Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1561-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1561-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of Caribbean Water incursion into the Gulf of Mexico derived from absolute dynamic topography, satellite data, and remotely sensed chlorophyll a
Juan Antonio Delgado
Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Transpeninsular Tijuana-Ensenada, no. 3917, Fraccionamiento Playitas, CP 22860, Ensenada, Baja California, Mexico
Instituto Tecnológico de Guaymas/Tec. Nacional de México, Guaymas, Sonora, Mexico
Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Transpeninsular Tijuana-Ensenada, no. 3917, Fraccionamiento Playitas, CP 22860, Ensenada, Baja California, Mexico
Joël Sudre
LEGOS, CNRS/IRD/UPS/CNES UMR 5566, 18 av. Ed Belin, 31401 Toulouse Cedex 9, France
Sorayda Tanahara
CORRESPONDING AUTHOR
Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Transpeninsular Tijuana-Ensenada, no. 3917, Fraccionamiento Playitas, CP 22860, Ensenada, Baja California, Mexico
Ivonne Montes
Instituto Geofísico del Perú (IGP), Lima, Peru
José Martín Hernández-Ayón
Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Transpeninsular Tijuana-Ensenada, no. 3917, Fraccionamiento Playitas, CP 22860, Ensenada, Baja California, Mexico
Alberto Zirino
Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
Related authors
Gabriela Yareli Cervantes-Diaz, Jose Martín Hernández-Ayón, Alberto Zirino, Sharon Zinah Herzka, Victor Camacho-Ibar, Ivonne Montes, Joël Sudre, and Juan Antonio Delgado
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-340, https://doi.org/10.5194/bg-2019-340, 2019
Manuscript not accepted for further review
Short summary
Short summary
In this work we presents a new classification of water masses in the GoM, based on thermohaline properties and dissolved oxygen (DO) concentration using data from a total of five summer and winter cruises carried out primarily in the central GoM. The importance of this redefinition of the water masses contributes to a better understanding of their role in the dynamics of nutrients (and carbon).
Gabriela Yareli Cervantes-Diaz, Jose Martín Hernández-Ayón, Alberto Zirino, Sharon Zinah Herzka, Victor Camacho-Ibar, Ivonne Montes, Joël Sudre, and Juan Antonio Delgado
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-340, https://doi.org/10.5194/bg-2019-340, 2019
Manuscript not accepted for further review
Short summary
Short summary
In this work we presents a new classification of water masses in the GoM, based on thermohaline properties and dissolved oxygen (DO) concentration using data from a total of five summer and winter cruises carried out primarily in the central GoM. The importance of this redefinition of the water masses contributes to a better understanding of their role in the dynamics of nutrients (and carbon).
Katja Fennel, Simone Alin, Leticia Barbero, Wiley Evans, Timothée Bourgeois, Sarah Cooley, John Dunne, Richard A. Feely, Jose Martin Hernandez-Ayon, Xinping Hu, Steven Lohrenz, Frank Muller-Karger, Raymond Najjar, Lisa Robbins, Elizabeth Shadwick, Samantha Siedlecki, Nadja Steiner, Adrienne Sutton, Daniela Turk, Penny Vlahos, and Zhaohui Aleck Wang
Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, https://doi.org/10.5194/bg-16-1281-2019, 2019
Short summary
Short summary
We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification.
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
Mélanie Giraud, Véronique Garçon, Denis De La Broise, Stéphane L'Helguen, Joël Sudre, and Marie Boye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-306, https://doi.org/10.5194/bg-2018-306, 2018
Manuscript not accepted for further review
Short summary
Short summary
Associated to transitional
blueenergies, first investigation of the environmental impact on the marine microorganisms of an Ocean Thermal Energy Conversion (OTEC) pilot plant before its installation, using numerical simulation and in situ experimentations. No environmental standards are available yet. Microbiodiversity can be impacted in one scenario of the OTEC functioning. Give the basis for anticipating the long-term effects of renewable marine thermal energies on the environment.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
Cited articles
Aguirre-Gómez, R. and Salmerón-García, O.: Characterization of
the western Caribbean Sea waters through in vivo chlorophyll fluorescence,
Rev. Mar. Cost., 7, 9–26, https://doi.org/10.15359/revmar.7.1, 2015.
