Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1489-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1489-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the marine ecosystem of Iberia–Biscay–Ireland (IBI) European waters for CMEMS operational applications
Elodie Gutknecht
CORRESPONDING AUTHOR
Mercator Ocean, Parc Technologique du Canal, 8–10 rue Hermes, 31520
Ramonville-Saint-Agne, France
Guillaume Reffray
Mercator Ocean, Parc Technologique du Canal, 8–10 rue Hermes, 31520
Ramonville-Saint-Agne, France
Alexandre Mignot
Mercator Ocean, Parc Technologique du Canal, 8–10 rue Hermes, 31520
Ramonville-Saint-Agne, France
Tomasz Dabrowski
Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
Marcos G. Sotillo
Puertos del Estado, Av. Partenón, 10, 28042 Madrid, Spain
Related authors
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Elodie Gutknecht, Guillaume Reffray, Marion Gehlen, Iis Triyulianti, Dessy Berlianty, and Philippe Gaspar
Geosci. Model Dev., 9, 1523–1543, https://doi.org/10.5194/gmd-9-1523-2016, https://doi.org/10.5194/gmd-9-1523-2016, 2016
Short summary
Short summary
An operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries (INDESO project). Here we describe the skill assessment of the physical-biogeochemical coupled model configuration. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time: phasing of chlorophyll bloom, nutrient and oxygen distributions, water mass transformation across the archipelago.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Evan Mason, Simón Ruiz, Romain Bourdalle-Badie, Guillaume Reffray, Marcos García-Sotillo, and Ananda Pascual
Ocean Sci., 15, 1111–1131, https://doi.org/10.5194/os-15-1111-2019, https://doi.org/10.5194/os-15-1111-2019, 2019
Short summary
Short summary
The Copernicus Marine Service (CMEMS) provides oceanographic products and services. Using a mesoscale eddy tracker, we evaluate the performance of three CMEMS model products in the western Mediterranean. Performance testing provides valuable feedback to the model developers. The eddy tracker allows us to construct 3-D eddy composites for each model in the Alboran Sea gyres. Comparison of the composites with data from Argo floats highlights the importance of data assimilation for these models.
Pablo Lorente, Marcos García-Sotillo, Arancha Amo-Baladrón, Roland Aznar, Bruno Levier, José C. Sánchez-Garrido, Simone Sammartino, Álvaro de Pascual-Collar, Guillaume Reffray, Cristina Toledano, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, https://doi.org/10.5194/os-15-967-2019, 2019
Álvaro de Pascual-Collar, Marcos G. Sotillo, Bruno Levier, Roland Aznar, Pablo Lorente, Arancha Amo-Baladrón, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 565–582, https://doi.org/10.5194/os-15-565-2019, https://doi.org/10.5194/os-15-565-2019, 2019
Short summary
Short summary
The Mediterranean Outflow Water (MOW) is a dense water mass originated in the Gibraltar Straight. The CMEMS IBI ocean reanalysis is used to provide a detailed view of the circulation and mixing processes of MOW near the Iberian and African Continental slopes. This work emphasizes the relevance of the complex bathymetric features defining the circulation and variability processes of MOW in this region.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
Elodie Gutknecht, Guillaume Reffray, Marion Gehlen, Iis Triyulianti, Dessy Berlianty, and Philippe Gaspar
Geosci. Model Dev., 9, 1523–1543, https://doi.org/10.5194/gmd-9-1523-2016, https://doi.org/10.5194/gmd-9-1523-2016, 2016
Short summary
Short summary
An operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries (INDESO project). Here we describe the skill assessment of the physical-biogeochemical coupled model configuration. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time: phasing of chlorophyll bloom, nutrient and oxygen distributions, water mass transformation across the archipelago.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
Benoît Tranchant, Guillaume Reffray, Eric Greiner, Dwiyoga Nugroho, Ariane Koch-Larrouy, and Philippe Gaspar
Geosci. Model Dev., 9, 1037–1064, https://doi.org/10.5194/gmd-9-1037-2016, https://doi.org/10.5194/gmd-9-1037-2016, 2016
T. Dabrowski, K. Lyons, C. Cusack, G. Casal, A. Berry, and G. D. Nolan
Ocean Sci., 12, 101–116, https://doi.org/10.5194/os-12-101-2016, https://doi.org/10.5194/os-12-101-2016, 2016
Cited articles
Amo, A., Reffray, G., and Sotillo, M. G.: Product User Manual
(CMEMS-IBI-PUM-005-001), available at: http://resources.marine.copernicus.eu/documents/PUM/CMEMS-IBI-PUM-005-001.pdf (last
access: 28 October 2019),
2018.
