Articles | Volume 15, issue 2
https://doi.org/10.5194/os-15-307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-15-307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of bottom sediment resuspension events observed in a micro-tidal bay
Laboratori d'Enginyeria Marítima, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, 08034, Spain
Centre Internacional d'Investigació dels Recursos Costaners (CIIRC), Barcelona, 08034, Spain
Pablo Cerralbo
Laboratori d'Enginyeria Marítima, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, 08034, Spain
Centre Internacional d'Investigació dels Recursos Costaners (CIIRC), Barcelona, 08034, Spain
Jorge Guillén
Institut de Ciències del Mar (ICM-CSIC), Barcelona, 08003, Spain
Manuel Espino
Laboratori d'Enginyeria Marítima, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, 08034, Spain
Centre Internacional d'Investigació dels Recursos Costaners (CIIRC), Barcelona, 08034, Spain
Lars Boye Hansen
DHI-Gras, Horsholm, 2970, Denmark
Agustín Sánchez-Arcilla
Laboratori d'Enginyeria Marítima, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, 08034, Spain
Centre Internacional d'Investigació dels Recursos Costaners (CIIRC), Barcelona, 08034, Spain
Related authors
Marta F.-Pedrera Balsells, Manel Grifoll, Margarita Fernández-Tejedor, Manuel Espino, Marc Mestres, and Agustín Sánchez-Arcilla
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-322, https://doi.org/10.5194/bg-2021-322, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton in coastal bays is influenced by physical variables (wind or freshwater inputs) that can influence the composition of phytoplankton. A numerical model has been applied to understand this variability. The simulations show that during weak wind events there is physical separation between surface and deep layers, penalising phytoplankton growth. During intense wind, mixing of the water column occurs, increasing the phytoplankton biomass in the lower layers.
Pablo Cerralbo, Marta F.-Pedrera Balsells, Marc Mestres, Margarita Fernandez, Manuel Espino, Manel Grifoll, and Agustin Sanchez-Arcilla
Ocean Sci., 15, 215–226, https://doi.org/10.5194/os-15-215-2019, https://doi.org/10.5194/os-15-215-2019, 2019
Short summary
Short summary
In this contribution we investigate the hydrodynamic response in Alfacs Bay (Delta Ebro, NW Mediterranean Sea) to freshwater flows and inner bay to open sea connections. The numerical model ROMS is applied nested to Copernicus models and validated with in situ data. Considering the results, only the modification of freshwater flows is recommended due to its lower impact on the environment and associated economic costs. None of the proposed solutions solve the problem related to warm waters.
Laura Ràfols, Manel Grifoll, and Manuel Espino
Ocean Sci., 15, 1–20, https://doi.org/10.5194/os-15-1-2019, https://doi.org/10.5194/os-15-1-2019, 2019
Short summary
Short summary
This study investigates the effects of the wave–current interactions in a region where episodes of strong cross-shelf wind occur. To do so, a coupled system between two numerical models has been implemented. The results do not show substantial differences in the water current patterns, but a clear effect on the water column stratification has been found. Additionally, stronger impact is observed for the wave period rather than the wave height.
Manel Grifoll, Jorge Navarro, Elena Pallares, Laura Ràfols, Manuel Espino, and Ana Palomares
Nonlin. Processes Geophys., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016, https://doi.org/10.5194/npg-23-143-2016, 2016
Short summary
Short summary
In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterized by persistent and energetic offshore winds during autumn and winter. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.
M. Grifoll, A. L. Aretxabaleta, J. L. Pelegrí, and M. Espino
Ocean Sci., 12, 137–151, https://doi.org/10.5194/os-12-137-2016, https://doi.org/10.5194/os-12-137-2016, 2016
Short summary
Short summary
We investigate the rapidly changing equilibrium between the momentum sources and sinks during the passage of a single two-peak storm over the Catalan inner shelf (NW Mediterranean Sea). At 24m water depth, a primary momentum balance between acceleration, pressure gradient and frictional forces (surface and bottom) is established. The frictional adjustment timescale was around 10h, consistent with the e-folding time obtained from bottom drag parameterizations.
