Articles | Volume 15, issue 1
https://doi.org/10.5194/os-15-179-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-179-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamics of the North Balearic Front during an autumn tramontane and mistral storm: air–sea coupling processes and stratification budget diagnostic
Léo Seyfried
CORRESPONDING AUTHOR
Université de Toulouse, CNRS, UPS, Laboratoire d'Aérologie, Toulouse, France
Claude Estournel
Université de Toulouse, CNRS, UPS, Laboratoire d'Aérologie, Toulouse, France
Patrick Marsaleix
Université de Toulouse, CNRS, UPS, Laboratoire d'Aérologie, Toulouse, France
Evelyne Richard
Université de Toulouse, CNRS, UPS, Laboratoire d'Aérologie, Toulouse, France
Related authors
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Léo Seyfried, Patrick Marsaleix, Evelyne Richard, and Claude Estournel
Ocean Sci., 13, 1093–1112, https://doi.org/10.5194/os-13-1093-2017, https://doi.org/10.5194/os-13-1093-2017, 2017
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Violaine Piton, Marine Herrmann, Florent Lyard, Patrick Marsaleix, Thomas Duhaut, Damien Allain, and Sylvain Ouillon
Geosci. Model Dev., 13, 1583–1607, https://doi.org/10.5194/gmd-13-1583-2020, https://doi.org/10.5194/gmd-13-1583-2020, 2020
Short summary
Short summary
Consequences of tidal dynamics on hydro-sedimentary processes are a recurrent issue in estuarine and coastal processes studies, and accurate tidal solutions are a prerequisite for modeling sediment transport. This study presents the implementation and optimization of a model configuration in terms of bathymetry and bottom friction and assess the influence of these parameters on tidal solutions, in a macro-tidal environment: the Gulf of Tonkin (Vietnam).
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, Olivier Caumont, Alexis Doerenbecher, Eric Wattrelot, Patrick Moll, Hervé Bénichou, Dominique Puech, Olivier Bock, Pierre Bosser, Patrick Chazette, Cyrille Flamant, Paolo Di Girolamo, Evelyne Richard, and Frédérique Saïd
Geosci. Model Dev., 12, 2657–2678, https://doi.org/10.5194/gmd-12-2657-2019, https://doi.org/10.5194/gmd-12-2657-2019, 2019
Short summary
Short summary
The AROME-WMED (western Mediterranean) model is a dedicated version of the mesoscale Numerical Weather Prediction AROME-France model that ran in real time during the first special observation period of HyMeX. Two reanalyses were performed after the campaign. This paper depicts the main differences between the real-time version and the benefits brought by both HyMeX reanalyses. The second reanalysis is found to be closer to observations than the previous AROME-WMED analyses.
Alice Carret, Florence Birol, Claude Estournel, Bruno Zakardjian, and Pierre Testor
Ocean Sci., 15, 269–290, https://doi.org/10.5194/os-15-269-2019, https://doi.org/10.5194/os-15-269-2019, 2019
Short summary
Short summary
This study uses different in situ and satellite measurements to investigate ocean circulation in the NW Mediterranean Sea. We analyze how the different instruments (satellite altimetry, HF radars, gliders, ADCPs) capture current variability and how they complement each other. We demonstrate the ability of satellite altimetry to capture the fluctuations of the narrow coastal Northern Current at different timescales. This study provides an integrated approach to a coastal dynamics study.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Léo Seyfried, Patrick Marsaleix, Evelyne Richard, and Claude Estournel
Ocean Sci., 13, 1093–1112, https://doi.org/10.5194/os-13-1093-2017, https://doi.org/10.5194/os-13-1093-2017, 2017
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
