Articles | Volume 15, issue 2
https://doi.org/10.5194/os-15-349-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.Hybrid improved empirical mode decomposition and BP neural network model for the prediction of sea surface temperature
Related authors
Related subject area
Approach: Analytic Theory | Depth range: Surface | Geographical range: Deep Seas: North Pacific | Phenomena: Temperature, Salinity and Density Fields
The long-term spatiotemporal variability of sea surface temperature in the northwest Pacific and China offshore
Ocean Sci., 16, 83–97,
2020Cited articles
Amezquita-Sanchez, J. P. and Adeli, H.: A new music-empirical wavelet transform
methodology for time–frequency analysis of noisy nonlinear and non-stationary
signals, Digit. Signal Process., 45, 55–68, https://doi.org/10.1016/j.dsp.2015.06.013, 2015.
Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W.: A long-term
record of blended satellite and in situ sea-surface temperature for climate
monitoring, modeling and environmental studies, Earth Syst. Sci. Data, 8,
165–176, https://doi.org/10.5194/essd-8-165-2016, 2016.
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts
of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 3414–3420,
https://doi.org/10.1002/2015GL063306, 2015.
Buckley, M. W., Ponte, R. M., Forget, G., and Heimbach, P.: Low-frequency SST
and upper-ocean heat content variability in the North Atlantic, J. Climate, 27,
4996–5018, https://doi.org/10.1175/JCLI-D-13-00316.1, 2014.
Chen, C., Cane, M. A., Henderson, N., Lee, D. E., Chapman, D., Kondrashov, D.,
and Chekroun, M. D.: Diversity, nonlinearity, seasonality, and memory effect
in ENSO simulation and prediction using empirical model reduction, J. Climate,
29, 1809–1830, https://doi.org/10.1175/JCLI-D-15-0372.1, 2016.