P. Cerralbo, M. Grifoll, J. Moré, M. Bravo, A. Sairouní Afif, and M. Espino
Adv. Sci. Res., 12, 11–21, https://doi.org/10.5194/asr-12-11-2015, https://doi.org/10.5194/asr-12-11-2015, 2015
Short summary
Short summary
Wind spatial heterogeneity in a coastal area (Alfacs Bay, northwestern Mediterranean Sea) is described using a set of observations and modelling results. Observations during 2012–2013 reveal that both N–NW winds and sea breezes appear to be affected by the local orography promoting high wind variability in relatively short spatial scales. The importance of wind models’ spatial resolution is also assessed and used to describe the spatial variability of the typical winds in the region.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024, https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
Short summary
The LOCATE numerical model was developed to conduct Lagrangian simulations of the transport and dispersion of marine debris at coastal scales. High-resolution hydrodynamic data and a beaching module that used particle distance to the shore for land–water boundary detection were used on a realistic debris discharge scenario comparing hydrodynamic data at various resolutions. Coastal processes and complex geometric structures were resolved when using nested grids and distance-to-shore beaching.
Marta F.-Pedrera Balsells, Manel Grifoll, Margarita Fernández-Tejedor, Manuel Espino, Marc Mestres, and Agustín Sánchez-Arcilla
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-322, https://doi.org/10.5194/bg-2021-322, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton in coastal bays is influenced by physical variables (wind or freshwater inputs) that can influence the composition of phytoplankton. A numerical model has been applied to understand this variability. The simulations show that during weak wind events there is physical separation between surface and deep layers, penalising phytoplankton growth. During intense wind, mixing of the water column occurs, increasing the phytoplankton biomass in the lower layers.
Pablo Cerralbo, Marta F.-Pedrera Balsells, Marc Mestres, Margarita Fernandez, Manuel Espino, Manel Grifoll, and Agustin Sanchez-Arcilla
Ocean Sci., 15, 215–226, https://doi.org/10.5194/os-15-215-2019, https://doi.org/10.5194/os-15-215-2019, 2019
Short summary
Short summary
In this contribution we investigate the hydrodynamic response in Alfacs Bay (Delta Ebro, NW Mediterranean Sea) to freshwater flows and inner bay to open sea connections. The numerical model ROMS is applied nested to Copernicus models and validated with in situ data. Considering the results, only the modification of freshwater flows is recommended due to its lower impact on the environment and associated economic costs. None of the proposed solutions solve the problem related to warm waters.
Agustín Sánchez-Arcilla, Jue Lin-Ye, Manuel García-León, Vicente Gràcia, and Elena Pallarès
Ocean Sci., 15, 113–126, https://doi.org/10.5194/os-15-113-2019, https://doi.org/10.5194/os-15-113-2019, 2019
Short summary
Short summary
A quantitative definition for the coastal border isotropy of met-ocean processes is proposed. Wind velocity and significant wave height anisotropies are examined along four transects at the north-western Mediterranean coast. Both decrease offshore, determining a coastal fringe of width of 2–4 km. The joint probability structure reflects a decoupling near the coast and a stronger dependence in the bay-like part, where the wave field is being more actively generated by the overlaying wind.
Laura Ràfols, Manel Grifoll, and Manuel Espino
Ocean Sci., 15, 1–20, https://doi.org/10.5194/os-15-1-2019, https://doi.org/10.5194/os-15-1-2019, 2019
Short summary
Short summary
This study investigates the effects of the wave–current interactions in a region where episodes of strong cross-shelf wind occur. To do so, a coupled system between two numerical models has been implemented. The results do not show substantial differences in the water current patterns, but a clear effect on the water column stratification has been found. Additionally, stronger impact is observed for the wave period rather than the wave height.
Manel Grifoll, Jorge Navarro, Elena Pallares, Laura Ràfols, Manuel Espino, and Ana Palomares
Nonlin. Processes Geophys., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016, https://doi.org/10.5194/npg-23-143-2016, 2016
Short summary
Short summary
In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterized by persistent and energetic offshore winds during autumn and winter. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.