Austin, G. B.: Some recent oceanographic surveys of the Gulf of Mexico, EOS
T. Am. Geophys. Un., 36, 885–892,
https://doi.org/10.1029/TR036i005p00885, 1955.
Badan, A., Candela, J., Sheinbaum, J., and Ochoa, J.: Upper-layer
circulation in the approaches to Yucatan Channel, in: New Developments in the Circulation of the Gulf of
Mexico, edited by: Sturges, W. and
Lugo-Fernandez, A., Geophys. Monog. Series, 161, 57–69, 2005.
Baker-Yeboah, S., Byrne, D. A., and Watts, D. R.: Observations of mesoscale
eddies in the South Atlantic Cape Basin: Baroclinic and deep barotropic eddy
variability, J. Geophys. Res., 115, C12069,
https://doi.org/10.1029/2010JC006236, 2010.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr.,
42, 1–20, 1997.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., and Boss, E. S.: Climate-driven
trends in contemporary ocean productivity, Nature, 444, 752–755,
https://doi.org/10.1038/nature05317, 2006.
Behringer, D. W., Molinari, R. L., and Festa, J. F.: The Variability of
Anticyclonic Current Patterns in the Gulf of Mexico,
J. Geophys. Res., 82, 5469–5476, https://doi.org/10.1029/JC082i034p05469, 1977.
Boyer, J. N., Kelble, C. R., Ortner, P. B., and Rudnick, D. T.:
Phytoplankton bloom status: Chlorophyll-a biomass as an indicator of water
quality condition in the southern estuaries of Florida, USA,
Ecol. Indic., 9, S56–S67, https://doi.org/10.1016/j.ecolind.2008.11.013,
2009.
Brown, O. B., Olson, D. B., Brown, J. W., and Evans, R. H.: Satellite
infrared observations of the kinematics of a warm-core ring,
Mar. Freshwater Res., 34, 535–545, https://doi.org/10.1071/MF9830535,
1983.
Bunge, L., Ochoa, J., Badan, A., Candela, J., and Sheinbaum J.: Deep flows
in the Yucatan Channel and their relation to changes in the Loop Current
extension, J. Geophys. Res., 107, 1–7,
https://doi.org/10.1029/2001JC001256, 2002.
Candela, J., Sheinbaum, J., Ochoa, J., Badan, A., and Leben, R.: The
potential vorticity flux through the Yucatan Channel and the Loop Current in
the Gulf of Mexico, Geophys. Res. Lett., 29, 2059,
https://doi.org/10.1029/2002GL015587, 2002.
Candela, J., Tanahara, S., Crepon, M., Barnier, B., and Sheinbaum, J.:
Yucatan Channel flow: Observations versus CLIPPER ATL6 and MERCATOR PAM
models, J. Geophys. Res.-Oceans, 108, 3385,
https://doi.org/10.1029/2003JC001961, 2003.
Candela, J., Ochoa, J., Sheinbaum, J., López, M., Pérez-Brunius, P.,
Tenreiro, M., and Arriaza-Oliveros, L.: The Flow through the Gulf
of Mexico, J. Phys. Oceanogr., 49, 1381–1401,
https://doi.org/10.1175/JPO-D-18-0189.1, 2019.
Cardona, Y. and Bracco, A.: Predictability of mesoscale circulation
throughout the water column in the Gulf of Mexico, Deep-Sea Res. Pt.
II, 129, 332–349,
https://doi.org/10.1016/j.dsr2.2014.01.008, 2016.
Chang, Y.-L. and Oey, L.-Y.: Eddy and Wind-Forced Heat Transports in the
Gulf of Mexico, J. Phys. Oceanogr., 40, 2728–2742,
https://doi.org/10.1175/2010JPO4474.1, 2010.