Amo, A., Dabrowski, T., Gutknecht, E., Bowyer, P., and Sotillo, M. G.:
Product User Manual (CMEMS-IBI-PUM-005-004), available at: http://resources.marine.copernicus.eu/documents/PUM/CMEMS-IBI-PUM-005-004.pdf, last
access: 28 October 2019.
Aquarone, M. C., Adams, S., and Valdes, L.: XIII-37 Celtic-Biscay Shelf: LME
#24, in: The UNEP Large Marine Ecosystem
Report: A Perspective on Changing Conditions in LMEs of the World's Regional
Seas, edited by: Sherman, K. and Hempel, G., UNEP Regional Seas Report and Studies No. 182, 527–534, Nairobi,
United Nations Environmental Program, 2008.
Argo Data Management Team: Argo user's manual V3.2, edited by: Carval, T.,
Keeley, R., Takatsuki, Y., Yoshida, T., Schmid, C., Goldsmith, R.,
Wong, A., McCreadie, R., Thresher, A., and Tran, A., https://doi.org/10.13155/29825, 2017.
Aristegui, J., Alvarez-Salgado, X. A., Barton, E. D., Figueiras, F. G.,
Hernandez-Leon, S., Roy, C., and Santos., A. M. P.: Oceanography and
fisheries of the Canary Current/Iberian Region of theeastern North Atlantic,
Chapter 23, in: The Sea, The Global Coastal Ocean: InterdisciplinaryRegional
Studies and Syntheses, edited by: Robinson, A. R. and Brink, K. H., 14, Harvard
UniversityPress, Cambridge, MA, 2004.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Barton, A. D., Lozier, M. S., and Williams, R. G.: Physical controls of
variability in North Atlantic phytoplankton communities, Limnol. Oceanogr.,
60, 181–197, https://doi.org/10.1002/lno.10011, 2015.
Behrenfeld, M.: Abandonding Sverdrup's crtical depth hypothesis on
phytoplankton blooms, Ecology, 91, 977–989, https://doi.org/10.1890/09-1207.1, 2010.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20,
1997.
Belkin, I. M., Cornillon, P. C., and Sherman, K.: Fronts in Large Marine
Ecosystems, Prog. Oceanogr., 81, 223–236,
https://doi.org/10.1016/j.pocean.2009.04.015, 2009.
Biogeochemical-Argo Planning Group: The Scientific Rationale, Design, and Implementation Plan for a Biogeochemical-Argo Float Array, edited by: Johnson, K. and Claustre, H., https://doi.org/10.13155/46601, 2016.
Blackford, J. C., Allen, J. I., and Gilbert, F. J.: Ecosystem dynamics at
six contrasting sites: a generic modelling study, J. Mar. Syst., 52,
191–215, https://doi.org/10.1016/j.jmarsys.2004.02.004, 2004.
Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M.: Response of
diatoms distribution to global warming andpotential implications: A global
model study, Geophys. Res. Lett., 32, L19606, https://doi.org/10.1029/2005GL023653,
2005.