M. Grifoll, A. L. Aretxabaleta, J. L. Pelegrí, and M. Espino
Ocean Sci., 12, 137–151, https://doi.org/10.5194/os-12-137-2016, https://doi.org/10.5194/os-12-137-2016, 2016
Short summary
Short summary
We investigate the rapidly changing equilibrium between the momentum sources and sinks during the passage of a single two-peak storm over the Catalan inner shelf (NW Mediterranean Sea). At 24m water depth, a primary momentum balance between acceleration, pressure gradient and frictional forces (surface and bottom) is established. The frictional adjustment timescale was around 10h, consistent with the e-folding time obtained from bottom drag parameterizations.
J. P. Sierra, M. Casas-Prat, M. Virgili, C. Mösso, and A. Sánchez-Arcilla
Nat. Hazards Earth Syst. Sci., 15, 1695–1709, https://doi.org/10.5194/nhess-15-1695-2015, https://doi.org/10.5194/nhess-15-1695-2015, 2015
P. Cerralbo, M. Grifoll, J. Moré, M. Bravo, A. Sairouní Afif, and M. Espino
Adv. Sci. Res., 12, 11–21, https://doi.org/10.5194/asr-12-11-2015, https://doi.org/10.5194/asr-12-11-2015, 2015
Short summary
Short summary
Wind spatial heterogeneity in a coastal area (Alfacs Bay, northwestern Mediterranean Sea) is described using a set of observations and modelling results. Observations during 2012–2013 reveal that both N–NW winds and sea breezes appear to be affected by the local orography promoting high wind variability in relatively short spatial scales. The importance of wind models’ spatial resolution is also assessed and used to describe the spatial variability of the typical winds in the region.
A. Sánchez-Arcilla, M. García-León, and V. Gracia
Nat. Hazards Earth Syst. Sci., 14, 2993–3004, https://doi.org/10.5194/nhess-14-2993-2014, https://doi.org/10.5194/nhess-14-2993-2014, 2014
Cited articles
Amoudry, L. O. and Souza, A. J.: Deterministic coastal morphological and
sediment transport modeling: a review and discussion, Rev. Geophys., 49, 1–21,
https://doi.org/10.1029/2010RG000341, 2011.
Bever, A. J., Harris, C. K., Sherwood, C. R., and Signell, R. P.: Deposition
and flux of sediment from the Po River, Italy: An idealized and wintertime
numerical modeling study, Mar. Geol., 260, 69–80, https://doi.org/10.1016/j.margeo.2009.01.007, 2009.
Bever, A. J., McNinch, J. E., and Harris, C. K.: Hydrodynamics and
sediment-transport in the nearshore of Poverty Bay, New Zealand: Observations
of nearshore sediment segregation and oceanic storms, Cont. Shelf Res., 31,
507–526, https://doi.org/10.1016/j.csr.2010.12.007, 2011.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model
for coastal regions: 1. Model description and validation, J. Geophys. Res.,
104, 7649, https://doi.org/10.1029/98JC02622, 1999.
Camp, J. and Delgado, M.: Hidrografía de las bahías del delta del
Ebro, Investig. Pesq., 51, 351–369, 1987.
Carlin, J. A., Lee, G. hong, Dellapenna, T. M., and Laverty, P.: Sediment
resuspension by wind, waves, and currents during meteorological frontal passages
in a micro-tidal lagoon, Estuar. Coast. Shelf Sci., 172, 24–33,
https://doi.org/10.1016/j.ecss.2016.01.029, 2016.
Cerralbo, P., Grifoll, M., Valle-Levinson, A., and Espino, M.: Tidal
transformation and resonance in a short, microtidal Mediterranean estuary
(Alfacs Bay in Ebre delta), Estuar. Coast. Shelf Sci., 145, 57–68,
https://doi.org/10.1016/j.ecss.2014.04.020, 2014.
Cerralbo, P., Grifoll, M., and Espino, M.: Hydrodynamic response in a microtidal
and shallow bay under energetic wind and seiche episodes, J. Mar. Syst., 149,
1–13, https://doi.org/10.1016/j.jmarsys.2015.04.003, 2015a.