Chang, Y.-L. and Oey, L.-Y.: Why does the Loop Current tend to shed more
eddies in summer and winter?, Geophys. Res. Lett., 39, 1–7,
https://doi.org/10.1029/2011GL050773, 2012.
Chang, Y.-L. and Oey, L.-Y.: Loop Current Growth and Eddy Shedding Using
Models and Observations: Numerical Process Experiments and Satellite
Altimetry Data, J. Phys. Oceanogr., 43, 669–689,
https://doi.org/10.1175/JPO-D-12-0139.1, 2013.
Counillon, F. and Bertino, L.: High-resolution ensemble forecasting for the
Gulf of Mexico eddies and fronts, Ocean Dynam., 59, 83–95,
https://doi.org/10.1007/s10236-008-0167-0, 2009.
Damien, P., Pasqueron de Fommervault, O., Sheinbaum, J., Jouanno, J.,
Camacho-Ibar, V. F., and Duteil, O.: Partitioning of the Open Waters of the
Gulf of Mexico Based on the Seasonal and Interannual Variability of
Chlorophyll Concentration, J. Geophys. Res.-Oceans, 123, 2592–2614, https://doi.org/10.1002/2017JC013456, 2018.
Dandonneau, Y., Deschamps, P. Y., Nicolas, J. M., Loisel, H., Blanchot, J.,
Montel, Y., Thieuleux, F., and Bécu, G.: Seasonal and interannual
variability of ocean color and composition of phytoplankton communities in
the North Atlantic, equatorial Pacific and South Pacific, Deep-Sea Res.
Pt. II, 51, 303–318,
https://https://doi.org/10.1016/j.dsr2.2003.07.018, 2004.
de Ruijter, W. P. M., Biastoch, A., Drijfhout, S. S., Lutjeharms, J. R. E.,
Matano, R. P., Pichevin, T., van Leeuwen, P. J., and Weijer, W.:
Indian-Atlantic interocean exchange: Dynamics, estimation and impact,
J. Geophys. Res.-Oceans, 104, 20885–20910,
https://doi.org/10.1029/1998jc900099, 1999.
Fowler, J., Cohen, L., and Jarvis, P.: Practical statistics for field
biology, John Wiley & Sons, 2013.
Fratantoni, P. S., Lee, T. N., Podesta, G. P., and Müller-Karger, F.:
The influence of Loop Current perturbations on the formation and evolution
of Tortugas eddies in the southern Straits of Florida, J. Geophys. Res.-Oceans, 103, 24759–24779,
https://doi.org/10.1029/98JC02147, 1998.
Garcia-Jove, M., Sheinbaum, J., and Jouanno J.: Sensitivity of Loop Current
metrics and eddy detachments to different model configurations: The impact
of topography and Caribbean perturbations, Atmosfera, 29, 235–265,
https://doi.org/10.20937/ATM.2016.29.03.05, 2016.
Goni, G. J. and Johns, W. E.: A census of North Brazil Current rings
observed from TOPEX/POSEIDON altimetry: 1992–1998, Geophys. Res. Lett., 28, 1–4, https://doi.org/10.1029/2000GL011717, 2001.
Hall, C. A. and Leben, R. R.: Observational evidence of seasonality in the
timing of loop current eddy separation, Dynam. Atmos. Oceans,
76, 240–267, https://doi.org/10.1016/j.dynatmoce.2016.06.002, 2016.
Hamilton, P., Lugo-Fernández, A., and Sheinbaum, J.: A Loop Current
experiment: Field and remote measurements, Dynam. Atmos. Oceans, 76, 156–173, https://doi.org/10.1016/j.dynatmoce.2016.01.005, 2016.
Huh, O. K., Wiseman, W. J. J., and Rouse, L. J.: Intrusion of loop current
waters onto the West Florida continental shelf, J. Geophys. Res., 86, 4186–4192, https://doi.org/10.1029/JC086iC05p04186, 1981.
Hall, C. R. and Leben, R. R.: Observational Evidence of Seasonality in
the timing of Loop Current eddy separation, Dynam. Atmos.