M. Belharet, C. Estournel, and S. Charmasson
Biogeosciences, 13, 499–516, https://doi.org/10.5194/bg-13-499-2016, https://doi.org/10.5194/bg-13-499-2016, 2016
A. Hally, O. Caumont, L. Garrote, E. Richard, A. Weerts, F. Delogu, E. Fiori, N. Rebora, A. Parodi, A. Mihalović, M. Ivković, L. Dekić, W. van Verseveld, O. Nuissier, V. Ducrocq, D. D'Agostino, A. Galizia, E. Danovaro, and A. Clematis
Nat. Hazards Earth Syst. Sci., 15, 537–555, https://doi.org/10.5194/nhess-15-537-2015, https://doi.org/10.5194/nhess-15-537-2015, 2015
E. Defer, J.-P. Pinty, S. Coquillat, J.-M. Martin, S. Prieur, S. Soula, E. Richard, W. Rison, P. Krehbiel, R. Thomas, D. Rodeheffer, C. Vergeiner, F. Malaterre, S. Pedeboy, W. Schulz, T. Farges, L.-J. Gallin, P. Ortéga, J.-F. Ribaud, G. Anderson, H.-D. Betz, B. Meneux, V. Kotroni, K. Lagouvardos, S. Roos, V. Ducrocq, O. Roussot, L. Labatut, and G. Molinié
Atmos. Meas. Tech., 8, 649–669, https://doi.org/10.5194/amt-8-649-2015, https://doi.org/10.5194/amt-8-649-2015, 2015
Short summary
Short summary
The paper summarizes the scientific objectives and the observational/modeling strategy of the atmospheric electricity PEACH project of the HyMeX program focusing on the lightning activity and the electrical state of Mediterranean thunderstorms. Examples of concurrent observations from radio frequency to acoustic for regular and atypical lightning flashes and for storms are discussed, showing the unique and comprehensive description of lightning flashes recorded during a dedicated field campaign.
A. Jansa, P. Alpert, P. Arbogast, A. Buzzi, B. Ivancan-Picek, V. Kotroni, M. C. Llasat, C. Ramis, E. Richard, R. Romero, and A. Speranza
Nat. Hazards Earth Syst. Sci., 14, 1965–1984, https://doi.org/10.5194/nhess-14-1965-2014, https://doi.org/10.5194/nhess-14-1965-2014, 2014
A. Hally, E. Richard, and V. Ducrocq
Nat. Hazards Earth Syst. Sci., 14, 1071–1084, https://doi.org/10.5194/nhess-14-1071-2014, https://doi.org/10.5194/nhess-14-1071-2014, 2014
Cited articles
Beuvier, J., Béranger,
K., Lebeaupin Brossier, C., Somot, S., Sevault, F.,
Drillet, Y., Bourdallé-Badie, R., Ferry, N., and Lyard, F.: Spreading of the
Western Mediterranean Deep Water after winter 2005: Time scales and deep
cyclone transport, J. Geophys. Res., 117, C07022, https://doi.org/10.1029/2011JC007679,
2012. a
Bosse, A.: Circulation générale et couplage physique-biogéochimie
à (sous-) mésoéchelle en Méditerranée Nord-occidentale
à partir de données in situ, Ph.D. thesis, Paris 6,
http://www.theses.fr/2015PA066451, 2015. a
Buongiorno Nardelli, B., Tronconi, C., Pisano, A., and Santoleri, R.: High and
Ultra-High resolution processing of satellite Sea Surface Temperature data
over Southern European Seas in the framework of MyOcean project, Remote Sens. Environ., 129,
1–16, https://doi.org/10.1016/j.rse.2012.10.012, 2013. a
Chelton, D. B. and Xie, S.-P.: Coupled ocean-atmosphere interaction at oceanic
mesoscales, Oceanography, 23, 52–69, https://doi.org/10.5670/oceanog.2010.05,
2010. a, b, c
Cotté, C., d'Ovidio, F., Chaigneau, A., Lévy, M., Taupier-Letage, I., Mate,
B., and Guinet, C.: Scale-dependent interactions of Mediterranean whales with
marine dynamics, Limnol. Oceanogr., 56, 219–232, 2011. a
Deardorff, J. W., Willis, G. E., and Lilly, D. K.: Laboratory investigation of
non-steady penetrative convection, J. Fluid Mech., 35, 7–31,
1969. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017, 2012. a, b
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga,
M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C.,
Boubrahmi, N. F., Font, J., Grubišic, V., Gualdi, S., Homar, V.,
Ivancan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello,
