Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-583-2019
https://doi.org/10.5194/os-15-583-2019
Research article
 | Highlight paper
 | 
28 May 2019
Research article | Highlight paper |  | 28 May 2019

Impacts of Three Gorges Dam's operation on spatial–temporal patterns of tide–river dynamics in the Yangtze River estuary, China

Huayang Cai, Xianyi Zhang, Min Zhang, Leicheng Guo, Feng Liu, and Qingshu Yang

Related authors

Extension of the general unit hydrograph theory for the spread of salinity in estuaries
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023,https://doi.org/10.5194/os-19-603-2023, 2023
Short summary
Quantifying the impacts of the Three Gorges Dam on the spatial–temporal water level dynamics in the upper Yangtze River estuary
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022,https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022,https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Dynamics of fortnightly water level variations along a tide-dominated estuary with negligible river discharge
Erwan Garel, Ping Zhang, and Huayang Cai
Ocean Sci., 17, 1605–1621, https://doi.org/10.5194/os-17-1605-2021,https://doi.org/10.5194/os-17-1605-2021, 2021
Short summary
River-enhanced non-linear overtide variations in river estuaries
Leicheng Guo, Chunyan Zhu, Huayang Cai, Zheng Bing Wang, Ian Townend, and Qing He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-75,https://doi.org/10.5194/hess-2021-75, 2021
Revised manuscript not accepted
Short summary

Cited articles

Alebregtse, N. C. and de Swart, H. E.: Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze estuary, Cont. Shelf. Res., 123, 29–49, https://doi.org/10.1016/j.csr.2016.03.028, 2016. 
An, Q., Wu., Y., and Taylor, S.: Influence of the Three Gorges Project on saltwater intrusion in the Yangtze River Estuary, Environ. Geol., 56, 1679–1686, https://doi.org/10.1007/s00254-008-1266-4, 2009. 
Buschman, F. A., Hoitink, A. J. F., van der Vegt, M., and Hoekstra, P.: Subtidal water level variation controlled by river flow and tides, Water Resour. Res., 45, W10420, https://doi.org/10.1029/2009WR008167, 2009. 
Cai, H., Savenije, H. H. G., and Toffolon, M.: Linking the river to the estuary, influence of river discharge on tidal damping, Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, 2014a. 
Cai, H., Savenije, H. H. G., and Jiang, C.: Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations, Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, 2014b. 
Download
Short summary
In this study, we assessed the impacts of the world’s largest dam, the Three Gorges Dam (TGD), on tide–river dynamics and concluded that the strongest impacts occurred during autumn and winter due to the TGD's operation. The results obtained will hopefully enhance our understanding of the impacts of large-scale human interventions on estuarine hydrodynamics and guide effective and sustainable water management in the Yangtze River estuary and other estuaries with substantial freshwater discharge.