Oceans, 76, 240–367, 2016.
Hurlburt, H. E. and Thompson, J. D.: A numerical study of loop current
intrusions and eddy shedding, J. Phys. Oceanogr., 10,
1611–1651, https://doi.org/10.1175/1520-0485(1980)010<1611:ansolc>2.0.co;2, 1980.
Irwin, A. J. and Oliver, M. J.: Are ocean deserts getting larger?,
Geophys. Res. Lett., 36, L18609,
https://doi.org/10.1029/2009GL039883, 2009.
Jouanno, J., Sheinbaum, J., Barnier B., and Molines, J. M.: The mesoscale
variability in the Caribbean Sea. Part II: Energy sources, Ocean Model.,
26, 226–239, https://doi.org/10.1016/j.ocemod.2008.10.006, 2009.
Jouanno, J., Sheinbaum Pardo, J., Barnier, B., Molines, J. M., and Candela
Pérez, J.: Seasonal and interannual modulation of the Eddy Kinetic
Energy in the Caribbean Sea, J. Phys. Oceanogr., 42,
2041–2055, https://doi.org/10.1175/JPO-D-12-048.1, 2012.
Laffoley, D. and Baxter, J. M.: Explaining Ocean Warming: Causes, scale,
effects and consequences, Full Report, Gland, Switzerland, IUCN, 27,
https://doi.org/10.2305/IUCN.CH.2016.08.en, 2016.
Leben, R. R.: Altimetry-derived Loop Current metrics, in: Circulation of the
Gulf of Mexico: Observations and Models, Geophysical Monograph Series, 161,
edited by: Sturges, W. and Lugo-Fernandes, A., 181–201, AGU, Washington,
D. C., 2005.
Leben, R. R. and Born, G. H.: Tracking Loop Current eddies with satellite
altimetry, Adv. Space Res., 13, 325–333,
https://doi.org/10.1016/0273-1177(93)90235-4,1993.
Leipper, D. F.: A sequence of current patterns in the Gulf of Mexico,
J. Geophys. Res., 75, 637–657,
https://doi.org/10.1029/JC075i003p00637, 1970.
Lindo-Atichati, D., Bringas, F., and Goni, G.: Loop Current excursions and
ring detachments during 1993–2009, Int. J. Remote Sens.,
34, 5042–5053, https://doi.org/10.1080/01431161.2013.787504, 2013.
Liu, Y., Lee, S.-K., Muhling, B. A., Lamkin, J. T., and Enfield, D. B.:
Significant reduction of the Loop Current in the 21st century and its impact
on the Gulf of Mexico, J. Geophys. Res., 117, C05039,
https://doi.org/10.1029/2011JC007555, 2012.
Martínez-López, B. and Zavala-Hidalgo, J.: Seasonal and
interannual variability of cross-shelf transports of chlorophyll in the Gulf
of Mexico, J. Mar. Syst., 77, 1–20,
https://doi.org/10.1016/j.jmarsys.2008.10.002, 2009.
Maul, G. A. and Vukovich, F. M.: The relationship between variations in the
Gulf of Mexico Loop Current and Straits of Florida Volume Transport, J.
Phys. Oceanogr., 23, 785–796,
https://doi.org/10.1175/1520-0485(1993)023<0785:TRBVIT>2.0.CO;2, 1993.
Molinari, R. L., Baig, S., Behringer, D. W., Maul, G. A., and Legeckis, R.:
Winter intrusions of the Loop Current, Science, 198, 505–507,
https://doi.org/10.1126/science.198.4316.505, 1977.
Morrison, J. M., Merrell Jr., W. J., Key, R. M., and Key, T. C.: Property
distributions and deep chemical measurements within the western Gulf of
Mexico. J. Geophys. Res.-Oceans, 88, 2601–2608,
https://doi.org/10.1029/JC088iC04p02601, 1983.