P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero,
R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I.,
Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A 10-Year
Multidisciplinary Program on the Mediterranean Water Cycle, Am. Meterol. Soc., 95, 1063–1082,
https://doi.org/10.1175/BAMS-D-12-00242.1, 2013. a
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A.,
Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S.,
Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin,
M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U.,
Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P.,
Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J.,
Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani,
A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F.,
Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and
Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy
Precipitation and Flash Flooding in the Northwestern Mediterranean, Am Meterol Soc., 95,
1083–1100, https://doi.org/10.1175/BAMS-D-12-00244.1, 2013. a
Duffourg, F., Nuissier, O., Ducrocq, V., Flamant, C., Chazette, P., Delanoë,
J., Doerenbecher, A., Fourrié, N., Di Girolamo, P., Lac, C., Legain, D.,
Martinet, M., Saïd, F., and Bock, O.: Offshore deep convection initiation
and maintenance during the HyMeX IOP 16a heavy precipitation event, Roy. Meterol. Soc., 142,
259–274, https://doi.org/10.1002/qj.2725,
2016. a
Estournel, C., Testor, P., Damien, P., D'Ortenzio, F., Marsaleix, P., Conan,
P., Kessouri, F., Durrieu de Madron, X., Coppola, L., Lellouche, J.-M.,
Belamari, S., Mortier, L., Ulses, C., Bouin, M.-N., and Prieur, L.: High
resolution modeling of dense water formation in the north-western
Mediterranean during winter 2012–2013, Processes and Budget, 121,
5367–5392, https://doi.org/10.1002/2016JC011935, 2016a. a, b, c, d, e, f
Estournel, C., Testor, P., Taupier-Letage, I., Bouin, M.-N., Coppola, L., Durand, P., Conan, P., Bosse, A., Brilouet, P.-E.,
Beguery, L., Belamari, S., Béranger, K., Beuvier, J., Bourras, D., Canut, G., Doerenbecher, A., Durrieu de Madron, X.,
D'Ortenzio, F., Drobinski, P., Ducrocq, V., Fourrié, N., Giordani, H., Houpert, L., Labatut, L., Brossier, C. L.,
Nuret, M., Prieur, L., Roussot, O., Seyfried, L., and Somot, S.:
HyMeX-SOP2 The Field Campaign Dedicated to Dense Water
Formation in the Northwestern Mediterranean, Oceanography, 29,
196–206,
2016b. a
Estrada, M., Varela, R. A., Salat, J., Cruzado, A., and Arias, E.:
Spatio-temporal variability of the winter phytoplankton distribution across
the Catalan and North Balearic fronts (NW Mediterranean), J. Plankton Res., 21, 1–20,
1999. a
Flamant, C.: Alpine lee cyclogenesis influence on air-sea heat exchanges and
marine atmospheric boundary layer thermodynamics over the western
Mediterranean during a Tramontane/Mistral event, J. Geophys. Res., 108, 8057,
https://doi.org/10.1029/2001JC001040, 2003. a
Font, J., Salat, J., and Tintoré, J.: Permanent features of the circulation in
the Catalan Sea, Oceanol. Ac., 51–57, http://archimer.ifremer.fr/doc/00267/37808/ (last access: 8 February 2019),
1988. a
Gannier, A. and Praca, E.: SST fronts and the summer sperm whale distribution
in the north-west Mediterranean Sea, J. Mar. Biol. Assoc. UK, 87, 187–193,
https://doi.org/10.1017/S0025315407054689, 2007. a
García, M. J. L., Millot, C., Font, J., and García-Ladona, E.:
Surface
circulation variability in the Balearic Basin, J. Geophys. Res., 99, 3285–3296,
https://doi.org/10.1029/93JC02114, 1994. a
Giordani, H., Lebeaupin-Brossier, C., Léger, F., and Caniaux, G.: A
PV-approach for dense water formation along fronts: Application to the
