., 115, D13101, https://doi.org/10.1029/2009JD013114, 2010. a, b
Calafat, F., Chambers, D., and Tsimplis, M.: Mechanisms of decadal sea level
variability in the eastern North Atlantic and the Mediterranean Sea, J. Geophys. Res.-Ocean., 117, C09022, https://doi.org/10.1029/2012JC008285, 2012. a, b
Crowley, T. J., Zielinski, G., Vinther, B., Udisti, R., Kreutz, K., Cole-Dai,
J., and Castellano, E.: Volcanism and the little ice age, PAGES news, 16,
22–23, 2008. a
Dangendorf, S., Mudersbach, C., Jensen, J., Anette, G., and Heinrich, H.:
Seasonal to decadal forcing of high water level percentiles in the German
Bight throughout the last century, Ocean Dynam., 63, 533–548,
2013a. a
Dangendorf, S., Mudersbach, C., Wahl, T., and Jensen, J.: Characteristics of
intra-, inter-annual and decadal sea-level variability and the role of
meteorological forcing: the long record of Cuxhaven, Ocean Dynam., 63,
209–224, 2013b. a
Dangendorf, S., Calafat, F. M., Arns, A., Wahl, T., Haigh, I. D., and Jensen,
J.: Mean sea level variability in the North Sea: Processes and implications,
J. Geophys. Res.-Ocean., 119, 6820–6841, https://doi.org/10.1002/2014JC009901, 2014a. a
Daniell, P.: Discussion on Symposium on autocorrelation in time series, J. Roy.
Stat. Soc., 8, 88–90, 1946. a
Donat, M. G., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: Examination of
wind storms over Central Europe with respect to circulation weather types and
NAO phases, Int. J. Climatol., 30, 1289–1300, 2010. a
Elizalde, A., Gröger, M., Mathis, M., MIkOLAJEw-ICZ, U., BüLOw, K.,
Hüttl-Kabus, S., Klein, B., and GANSkE, A.: MPIOM-REMO A Coupled Regional
Model for the North Sea, KLIWAS-Schriftenreihe KLIWAS-58/2014, 10, 2014. a
Ezer, T., Haigh, I. D., and Woodworth, P. L.: Nonlinear sea-level trends and
long-term variability on Western European Coasts, J. Coast.
Res., 32, 744–755, 2015. a
Fischer, E. M., Beyerle, U., and Knutti, R.: Robust spatially aggregated
projections of climate extremes, Nat. Clim. Change, 3, 1033, https://doi.org/10.1038/nclimate2051, 2013. a
Frankcombe, L. and Dijkstra, H.: Coherent multidecadal variability in North
Atlantic sea level, Geophys. Res. Lett., 36, L15604, 2009. a
Gagen, M. H., Zorita, E., McCarroll, D., Zahn, M., Young, G. H., and Robertson,
I.: North Atlantic summer storm tracks over Europe dominated by internal
variability over the past millennium, Nat. Geosci., 9, 630–635, 2016. a
Gerber, M., Ganske, A., Müller-Navarra, S., and Rosenhagen, G.:
Categorisation of Meteorological Conditions for Storm Tide Episodes in the
German Bight, Meteorologische Zeitschrift, 447–462, 2016. a
Giorgetta, M. A., Roeckner, E., Mauritsen, T., Stevens, B., Bader, J.,
Crueger, T., Esch, M., Rast, S., Kornblueh, L., Schmidt, H., Kinne, S.,
Möbis, B., and Krismer, T.: The atmospheric
general circulation model ECHAM6, Model description, Max Planck Inst. for
Meteorol., Hamburg, Germany, 2012. a
Gómez-Navarro, J. and Zorita, E.: Atmospheric annular modes in simulations
over the past millennium: No long-term response to external forcing,
Geophys. Res. Lett., 40, 3232–3236, 2013. a
Gönnert, G. and Sossidi, K.: A new approach to calculate extreme storm surges: analysing the interaction of storm surge components, WIT Trans. Ecol. Envir., 149, 139–150, 2011. a
Hadler, H., Vött, A., Newig, J., Emde, K., Finkler, C., Fischer, P., and
Willershäuser, T.: Geoarchaeological evidence of marshland destruction in
the area of Rungholt, present-day Wadden Sea around Hallig Südfall (North
Frisia, Germany), by the Grote Mandrenke in 1362 AD, Quatern.