Müller-Karger, F. E., McClain, C. R., Fisher, T. R., Esaias, W. E., and
Varela, R.: Pigment distribution in the Caribbean Sea: Observations from
space, Prog. Oceanogr., 23, 23–64,
https://doi.org/10.1016/0079-6611(89)90024-4, 1989.
Müller-Karger, F. E., Walsh, J. J., Evans, R. H., and Meyers, M. B.: On
the seasonal phytoplankton concentration and sea surface temperature cycles
of the Gulf of Mexico as determined by satellites, J. Geophys. Res., 96, 12645, https://doi.org/10.1029/91JC00787, 1991.
Müller-Karger, F. E., Smith, J. P., Werner, S., Chen, R., Roffer, M.,
Liu, Y., Muhling, B., Lindo-Atichati, D., Lamkin, J., Cerdeira-Estrada, S.,
and Enfield, D. B.: Natural variability of surface oceanographic conditions
in the offshore Gulf of Mexico, Prog. Oceanogr., 134, 54–76,
https://doi.org/10.1016/j.pocean.2014.12.007, 2015.
National Academies of Sciences, Engineering, and Medicine: Understanding and
Predicting the Gulf of Mexico Loop Current: Critical Gaps and
Recommendations, Washington, DC, The National Academies Press,
https://doi.org/10.17226/24823, 2018.
Niiler, P. P.: Observations of low-frequency currents on the West Florida
continental shelf, Memoires Societé Royale des Sciences de Liege, 6,
331–358, 1976.
Nof, D.: The momentum imbalance paradox revisited, J. Phys.
Oceanogr., 35, 1928–1939, https://doi.org/10.1175/JPO2772.1, 2005.
Nowlin, W. D. and McLellan, H. J.: A characterization of Gulf of Mexico
waters in winter, J. Mar. Res., 25, 29–59, 1967.
Oey, L.-Y.: Effects of winds and Caribbean eddies on the frequency of Loop
Current eddy shedding: A numerical model study, J. Geophys. Res., 108, 1–25, https://doi.org/10.1029/2002JC001698, 2003.
Oey, L.-Y., Ezer, T., Forristall, G., Cooper, C., DiMarco, S., and Fan, S.:
An exercise in forecasting loop current and eddy frontal positions in the
Gulf of Mexico, Geophys. Res. Lett., 32, L12611,
https://doi.org/10.1029/2005GL023253, 2005.
Paluszkiewicz, T., Atkinson, L. P., Posmentier, E. S., and McClain, C. R.:
Observations of a Loop Current frontal eddy intrusion onto the West Florida
Shelf, J. Geophys. Res.-Oceans, 88, 9639–9651,
https://doi.org/10.1029/JC088iC14p09639,1983.
Pasqueron de Fommervault, O., Perez-Brunius, P., Damien, P., Camacho-Ibar, V. F., and Sheinbaum, J.: Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats, Biogeosciences, 14, 5647–5662, https://doi.org/10.5194/bg-14-5647-2017, 2017.
Pichevin, T. and Nof, D.: The momentum imbalance paradox, Tellus A,
49, 298–319,
https://doi.org/10.3402/tellusa.v49i2.14484, 1997.
Pichevin, T., Nof, D., and Lutjeharms, J.: Why are there Agulhas rings?,
J. Phys. Oceanogr., 29, 693–707,
https://doi.org/10.1175/1520-0485(1999)029<0693:WATAR>2.0.CO;2, 1999.
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive
waters are expanding, Geophys. Res. Lett., 35, 2–6,
https://doi.org/10.1029/2007GL031745, 2008.
Portela, E., Tenreiro, M., Pallàs-Sanz, E., Meunier, T., Ruiz-Angulo,
A., Sosa-Gutiérrez, R., and Cusí, S.: Hydrography of the Central
and Western Gulf of Mexico, J. Geophys. Res.-Oceans, 123,
5134–5149, https://doi.org/10.1029/2018JC013813, 2018.
Richardson, P. L.: Eddy kinetic energy in the North Atlantic from surface
drifters, J. Geophys. Res.-Oceans, 88, 4355–4367,
https://doi.org/10.1029/JC088iC07p04355, 1983.