Bowyer, P., Dabrowski, T., Gutknecht, E., Lorente, P., Reffray, G., and
Sotillo, M. G.: Quality Information Document (CMEMS-IBI-QUID-005-004),
available at: http://resources.marine.copernicus.eu/documents/QUID/CMEMS-IBI-QUID-005-004.pdf (last
access: 28 October 2019),
2018.
Brasseur, P., Gruber, N., Barciela, R., Brander, K., Doron, M., El Moussaoui, A., Hobday, A. J., Huret, M., Kremeur, A.-S., Lehodey, P., Matear, R., Moulin, C., Murtugudd, R., Senina, I., and Svendsen, E.: Integrating biogeochemistry and ecology into ocean data assimilation systems, Oceanography, 22, 206–215, https://doi.org/10.5670/oceanog.2009.80, 2009.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, 6371, https://doi.org/10.1126/science.aam7240,
2018.
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, 2016.
Campbell, J. W., Antoine, D., Armstrong, R., Arrigo, K., Balch, W., Barber,
R., Behrenfeld, M., Bidigare, R., Bishop, J., Carr, M.-E., Esaias, W.,
Falkowski, P., Hoepffner, N., Iverson, R., Kiefer, D., Lohrenz, S., Marra,
J., Morel, A., Ryan, J., Vedernikov, V., Waters, K., Yentsch, C., and Yoder,
J.: Comparison of algorithms for estimating ocean primary production from
surface chlorophyll, temperature, and irradiance, Global Biogeochem. Cy.,
16, 3, https://doi.org/10.1029/2001GB001444, 2002.
Christensen, J. P., Packard, T. T., Dortch, F. Q., Minas, H. J., Gascard, J.
C., Richez, C., and Garfield, P. C.: Carbon oxidation in the deep
Mediterranean Sea: Evidence for dissolved organic carbon source, Global Biogeochem. Cy., 3, 315–335, https://doi.org/10.1029/GB003i004p00315, 1989.
Ciavatta, S., Kay, S., Saux-Picart, S., Butenschön, M., and Allen J. I.:
Decadal reanalysis of biogeochemical indicators and fluxes in the North West
European shelf-sea ecosystem, J. Geophys. Res.-Oceans, 121, 1824–1845,
https://doi.org/10.1002/2015JC011496, 2016.
De Haas, H., Van Weering, T. C. E., and De Stigter, H.: Organic carbon in
shelf seas: sinks or sources, processes and products, Cont. Shelf Res., 22, 691–717, 2002.
Doray, M., Huret, M., Authier, M., Duhamel, E., Romagnan, J.-B., Dupuy, C.,
Spitz, J., Sanchez, F., Berger, L., Dorémus, G., Bourriau, P., Grellier,
P., Pennors, L., Masse, J., and Petitgas, P.: Gridded maps of pelagic ecosystem
parameters collected in the Bay of Biscay during the PELGAS integrated
survey, SEANOE, https://doi.org/10.17882/53389, 2018a.
Doray, M., Petitgas, P., Romagnan, J.-B., Huret, M., Duhamel, E., Dupuy, C.,
Spitz, J., Authier, M., Sanchez, F., Berger, L., Doremus, G., Bourriau, P.,
Grellier, P., and Masse, J.: The PELGAS survey: ship-based integrated
monitoring of the Bay of Biscay pelagic ecosystem, Prog. Oceanogr.,
166, 15–29, https://doi.org/10.1016/j.pocean.2017.09.015, 2018b.
Edwards, K. P., Barciela, R., and Butenschön, M.: Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf, Ocean Sci., 8, 983–1000, https://doi.org/10.5194/os-8-983-2012, 2012.
Emerson, S.: Annual net community production and the biological carbon flux
in the ocean, Global Biogeochem. Cy., 28, 14–28, https://doi.org/10.1002/2013GB004680,
2014.