Int., 473, 37–54, 2018. a
Heimreich, M. A. (Editor: Falck, N.: Nordfriesische Chronik, Tondern,Quaternary 1819. a
Heyen, H., Zorita, E., and von Storch, H.: Statistical downscaling of monthly
mean North Atlantic air-pressure to sea level anomalies in the Baltic Sea,
Tellus A, 48, 312–323, 1996. a
Horsburgh, K. and Wilson, C.: Tide-surge interaction and its role in the
distribution of surge residuals in the North Sea, J. Geophys.
Res.-Ocean., 112, C08003, https://doi.org/10.1029/2006JC004033, 2007. a
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Regional Temperatures and precipitation, Science, 269, 676–679, 1995. a
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate model
REMO, Meteorol. Atmos. Phys., 63, 119–129, 1997. a
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B.,
Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski,
G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.:
EURO-CORDEX: new high-resolution climate change projections for European
impact research, Reg. Environ. Change, 14, 563–578, 2014. a
Jensen, J., Frank, T., and Wahl, T.: Analyse von hochaufgelösten
Tidewasserständen und Ermittlung des MSL an der deutschen
Nordseeküste (AMSeL), Die Küste, 78, 59–163, 2011. a
Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and Storch, J.: Characteristics of the ocean
simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model.
Earth Sy., 5, 422–446, 2013. a, b
Jungclaus, J. H., Lohmann, K., and Zanchettin, D.: Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium, Clim. Past, 10, 2201–2213, https://doi.org/10.5194/cp-10-2201-2014, 2014. a, b
Kaniewski, D., Marriner, N., Morhange, C., Faivre, S., Otto, T., and Van Campo,
E.: Solar pacing of storm surges, coastal flooding and agricultural losses in
the Central Mediterranean, Sci. Rep., 6, 25197, https://doi.org/10.1038/srep25197, 2016. a, b
Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M.-S., and Olsen, J.: Evidence
for external forcing of the Atlantic Multidecadal Oscillation since
termination of the Little Ice Age, Nat. Commun., 5, 3323, https://doi.org/10.1038/ncomms4323, 2014. a
Kolker, A. S. and Hameed, S.: Meteorologically driven trends in sea level rise,
Geophys. Res. Lett., 34, L23616, https://doi.org/10.1029/2007GL031814, 2007. a
Lowe, J. and Gregory, J.: The effects of climate change on storm surges around
the United Kingdom, Philosophical Transactions of the Royal Society of London
A: Mathematical, Phys. Engin. Sci., 363, 1313–1328, 2005. a
Lowe, J., Gregory, J. M., and Flather, R.: Changes in the occurrence of storm
surges around the United Kingdom under a future climate scenario using a
dynamic storm surge model driven by the Hadley Centre climate models, Clim.