Savidge, D. K. and Bane, J. M.: Cyclogenesis in the deep ocean beneath the
Gulf Stream: 1. Description, J. Geophys. Res., 104, 18111–18126,
https://doi.org/10.1029/1999JC900132, 1999.
Schmitz Jr., W. J. and McCartney, M. S.: On the North Atlantic
circulation, Rev. Geophys., 31, 29–50,
https://doi.org/10.1029/92RG02583, 1993.
Schmitz Jr., W. J., Biggs, D. C., Lugo-Fernandez, A., Oey, L.-Y., and
Sturges, W.: A synopsis of the circulation in the Gulf of Mexico and on its
continental margins. In Circulation in the Gulf of Mexico: Observations and
Models, Geophys. Monogr. Ser., 161, 11–30,
https://doi.org/10.1029/161GM03, 2005.
Sturges, W. and Lugo-Fernandez, A.: Circulation in the Gulf of Mexico:
Observations and Models, Geophys. Monogr. Ser., 161, 31–56,
https://doi.org/10.1029/GM161, 2005.
Sudre, J., Maes, C., and Garcon, V.: On the global estimates of geostrophic
and Ekman surface currents, Limnol. Oceanogr., 3, 1–20, https://doi.org/10.1215/21573689-2071927, 2013.
Vukovich, F. M.: Loop Current boundary variations, J. Geophys. Res.-Oceans, 93, 15585–15591,
https://doi.org/10.1029/JC093iC12p15585, 1988.
Vukovich, F. M., Crissman, B. W., Bushnell, M., and King, W. J.: Some
aspects of the oceanography of the Gulf of Mexico using satellite and in
situ data, J. Geophys. Res., 84, 7749,
https://doi.org/10.1029/JC084iC12p07749, 1979.
Wei, M., Jacobs, G., Rowley, C., Barron, C. N., Hogan, P., Spence, P., Smedstad, O. M., Martin, P., Muscarella, P., and Coelhod, E.: The performance of the US Navy's RELO ensemble, NCOM,
HYCOM during the period of GLAD at-sea experiment in the Gulf of Mexico,
Deep-Sea Research Pt. II, 129, 374–393,
https://doi.org/10.1016/j.dsr2.2013.09.002, 2016.
Zavala-Hidalgo, J., Morey, S. L., and O'Brien, J. J.: Cyclonic Eddies
Northeast of the Campeche Bank from Altimetry Data, J. Phys.
Oceanogr., 33, 623–629,
https://doi.org/10.1175/1520-0485(2003)033<0623:CENOTC>2.0.CO;2, 2003.
Zavala-Hidalgo, J., Morey, S. L., O'Brien, J. J., and Zamudio, L.: On the
Loop Current eddy shedding variability, Atmosfera, 19, 41–48, 2006.
Zeng, X., Li, Y., and He, R.: Predictability of the loop current variation
and eddy shedding process in the Gulf of Mexico using an artificial neural
network approach, J. Atmos. Ocean. Tech., 32,
1098–1111, https://doi.org/10.1175/JTECH-D-14-00176.1, 2015.
Zharkov, V. and Nof, D.: Why Does the North Brazil Current Regularly Shed
Rings but the Brazil Current Does Not?, J. Phys. Oceanogr.,
40, 354–367, https://doi.org/10.1175/2009JPO4246.1, 2010.
Short summary
In this work, 25 years of daily satellite data on absolute dynamic topography (ADT) show that before 2002 Caribbean Water (CW) was less intrusive inside the Gulf of Mexico (GoM). Our results suggests that from 2003 onward, larger volumes of oligotrophic waters from the Caribbean Sea have invaded the western GoM and reduced mean surface Chl a concentrations. A direct comparison between the 1998–2002 and 2009–2014 periods indicates that the Chl a concentration has decreased significantly.
In this work, 25 years of daily satellite data on absolute dynamic topography (ADT) show that...