Estrada, M.: Deep Phytoplankton and Chlorophyll Maxima in the Western
Mediterranean, in:
Mediterranean Marine Ecosystems, edited by: Moraitou-Apostolopoulou, M. and Kiortsis, V., NATO Conference Series (I Ecology), vol. 8,
Springer, Boston, MA, 1985.
Estrada, M., Marrasé, C., Latasa, M., Berdalet, E., Delgado, M., and
Riera, T.: Variability of deep chlorophyll maximum characteristics in the
Northwestern Mediterranean, Marine Ecology-progress Series – MAR ECOL-PROGR
SER, 92, 289–300, https://doi.org/10.3354/meps092289, 1993.
Fernaìndez, E. and Bode, A.: Seasonal patterns of primary production in the
Central Cantabrian Sea (Bay of Biscay), Sci. Mar., 55, 629–636, 1991.
Garcia-Ibanez, M. I., Pardo, P. C., Carracedo, L., Mercier, H., Lherminier,
P., Rios, A. F., and Perez F. F.: Structure, transports and transformations
of the water masses in the Atlantic Subpolar Gyre, Prog. Oceanogr.,
135, 18–36, https://doi.org/10.1016/j.pocean.2015.03.009, 2015.
Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and Ragueneau, O.: Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model, Biogeosciences, 3, 521–537, https://doi.org/10.5194/bg-3-521-2006, 2006.
Gehlen, M., Gangstø, R., Schneider, B., Bopp, L., Aumont, O., and Ethe, C.: The fate of pelagic CaCO3 production in a high CO2 ocean: a model study, Biogeosciences, 4, 505–519, https://doi.org/10.5194/bg-4-505-2007, 2007.
Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M.,
Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., Lehodey, P.,
Perruche, C., Samuelsen, A., and Simon, E.: Building the capacity for
forecasting marine biogeochemistry and ecosystems: recent advances and
future developments, J. Oper. Oceanogr., 8, s168–s187,
https://doi.org/10.1080/1755876X.2015.1022350, 2015.
Gohin, F., Lampert, L., Guillaud, J.-F., Herbland, A., and Nézan, E.:
Satellite and in situ observations of a late winter phytoplankton bloom, in
the northern Bay of Biscay, Cont. Shelf Res., 23, 1117–1141,
https://doi.org/10.1016/S0278-4343(03)00088-8, 2003.
Gohin, F., Saulquin, B., Oger-Jeanneret, H., Lozac'h, L., Lampert, L.,
Lefebvre, A., Riou, P., and Bruchon, F.: Towards a better assessment of the
ecological status of coastal waters using satellite-derived chlorophyll-a
concentrations, Remote Sens. Environ., 112, 3329–3340,
https://doi.org/10.1016/j.rse.2008.02.014, 2008.
Gutknecht, E., Reffray, G., Gehlen, M., Triyulianti, I., Berlianty, D., and Gaspar, P.: Evaluation of an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas (NEMO2.3/INDO12) – Part 2: Biogeochemistry, Geosci. Model Dev., 9, 1523–1543, https://doi.org/10.5194/gmd-9-1523-2016, 2016.
Hellenic Centre for Marine Research, Hellenic National Oceanographic Data
Centre (HCMR/HNODC): Mediterranean Sea – Eutrophication and Ocean
Acidification aggregated datasets 1911/2017 v2018. Aggregated datasets were
generated in the framework of EMODnet Chemistry III, under the support of DG
MARE Call for Tender EASME/EMFF/2016/006 – lot4, https://doi.org/10.6092/89576629-66d0-4b76-8382-5ee6c7820c7f (last
access: 28 October 2019), 2018.
Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., John, J., and Beaulieu, C.: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7, 621–640, https://doi.org/10.5194/bg-7-621-2010, 2010.