Cerralbo, P., Grifoll, M., Moré, J., Bravo, M., Sairouní Afif, A., and
Espino, M.: Wind variability in a coastal area (Alfacs Bay, Ebro River delta),
Adv. Sci. Res., 12, 11–21, https://doi.org/10.5194/asr-12-11-2015, 2015b.
Cerralbo, P., Espino, M., and Grifoll, M.: Modeling circulation patterns induced
by spatial cross-shore wind variability in a small-size coastal embayment, Ocean
Model., 104, 84–98, https://doi.org/10.1016/j.ocemod.2016.05.011, 2016.
Cerralbo, P., Espino, M., Grifoll, M., and Valle-Levinsion, A.: Subtidal
circulation in a microtidal Mediterranean bay, Sci. Mar., 82, 231–243,
https://doi.org/10.3989/scimar.04801.16A, 2018.
Chung, E. G., Bombardelli, F. A., and Schladow, S. G.: Sediment resuspension
in a shallow lake, Water Resour. Res., 45, 1–18, https://doi.org/10.1029/2007WR006585, 2009.
Ellis, J., Cummings, V., Hewitt, J., Thrush, S., and Norkko, A.: Determining
effects of suspended sediment on condition of a suspension feeding bivalve
(Atrina zelandica): Results of a survey, a laboratory experiment and a field
transplant experiment, J. Exp. Mar. Biol. Ecol., 267, 147–174, https://doi.org/10.1016/S0022-0981(01)00355-0, 2002.
Fan, S., Swift, D. J. P., Traykovski, P., Bentley, S., Borgeld, J. C., Reed,
C. W., and Niedoroda, A. W.: River flooding, storm resuspension, and event
stratigraphy on the northern California shelf: observations compared with
simulations, Mar. Geol., 210, 17–41, https://doi.org/10.1016/j.margeo.2004.05.024, 2004.
Fernández-Nóvoa, D., Mendes, R., deCastro, M., Dias, J. M.,
Sánchez-Arcilla, A., and Gómez-Gesteira, M.: Analysis of the influence
of river discharge and wind on the Ebro turbid plume using MODIS-Aqua and
MODIS-Terra data, J. Mar. Syst., 142, 40–46, https://doi.org/10.1016/j.jmarsys.2014.09.009, 2015.
Garel, E., Pinto, L., Santos, A., and Ferreira, Ó.: Tidal and river discharge
forcing upon water and sediment circulation at a rock-bound estuary (Guadiana
estuary, Portugal), Estuar. Coast. Shelf Sci., 84, 269–281, https://doi.org/10.1016/j.ecss.2009.07.002, 2009.
Ghosh, L. K., Prasad, N., Joshi, V. B., and Kunte, S. S.: A study on siltation
in access channel to a port, Coast. Eng., 43, 59–74, https://doi.org/10.1016/S0378-3839(01)00006-0, 2001.
Giannakourou, A., Orlova, T. Y., Assimakopoulou, G., and Pagou, K.:
Dinoflagellate cysts in recent marine sediments from Thermaikos Gulf, Greece:
Effects of resuspension events on vertical cyst distribution, Cont. Shelf Res.,
25, 2585–2596, https://doi.org/10.1016/j.csr.2005.08.003, 2005.
Grifoll, M., Gracia, V., Fernandez, J., and Espino, M.: Suspended sediment
observations in the Barcelona inner-shelf during storms, J. Coast. Res.,
2, 1533–1538, 2013.
Grifoll, M., Gracia, V., Aretxabaleta, A. L., Guillén, J., Espino, M., and
Warner, J. C.: Formation of fine sediment deposit from a flash flood river in
the Mediterranean Sea, J. Geophys. Res.-Oceans, 119, 5837–5853, https://doi.org/10.1002/2014JC010187, 2014a.
Grifoll, M., Gracia, V., Aretxabaleta, A., Guillén, J., Espino, M., and
Warner, J. C.: Formation of fine sediment deposit from a flash flood river in
the Mediterranean Sea, J. Geophys. Res.-Oceans, 119, 5837–5853, https://doi.org/10.1002/2014JC010187, 2014b.