Northwestern Mediterranean, J. Geophys. Res., 143, 2448–2462, https://doi.org/10.1002/2016JC012019,
2016. a, b
Hauser, D., Branger, H., Bouffies-Cloché, S., Despiau, S., Drennan,
W. M.,
Dupuis, H., Durand, P., Durrieu de Madron, X., Estournel, C., Eymard, L.,
Flamant, C., Graber, H. C., Guérin, C., Kahma, K., Lachaud, G., Lefèvre,
J.-M., Pelon, J., Pettersson, H., Piguet, B., Queffeulou, P., Tailliez, D.,
Tournadre, J., and Weill, A.: The FETCH experiment: An overview, J. Geophys. Res., 108, 8053,
https://doi.org/10.1029/2001JC001202, 2003. a
Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J.,
Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P.,
Redelsperger, J. L., Richard, E., and Arellano, J. V.-G. d.: The Meso-NH
Atmospheric Simulation System. Part I: adiabatic formulation and control
simulations, Ann. Geophys., 16, 90–109, https://doi.org/10.1007/s00585-997-0090-6, 1998. a
Lebeaupin Brossier, C. and Drobinski, P.: Numerical high-resolution air-sea
coupling over the Gulf of Lions during two tramontane/mistral events, J. Geophys. Res., 114,
D10110, https://doi.org/10.1029/2008JD011601, 2009. a, b
Lebeaupin Brossier, C., Arsouze, T., Béranger, K., Bouin, M.-N., Bresson, E.,
Ducrocq, V., Giordani, H., Nuret, M., Rainaud, R., and Taupier-Letage, I.:
Ocean Mixed Layer responses to intense meteorological events during
HyMeX-SOP1 from a high-resolution ocean simulation, Ocean Model., 84, 84–103,
https://doi.org/10.1016/j.ocemod.2014.09.009, 2014. a, b
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E.,
Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C.,
Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A.,
and De Nicola, C.: Evaluation of global monitoring and forecasting systems at
Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013. a
Mancho, A. M., Hernández-García, E., Small, D., Wiggins, S., and Fernández,
V.: Lagrangian Transport through an Ocean Front in the Northwestern
Mediterranean Sea, J. Phys. Oceanogr., 38, 1222–1237, https://doi.org/10.1175/2007JPO3677.1,
2008. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard,
F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix,
P., and Team, M.: NEMO on the shelf: assessment of the
Iberia-Biscay-Ireland configuration, Ocean Sci., 9, 745–771,
https://doi.org/10.5194/os-9-745-2013, 2013. a
Marsaleix, P., Auclair, F., Floor, J. W., Herrmann, M. J., Estournel, C.,
Pairaud, I., and Ulses, C.: Energy conservation issues in sigma-coordinate
free-surface ocean models, Ocean Model., 20, 61–89, https://doi.org/10.1016/j.ocemod.2007.07.005, 2008. a
Marsaleix, P., Auclair, F., Duhaut, T., Estournel, C., Nguyen, C., and Ulses,
C.: Alternatives to the Robert-Asselin filter, Ocean Model., 41, 53–66,
https://doi.org/10.1016/j.ocemod.2011.11.002, 2012. a
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and
models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R.,
Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E.,
Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini,
K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G.,
Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu,
A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G.,
Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B.,
Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform
for coupled or offline simulation of earth surface variables and fluxes,
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013,
2013. a
Mertens, C. and Schott, F.: Interannual variability of deep-water formation in
the northwestern Mediterranean, J. Phys. Oceanogr., 28, 1410–1424,
1998. a
Michaud, H., Marsaleix, P., Leredde, Y., Estournel, C., Bourrin, F., Lyard, F.,