Hernandez, F., Bertino, L., Brassington, G. B., Chassignet, E. P., Cummings,
J. A., Davidson, F., Drévillon, M., Garric, G., Kamachi, M., Lellouche,
J.-M., Mahdon, R., Martin, M. J, Ratsimandresy, A., and Regnier, C.:
Validation and intercomparison studies within GODAE, Oceanogr. Magazine, 22, 128–143, https://doi.org/10.5670/oceanog.2009.71, 2009.
Hernandez, F., Blockley, E., Brassington, G. B., Davidson, F., Divakaran, P., Drévillon, M., Ishizaki, S., Garcia-Sotillo, M., Hogan, P. J., Lagemaa, P., Levier, B., Martin, M., Mehra, A., Mooers, C., Ferry, N., Ryan, A., Regnier, C., Sellar, A., Smith, G. C., Sofianos, S., Spindler, T., Volpe, G., Wilkin, J., Zaron, E. D., and Zhang, A.: Recent progress in performance evaluations and near
real-time assessment of operational ocean products, J. Oper. Oceanogr., 8,
221–238, https://doi.org/10.1080/1755876X.2015.1050282, 2015.
Hu, C., Lee, Z., and Franz, B. A.: Chlorophyll-a algorithms for oligotrophic
oceans: A novel approach based on three-band reflectance difference, J.
Geophys. Res., 117, C01011, https://doi.org/10.1029/2011JC007395, 2012.
IFREMER/IDM/SISMER – Scientific Information Systems for the SEA: North
East Atlantic Ocean – Eutrophication and Ocean Acidification aggregated
datasets 1921/2017 v2018, Aggregated datasets were generated in the
framework of EMODnet Chemistry III, under the support of DG MARE Call for
Tender EASME/EMFF/2016/006 – lot4, available at: https://doi.org/10.6092/459D8254-6C7B-4A0E-9FDB-04EFFE5F5A77 (last
access: 28 October 2019), 2018.
Johnson, K., Pasqueron De Fommervault, O., Serra, R., D'Ortenzio, F.,
Schmechtig, C., Claustre, H., and Poteau, A.: Processing Bio-Argo nitrate concentration at the DAC Level, https://doi.org/10.13155/46121, 2016.
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C.
M., Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens,
N., Talley, L. D., and Sarmiento J. L.: Biogeochemical sensor performance in
the SOCCOM profiling float array: SOCCOM BIOGEOCHEMICAL SENSOR PERFORMANCE,
J. Geophys. Res.-Oceans, 122, 6416–6436, https://doi.org/10.1002/2017JC012838, 2017.
Lam, F. P. A., Gerkema, T., and Maas, L. R. M.: Preliminary results from
observations of internal tides and solitary waves in the Bay of Biscay,
available at: https://www.whoi.edu/science/AOPE/people/tduda/isww/text/lam/lam.htm (last
access: 28 October 2019),
2003.
Lavigne, H., D'Ortenzio, F., Ribera D'Alcalà, M., Claustre, H., Sauzède, R., and Gacic, M.: On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach, Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bg-12-5021-2015, 2015.
Lavín, A., Valdés, L., Sánchez, F., Abaunza, P., Forest, A.,
Boucher, J., Lazure, P., and Jegou, A.-M.: The Bay of Biscay: the
encountering of the ocean and the shelf, in: The Sea. Volume 14. Part B. The
Global Coastal Ocean: Interdisciplinary Regional Studies and Synthesis, edited by: Robinson, A. and Brink, K., 1st Edition, Chapter 24, Harvard University Press, 933–999, 2006.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.: Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.: Spatial variability
of phosphate and nitrate in the Mediterranean Sea: A modeling approach, Deep-Sea Res. Pt. I, 108, 39–52, https://doi.org/10.1016/j.dsr.2015.12.006, 2016.
Lellouche, J.-M., Le Galloudec, O., Regnier, C., Levier, B., Greiner, E.,
and Drevillon, M.: Quality Information Document (CMEMS-GLO-QUID-001-024),
available at: http://resources.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-024.pdf (last
access: 28 October 2019),
2016.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Leonard, B. P.: A stable and accurate convective modelling procedure based
on quadratic upstream interpolation, Comput. Method. Appl. M., 19, 59–98,
1979.
