Articles | Volume 15, issue 3
Ocean Sci., 15, 583–599, 2019
https://doi.org/10.5194/os-15-583-2019
Ocean Sci., 15, 583–599, 2019
https://doi.org/10.5194/os-15-583-2019

Research article 28 May 2019

Research article | 28 May 2019

Impacts of Three Gorges Dam's operation on spatial–temporal patterns of tide–river dynamics in the Yangtze River estuary, China

Huayang Cai et al.

Related authors

River-enhanced non-linear overtide variations in river estuaries
Leicheng Guo, Chunyan Zhu, Huayang Cai, Zheng Bing Wang, Ian Townend, and Qing He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-75,https://doi.org/10.5194/hess-2021-75, 2021
Preprint under review for HESS
Short summary
A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020,https://doi.org/10.5194/hess-24-5859-2020, 2020
A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries
Huayang Cai, Ping Zhang, Erwan Garel, Pascal Matte, Shuai Hu, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 24, 1871–1889, https://doi.org/10.5194/hess-24-1871-2020,https://doi.org/10.5194/hess-24-1871-2020, 2020
Short summary
Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019,https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Frictional interactions between tidal constituents in tide-dominated estuaries
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018,https://doi.org/10.5194/os-14-769-2018, 2018

Cited articles

Alebregtse, N. C. and de Swart, H. E.: Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze estuary, Cont. Shelf. Res., 123, 29–49, https://doi.org/10.1016/j.csr.2016.03.028, 2016. 
An, Q., Wu., Y., and Taylor, S.: Influence of the Three Gorges Project on saltwater intrusion in the Yangtze River Estuary, Environ. Geol., 56, 1679–1686, https://doi.org/10.1007/s00254-008-1266-4, 2009. 
Buschman, F. A., Hoitink, A. J. F., van der Vegt, M., and Hoekstra, P.: Subtidal water level variation controlled by river flow and tides, Water Resour. Res., 45, W10420, https://doi.org/10.1029/2009WR008167, 2009. 
Cai, H., Savenije, H. H. G., and Toffolon, M.: Linking the river to the estuary, influence of river discharge on tidal damping, Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, 2014a. 
Cai, H., Savenije, H. H. G., and Jiang, C.: Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations, Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, 2014b. 
Download
Short summary
In this study, we assessed the impacts of the world’s largest dam, the Three Gorges Dam (TGD), on tide–river dynamics and concluded that the strongest impacts occurred during autumn and winter due to the TGD's operation. The results obtained will hopefully enhance our understanding of the impacts of large-scale human interventions on estuarine hydrodynamics and guide effective and sustainable water management in the Yangtze River estuary and other estuaries with substantial freshwater discharge.