Grifoll, M., Aretxabaleta, A. L., and Espino, M.: Shelf response to intense
offshore wind, J. Geophys. Res.-Oceans, 120, 6564–6580, https://doi.org/10.1002/2015JC010850, 2015.
Grifoll, M., Navarro, J., Pallares, E., Ràfols, L., Espino, M., and
Palomares, A.: Ocean–atmosphere–wave characterisation of a wind jet (Ebro
shelf, NW Mediterranean Sea), Nonlin. Process. Geophys., 23, 143–158,
https://doi.org/10.5194/npg-23-143-2016, 2016.
Guillen, J. and Palanques, A.: A shoreface zonation in the Ebro Delta based on
grain size distribution, J. Coast. Res., 13, 867–878, 1997.
Guillén, J., Palanques, A., Puig, P., and Durrieu de Madron, X.: Field
calibration of optical sensors for measuring suspended sediment concentration
in the western Mediterranean, Sci. Mar., 64, 427–435, https://doi.org/10.3989/scimar.2000.64n4427, 2000.
Guillén, J., Bourrin, F., Palanques, A., Durrieu de Madron, X., Puig, P.,
and Buscail, R.: Sediment dynamics during wet and dry storm events on the Têt
inner shelf (SW Gulf of Lions), Mar. Geol., 234, 129–142, https://doi.org/10.1016/j.margeo.2006.09.018, 2006.
Harris, C. K., Sherwood, C. R., Signell, R. P., Bever, A. J., and Warner, J. C.:
Sediment dispersal in the northwestern Adriatic Sea, J. Geophys. Res., 113,
C11S03, https://doi.org/10.1029/2006JC003868, 2008.
Hawley, N., Redder, T., Beletsky, R., Verhamme, E., Beletsky, D., and DePinto,
J. V.: Sediment resuspension in Saginaw Bay, J. Great Lakes Res., 40, 18–27,
https://doi.org/10.1016/j.jglr.2013.11.010, 2014.
Hofmann, H., Lorke, A., and Peeters, F.: Wind and ship wave-induced resuspension
in the littoral zone of a large lake, Water Resour. Res., 47, 1–12,
https://doi.org/10.1029/2010WR010012, 2011.
Jacob, R., Larson, J., and Ong, E.: Mn communication and parallel interpolation
in CCSM3 using the Model Coupling Toolkit, Int. J. High Perf. Comp. App.,
19, 293–308, 2005.
Jordi, A., Basterretxea, G., Casas, B., Anglès, S., and Garcés, E.:
Seiche-forced resuspension events in a Mediterranean harbour, Cont. Shelf Res.,
28, 505–515, https://doi.org/10.1016/j.csr.2007.10.009, 2008.
Jordi, A., Basterretxea, G., and Wang, D.-P.: Local versus remote wind effects
on the coastal circulation of a microtidal bay in the Mediterranean Sea, J. Mar.
Syst., 88, 312–322, 2011.
Kumar, N., Voulgaris, G., Warner, J. C., and Olabarrieta, M.: Implementation
of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment
transport (COAWST) modeling system for inner shelf and surf zone applications,
Ocean Model., 47, 65–95, https://doi.org/10.1016/j.ocemod.2012.01.003, 2012.
Llebot, C., Spitz, Y. H., Solé, J., and Estrada, M.: The role of inorganic
nutrients and dissolved organic phosphorus in the phytoplankton dynamics of a
Mediterranean bay: A modeling study, J. Mar. Syst., 83, 192–209,
https://doi.org/10.1016/j.jmarsys.2010.06.009, 2010.
Llebot, C., Solé, J., Delgado, M., Fernández-Tejedor, M., Camp, J., and
Estrada, M.: Hydrographical forcing and phytoplankton variability in two
semi-enclosed estuarine bays, J. Mar. Syst., 86, 69–86, https://doi.org/10.1016/j.jmarsys.2011.01.004, 2011.
Llebot, C., Rueda, F. J., Solé, J., Artigas, M. L., and Estrada, M.:
Hydrodynamic states in a wind-driven microtidal estuary (Alfacs Bay), J. Sea
Res., 85, 263–276, https://doi.org/10.1016/j.seares.2013.05.010, 2014.