Lorente, P., García-Sotillo, M., Amo-Baladrón, A., Aznar, R., Levier, B., Sánchez-Garrido, J. C., Sammartino, S., de Pascual-Collar, Á., Reffray, G., Toledano, C., and Álvarez-Fanjul, E.: Skill assessment of global, regional, and coastal circulation forecast models: evaluating the benefits of dynamical downscaling in IBI (Iberia–Biscay–Ireland) surface waters, Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, 2019.
Ludwig, W., Probst, J. L., and Kempe, S.: Predicting the oceanic input of
organic carbon by continental erosion, Global Biogeochem. Cy., 10, 23–41, https://doi.org/10.1029/95GB02925, 1996.
Madec, G.: “NEMO ocean engine”, Note du Pole de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619, 2008.
Madec, G., Delecluse, P., Imbard, M., and Lévy, C.: “OPA 8.1 Ocean
General Circulation Model reference manual”, Note du Pole de
modélisation, Institut Pierre-Simon Laplace (IPSL), France, No11, 91 pp.,
1998.
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013.
Mason, E., Ruiz, S., Bourdalle-Badie, R., Reffray, G., García-Sotillo, M., and Pascual, A.: New insight into 3-D mesoscale eddy properties from CMEMS operational models in the western Mediterranean, Ocean Sci., 15, 1111–1131, https://doi.org/10.5194/os-15-1111-2019, 2019.
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H.
W., Bowman, A. F., Fekete, B. M., Kroeze, C., and Van Drecht, G.: Global
Nutrient Export from WaterSheds 2 (NEWS 2): model development and
implementation, J. Environ. Modell. Softw., 25, 837–853, 2010.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing,
X.: Understanding the seasonal dynamics of phytoplankton biomass and the
deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float
investigation, Global Biogeochem. Cy., 28, 856–876,
https://doi.org/10.1002/2013GB004781, 2014.
Mignot, A., D'Ortenzio, F., Taillandier, V., Cossarini, G., and Salon S.:
Quantifying observational errors in Biogeochemical-argo oxygen, nitrate and
chlorophyll a concentrations, Geophys. Res. Lett., 46, 4330–4337, https://doi.org/10.1029/2018GL080541, 2019.
Moore, T. S., Campbell, J. W., and Dowell, M. D: A class-based approach to
characterizing and mapping the uncertainty of the MODIS ocean chlorophyll
product, Remote Sens. Environ., 113, 2424–2430, 2009.
Nykjær, L. and Van Camp, L.: Seasonal and interannual variability of
coastal upwelling along northwest Africa and Portugal from 1981 to 1991,
J. Geophys. Res., 99, 14197–14207, https://doi.org/10.1029/94JC00814, 1994.
O'Dea, E., Furner, R., Wakelin, S., Siddorn, J., While, J., Sykes, P., King, R., Holt, J., and Hewitt, H.: The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution, Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017, 2017.
OSPAR: Quality Status Report 2000: Region IV – Bay of Biscay and Iberian
Coast, OSPAR Commission, London, 134+xiii pp., 2000.
OSPAR: OSPAR integrated report 2003 on the eutrophication status of the
OSPAR maritime area based upon the first application of the Comprehensive
Procedure, OSPAR Eutrophication Series, publication 189/2003, OSPAR
Commission, London, 2003.
OSPAR: Common procedure for the identification of the eutrophication status
of the OSPAR maritime area, Tech. Rep. 2013-8, London, UK, available at:
https://www.ospar.org/documents?d532957 (last
access: 28 October 2019), 2013.