Mayet, C., and Ardhuin, F.: Three-dimensional modelling of wave-induced
current from the surf zone to the inner shelf, Ocean Sci., 8, 657–681,
https://doi.org/10.5194/os-8-657-2012, 2012. a
Millot, C.: Circulation in the western Mediterranean Sea, J. Mar. Syst., 20,
423–442,
1999. a
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in:
The Mediterranean Sea, edited by: Saliot, A., no. 5K in Handbook of
Environmental Chemistry, Springer Berlin Heidelberg, 29–66,
https://doi.org/10.1007/b107143, 2005. a
Moon, I.-J., Ginis, I., Hara, T., and Thomas, B.: A Physics-Based
Parameterization of Air-Sea Momentum Flux at High Wind Speeds and Its
Impact on Hurricane Intensity Predictions, Mon. Weather Rev., 135, 2869–2878,
https://doi.org/10.1175/MWR3432.1, 2007. a
Rainaud, R., Lebeaupin Brossier, C., Ducrocq, V., and Giordani, H.:
High-resolution air-sea coupling impact on two heavy precipitation events in
the Western Mediterranean, Roy. Meteor. Soc., 122, 995–1015, https://doi.org/10.1002/qj.3098,
2017. a, b
Rainville, L., Jayne, S. R., McClean, J. L., and Maltrud, M. E.: Formation of
Subtropical Mode Water in a high-resolution ocean simulation of the Kuroshio
Extension region, Ocean Model., 17, 338–356, https://doi.org/10.1016/j.ocemod.2007.03.002, 2007. a
Renault, L., Chiggiato, J., Warner, J. C., Gomez, M., Vizoso, G., and Tintore,
J.: Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf
of Lion and Balearic Sea, J. Geophys. res., 117, 1–25, https://doi.org/10.1029/2012JC007924,
2012. a, b
Small, R. J., deSzoeke, S. P., Xie, S. P., O'Neill, L., Seo, H., Song, Q.,
Cornillon, P., Spall, M., and Minobe, S.: Air-sea interaction over ocean
fronts and eddies, Dynam. Atmos. Oceans, 45, 274–319, https://doi.org/10.1016/j.dynatmoce.2008.01.001, 2008. a, b, c
Small, R. J., Carniel, S., Campbell, T., Teixeira, J., and Allard, R.: The
response of the Ligurian and Tyrrhenian Seas to a summer Mistral event: A
coupled atmosphere-ocean approach, Ocan Model., 48, 30–44,
https://doi.org/10.1016/j.ocemod.2012.02.003, 2012.
a, b
Taylor, J. R. and Ferrari, R.: Buoyancy and Wind-Driven Convection at Mixed
Layer Density Fronts, J. Phys. Oceanogr., 40, 1222–1242, https://doi.org/10.1175/2010JPO4365.1,
2010. a
Thomas, L. and Ferrari, R.: Friction, Frontogenesis, and the Stratification of
the Surface Mixed Layer, J. Phys. Oceanogr., 38, 2501–2518, https://doi.org/10.1175/2008JPO3797.1,
2008. a, b
Thomas, L. N.: Destruction of Potential Vorticity by Winds, J. Phys.
Oceanogr., 35, 2457–2466,
https://doi.org/10.1175/JPO2830.1, 2005. a
Thomas, L. N. and Lee, C. M.: Intensification of Ocean Fronts by Down-Front
Winds, J. Phys.
Oceanogr., 35, 1086–1102, https://doi.org/10.1175/JPO2737.1, 2005. a, b, c, d
Thomas, L. N. and Taylor, J. R.: Reduction of the usable wind-work on the
general circulation by forced symmetric instability, Geophys. Res.
Lett., 37, L18606, https://doi.org/10.1029/2010GL044680, 2010. a
Thomas, L. N., Taylor, J. R., D'Asaro, E. A., Lee, C. M., Klymak, J. M., and
Shcherbina, A.: Symmetric Instability, Inertial Oscillations, and Turbulence
at the Gulf Stream Front, J. Phys. Oceanogr., 46, 197–217,
https://doi.org/10.1175/JPO-D-15-0008.1, 2016. a, b
Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F.,
Seyfried, L., Garnier, V., Bielli, S., Valcke, S., Alias, A., Accensi, M.,
Ardhuin, F., Bouin, M.-N., Ducrocq, V., Faroux, S., Giordani, H., Léger, F.,
Marsaleix, P., Rainaud, R., Redelsperger, J.-L., Richard, E., and Riette, S.:
SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with
hydrology, ocean, waves and sea-ice models, from coastal to global scales,
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017,
2017. a, b