López, L., Guillén, J., Palanques, A., and Grifoll, M.: Seasonal
sediment dynamics on the Barcelona inner shelf (NW Mediterranean): A small
Mediterranean river- and wave-dominated system, Cont. Shelf Res., 145, 80–94,
https://doi.org/10.1016/j.csr.2017.07.008, 2017.
Loureiro, S., Garcés, E., Fernández-Tejedor, M., Vaqué, D., and
Camp, J.: Pseudo-nitzschia spp. (Bacillariophyceae) and dissolved organic
matter (DOM) dynamics in the Ebro Delta (Alfacs Bay, NW Mediterranean Sea),
Estuar. Coast. Shelf Sci., 83, 539–549, https://doi.org/10.1016/j.ecss.2009.04.029, 2009.
Luettich, R. A. J., Harleman, D. R. F., and Somlyódy, L.: Dynamic behavior
of suspended sediment concentrations in a shallow lake perturbed by episodic
wind events, Limnol. Oceanogr., 35, 1050–1067, https://doi.org/10.4319/lo.1990.35.5.1050, 1990.
Martyanov, S. and Ryabchenko, V.: Bottom sediment resuspension in the easternmost
Gulf of Finland in the Baltic Sea: A case study based on three-dimensional
modeling, Cont. Shelf Res., 117, 126–137, https://doi.org/10.1016/j.csr.2016.02.011, 2016.
Mehta, A. J.: On estuarine cohesive sediment suspension behavior, J. Geophys.
Res.-Oceans, 94, 14303–14314, https://doi.org/10.1029/JC094iC10p14303, 1989.
Mestres, M., Sierra, J. P. A. U., Sánchez-Arcilla, A., González, J.,
Río, D. E. L., Wolf, T., and Rodríguez, A.: Modelling of the Ebro River
plume. Validation with field observations, Scientia Marina, 67, 379–391, 2003.
Newcombe, C. P. and Macdonald, D. D.: Effects of Suspended Sediments on Aquatic
Ecosystems, N. Am. J. Fish. Manage., 11, 72–82, https://doi.org/10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2, 1991.
Niedda, M. and Greppi, M.: Tidal, seiche and wind dynamics in a small lagoon
in the Mediterranean Sea, Estuar. Coast. Shelf Sci., 74, 21–30, https://doi.org/10.1016/j.ecss.2007.03.022, 2007.
Ogston, A., Cacchione, D., Sternberg, R., and Kineke, G.: Observations of storm
and river flood-driven sediment transport on the northern California continental
shelf, Cont. Shelf Res., 20, 2141–2162, https://doi.org/10.1016/S0278-4343(00)00065-0, 2000.
Palacín, C., Martin, D., and Gili, J. M.: Features of spatial distribution
of benthic infauna in a Mediterranean shallow-water Bay, Mar. Biol., 321, 315–321, 1991.
Palanques, A., Lopez, L., Guillén, J., Puig, P., and Masqué, P.: Decline
of trace metal pollution in the bottom sediments of the Barcelona City
continental shelf (NW Mediterranean), Sci. Total Environ., 579, 755–767,
https://doi.org/10.1016/j.scitotenv.2016.11.031, 2017.
Ramírez-Pérez, M., Gonçalves-Araujo, R., Wiegmann, S., Torrecilla,
E., Bardaji, R., Röttgers, R., Bracher, A., and Piera, J.: Towards
cost-effective operational monitoring systems for complex waters: Analyzing
small-scale coastal processes with optical transmissometry, PLoS One, 12, 1–21,
https://doi.org/10.1371/journal.pone.0170706, 2017.
Roque, A., Lopez-Joven, C., Lacuesta, B., Elandaloussi, L., Wagley, S., Furones,
M. D., Ruiz-Zarzuela, I., De Blas, I., Rangdale, R., and Gomez-Gil, B.: Detection
and identification of tdh- And trh-positive Vibrio parahaemolyticus strains from
four species of cultured bivalve molluscs on the Spanish Mediterranean coast,
Appl. Environ. Microbiol., 75, 7574–7577, https://doi.org/10.1128/AEM.00772-09, 2009.