Dynam., 18, 179–188, 2001. a
Marcos, M., Tsimplis, M. N., and Shaw, A. G.: Sea level extremes in southern
Europe, J. Geophys. Res.-Ocean., 114, C01007, https://doi.org/10.1029/2008JC004912, 2009. a, b, c
Marcos, M., Calafat, F. M., Berihuete, Á., and Dangendorf, S.: Long-term
variations in global sea level extremes, J. Geophys. Res.-Ocean., 120, 8115–8134, 2015. a
Marsland, S. J., Bindoff, N., Williams, G., and Budd, W.: Modeling water mass
formation in the Mertz Glacier Polynya and Adélie Depression, east
Antarctica, J. Geophys. Res.-Ocean., 109, C11003, https://doi.org/10.1029/2004JC002441, 2004. a
Martínez-Asensio, A., Tsimplis, M. N., and Calafat, F. M.: Decadal
variability of European sea level extremes in relation to the solar activity,
Geophys. Res. Lett., 43, 11744-–11750, https://doi.org/10.1002/2016GL071355, 2016. a, b
Mathis, M., Elizalde, A., and Mikolajewicz, U.: Which complexity of regional
climate system models is essential for downscaling anthropogenic climate
change in the Northwest European Shelf?, Clim. Dynam., 50, 2637–2659,
2018. a
Mawdsley, R. J. and Haigh, I. D.: Spatial and temporal variability and
long-term trends in skew surges globally, Front. Mar. Sci., 3, 29, 17 pp.,
2016. a
Méndez, F. J., Menéndez, M., Luceño, A., and Losada, I. J.:
Estimation of the long-term variability of extreme significant wave height
using a time-dependent peak over threshold (pot) model, J.
Geophys. Res.-Ocean., 111, C07024, https://doi.org/10.1029/2005JC003344, 2006. a
Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels
based on a quasi-global tide-gauge data set, J. Geophys. Res.-Ocean., 115, C10011, https://doi.org/10.1029/2009JC005997, 2010. a, b
Mikolajewicz, U., Sein, D. V., Jacob, D., Königk, T., Podzun, R., and
Semmler, T.: Simulating Arctic sea ice variability with a coupled regional
atmosphere-ocean-sea ice model, Meteorol. Z., 14, 793–800,
2005. a
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A.,
Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age
triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys.
Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012. a
Moreno-Chamarro, E., Zanchettin, D., Lohmann, K., Luterbacher, J., and
Jungclaus, J. H.: Winter amplification of the European Little Ice Age cooling
by the subpolar gyre, Sci. Rep., 7, 9981, https://doi.org/10.1038/s41598-017-07969-0, 2017. a, b
Müller-Navarra, S., Lange, W., Dick, S., and Soetje, K.: Über die
Verfahren der Wasserstands-und Sturmflutvorhersage, Promet, 29, 117–124,
2003. a
Otterå, O. H., Bentsen, M., Drange, H., and Suo, L.: External forcing as a
metronome for Atlantic multidecadal variability, Nat. Geosci., 3, 688–694,
2010. a
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE, Comput. Geosci.,
28, 929–937, 2002. a
Plüß, A.: Nichtlineare Wechselwirkung der Tide auf Anderungen des Meeresspiegels im Küste/Astuar am Beispiel der Elbe, in: Klimaänderung und Küstenschutz, edited by: Gönnert, G., Grassl, H., Kellat, D., Kunz, H., Probst, B., von Storch, H., and Sündermann,
J., 129–138, 2004. a
Pugh, D. and Woodworth, P.: Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes, 407 pp., Cambridge Univ. Press, Cambridge, UK, 2014. a
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012. a
Seierstad, I., Stephenson, D., and Kvamstø, N.: How useful are
teleconnection patterns for explaining variability in extratropical
storminess?, Tellus A, 59, 170–181,
2007. a
Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto,
J. G., Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.: Regionally
coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1.
Description and validation, J. Adv. Model. Earth Sy., 7,
268–304, 2015. a
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Gößling, H. F., Handorf, D., Harig, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D. V., and Wang, Q.: Towards
multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model
formulation and mean climate, Clim. Dynam., 44, 757–780, 2015. a
Sterl, A., van den Brink, H., de Vries, H., Haarsma, R., and van Meijgaard, E.: An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate, Ocean Sci., 5, 369–378, https://doi.org/10.5194/os-5-369-2009, 2009. a, b
Sturges, W. and Douglas, B. C.: Wind effects on estimates of sea level rise,
J. Geophys. Res.-Ocean., 116, C06008, https://doi.org/10.1029/2010JC006492, 2011. a, b
Swingedouw, D., Terray, L., Cassou, C., Voldoire, A., Salas-Mélia, D., and
Servonnat, J.: Natural forcing of climate during the last millennium:
fingerprint of solar variability, Clim. Dynam., 36, 1349–1364, 2011. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, Bull. Am. Meteor. Soc., 93,
485–498, 2012. a
Thomas, M., Sündermann, J., and Maier-Reimer, E.: Consideration of ocean
tides in an OGCM and impacts on subseasonal to decadal polar motion
excitation, Geophys. Res. Lett., 28, 2457–2460, 2001. a
Tsimplis, M. and Woodworth, P.: The global distribution of the seasonal sea
level cycle calculated from coastal tide gauge data, J. Geophys.