Satta, C. T., Anglès, S., Lugliè, A., Guillén, J., Sechi, N., Camp,
J., and Garcés, E.: Studies on dinoflagellate cyst assemblages in two
estuarine Mediterranean bays: A useful tool for the discovery and mapping of
harmful algal species, Harmful Algae, 24, 65–79, https://doi.org/10.1016/j.hal.2013.01.007, 2013.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS):
a split-explicit, free-surface, topography-following-coordinate oceanic model,
Ocean Model., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Sherwood, C. R., Butman, B., Cacchione, D. A., Drake, D. E., Gross, T. F.,
Sternberg, R. W., Wiberg, P. L., and Williams, A. J.: Sediment-transport events
on the northern California continental shelf during the 1990–1991 STRESS
experiment, Cont. Shelf Res., 14, 1063–1099, https://doi.org/10.1016/0278-4343(94)90029-9, 1994.
Shteinman, B., Eckert, W., Kaganowsky, S., and Zohary, T.: Seiche-Induced
Resuspension in Lake Kinneret: A Fluorescent Tracer Experiment, in: The
Interactions Between Sediments and Water: Proceedings of the 7th International
Symposium, 22–25 September 1996, Baveno, Italy, edited by: Evans, R. D.,
Wisniewski, J., and Wisniewski, J. R., Springer Netherlands, Dordrecht, 123–131, 1997.
Solé, J., Turiel, A., Estrada, M., Llebot, C., Blasco, D., Camp, J., Delgado,
M., Fernández-Tejedor, M., and Diogène, J.: Climatic forcing on
hydrography of a Mediterranean bay (Alfacs Bay), Cont. Shelf Res., 29,
1786–1800, https://doi.org/10.1016/j.csr.2009.04.012, 2009.
Sondergaard, M., Kristensen, P., and Jeppesen, E.: Phosphorus release from
ressuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark,
Hydrobiologia, 228, 91–99, 1992.
Soulsby, R.: Dynamics of marine sands, Thomas Telford Publishing, London, UK, 1997.
Styles, R. and Glenn, S. M.: Modeling stratified wave and current bottom
boundary layers on the continental shelf, J. Geophys. Res., 105, 24119–24139,
https://doi.org/10.1029/2000JC900115, 2000.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
van Ledden, M., van Kesteren, W. G., and Winterwerp, J.: A conceptual framework
for the erosion behaviour of sand–mud mixtures, Cont. Shelf Res., 24, 1–11,
https://doi.org/10.1016/j.csr.2003.09.002, 2004.
van Maren, D. S., van Kessel, T., Cronin, K., and Sittoni, L.: The impact of
channel deepening and dredging on estuarine sediment concentration, Cont. Shelf
Res., 95, 1–14, https://doi.org/10.1016/j.csr.2014.12.010, 2015.
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., and Arango, H.
G.: Development of a three-dimensional, regional, coupled wave, current, and
sediment-transport model, Comput. Geosci., 34, 1284–1306, https://doi.org/10.1016/j.cageo.2008.02.012, 2008.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a
Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System,
Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Wiberg, P. L., Drake, D. E., and Cacchione, D. A.: Sediment resuspension and
bed armoring during high bottom stress events on the northern California inner
continental shelf: measurements and predictions, Cont. Shelf Res., 14,
1191–1219, https://doi.org/10.1016/0278-4343(94)90034-5, 1994.
Wright, L. D. and Nittrouer, C. A.: Dispersal of River Sediments in Coastal
Seas: Six Contrasting Cases, Estuaries, 18, 494, https://doi.org/10.2307/1352367, 1995.
Short summary
In this paper we investigate the origin of the variability in
near-bottom turbidity observations in Alfacs Bay (in the northwestern Mediterranean Sea). The observations of turbidity peaks are consistent with the seiche phenomenon. We suggest that the sequence of resuspension events plays an important role in the suspended sediment concentration, meaning that previous sediment resuspension events may influence the increase in suspended sediment in subsequent events.
In this paper we investigate the origin of the variability in
near-bottom turbidity...