Res.-Ocean., 99, 16031–16039, 1994. a
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013. a
von Storch, H. and Reichardt, H.: A scenario of storm surge statistics for the
German Bight at the expected time of doubled atmospheric carbon dioxide
concentration, J. Clim., 10, 2653–2662, 1997. a
von Storch, H. and Woth, K.: Storm surges: perspectives and options,
Sustainability Science, 3, 33–43, 2008. a
Wahl, T. and Chambers, D. P.: Evidence for multidecadal variability in US
extreme sea level records, J. Geophys. Res.-Ocean., 120,
1527–1544, 2015. a
Wahl, T., Jensen, J., Frank, T., and Haigh, I. D.: Improved estimates of mean
sea level changes in the German Bight over the last 166 years, Ocean
Dynam., 61, 701–715, 2011. a
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J.,
and Slangen, A. B.: Understanding extreme sea levels for broad-scale coastal
impact and adaptation analysis, Nat. Commun., 8, 16075, https://doi.org/10.1038/ncomms16075, 2017. a
Wakelin, S., Woodworth, P., Flather, R., and Williams, J.: Sea-level dependence
on the NAO over the NW European Continental Shelf, Geophys. Res.
Lett., 30, 1403, https://doi.org/10.1029/2003GL017041, 2003. a, b, c
Wang, Y.-M., Lean, J., and Sheeley Jr., N.: Modeling the Sun’s magnetic field
and irradiance since 1713, Astrophys. J., 625, 522–538, 2005. a
Weisse, R., von Storch, H., Niemeyer, H. D., and Knaack, H.: Changing North Sea
storm surge climate: An increasing hazard?, Ocean Coast. Manag., 68,
58–68, 2012. a
Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R. J.,
Umgiesser, G., and Willems, P.: Changing extreme sea levels along European
coasts, Coast. Engin., 87, 4–14, 2014. a
Woodworth, P. L., Menéndez, M., and Gehrels, W. R.: Evidence for
century-timescale acceleration in mean sea levels and for recent changes in
extreme sea levels, Surv. Geophys., 32, 603–618, 2011. a
Woth, K., Weisse, R., and von Storch, H.: Climate change and North Sea storm
surge extremes: an ensemble study of storm surge extremes expected in a
changed climate projected by four different regional climate models, Ocean
Dynam., 56, 3–15, 2006. a
Yin, J. H.: A consistent poleward shift of the storm tracks in simulations of
21st century climate, Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684, 2005. a
Zanchettin, D., Timmreck, C., Bothe, O., Lorenz, S. J., Hegerl, G., Graf,
H.-F., Luterbacher, J., and Jungclaus, J. H.: Delayed winter warming: A
robust decadal response to strong tropical volcanic eruptions?, Geophys.
Res. Lett., 40, 204–209, 2013. a
Short summary
Here we investigate the occurrence of extreme storm surges in the southern German Bight and their associated large-scale forcing mechanisms using climate model simulations covering the last 1000 years. We find that extreme storm surges are characterized by a large internal variability that masks potential links to external climate forcing or background sea level fluctuations; existing estimates of extreme sea levels based on short data records thus fail to account for their full variability.
Here we investigate the occurrence of extreme storm surges in the southern German Bight and...