Pelegriì, J. L. and Benazzouz, A.: Coastal upwelling off North-West Africa, in: Oceanographic and biological features in the Canary Current Large Marine
Ecosystem, edited by: Valdeìs, L. and Deìniz-Gonzaìlez, I., IOC-UNESCO, Paris,
IOC Technical Series, No. 115, 93–103, available at: http://hdl.handle.net/1834/9180 (last
access: 28 October 2019), 2015.
Perruche, C., Hameau, A., Paul, J., Régnier, C., and Drévillon M.:
Quality Information Document (CMEMS-GLO-QUID-001-014), available at: http://marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-014.pdf (last
access: 28 October 2019),
2016.
Perruche, C., Szczypta, C., Paul, J., and Drévillon, M.: Quality
Information Document (CMEMS-GLO-QUID-001-029), available at: http://marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-029.pdf (last
access: 28 October 2019),
2018.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.:
Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean
Sea, J. Geophys. Res., 108, 8106, https://doi.org/10.1029/2002JC001650, 2003.
Roether, W. and Well, R.: Oxygen consumption in the Eastern Mediterranean,
Deep-Sea Res. Pt. I, 48, 1535–1551, 2001.
Rossby, T.: The North Atlantic Current and surrounding waters: At the
crossroads, Rev. Geophys., 34, 463–481,
https://doi.org/10.1029/96RG02214, 1996.
Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Marra, J., Mélin, F., Morel, A., O'Reilly, J., Scardi, M., Smith Jr., W. O., Smyth, T. J., Tang, S., Uitz, J., Waters, K., and Westberry, T. K.: An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe, Biogeosciences, 8, 489–503, https://doi.org/10.5194/bg-8-489-2011, 2011.
Salon, S., Cossarini, G., Bolzon, G., Feudale, L., Lazzari, P., Teruzzi, A., Solidoro, C., and Crise, A.: Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts, Ocean Sci., 15, 997–1022, https://doi.org/10.5194/os-15-997-2019, 2019.
Sathyendranath, S., Brewin, R. J. W., Mueller, D., Brockmann, C.,
Deschamps, P.-Y., Doerffer, R., Fomferra, N., Franz, B. A., Grant, M. G., Hu
C., Krasemann, H., Lee, Z., Maritorena, S., Devred, E., Mélin, F.,
Peters, M., Smyth, T., Steinmetz, F., Swinton, J., Werdell, J., and Regner,
P.: Ocean Colour Climate Change Initiative: Approach and Initial Results,
IGARSS 2012, 2024–2027, https://doi.org/10.1109/IGARSS.2012.6350979, 2012.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., and Boss, E.:
Processing bio-Argo chlorophyll-A concentration at the DAC level, Ifremer, https://doi.org/10.13155/39468, 2015.
Schneider, B., Bopp, L., Gehlen, M., Segschneider, J., Frölicher, T. L., Cadule, P., Friedlingstein, P., Doney, S. C., Behrenfeld, M. J., and Joos, F.: Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models, Biogeosciences, 5, 597–614, https://doi.org/10.5194/bg-5-597-2008, 2008.
Schourup-Kristensen, V., Sidorenko, D., Wolf-Gladrow, D. A., and Völker, C.: A skill assessment of the biogeochemical model REcoM2 coupled to the Finite Element Sea Ice–Ocean Model (FESOM 1.3), Geosci. Model Dev., 7, 2769–2802, https://doi.org/10.5194/gmd-7-2769-2014, 2014.
Séférian, R., Bopp, L., Gehlen, M., Orr, J. C., Ethé, C.,
Cadule, P., Aumont, O., Mélia, D. S. Y., Voldoire, A., and Madec, G.:
Skill assessment of three earth system models with common marine
biogeochemistry, Clim. Dynam., 40, 2549–2573,
https://doi.org/10.1007/s00382-012-1362-8, 2013.
Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray,
G., Amo-Baladrón, A., Chanut, J., Benkiran, M., and Alvarez-Fanjul, E.:
The MyOcean IBI Ocean Forecast and Reanalysis Systems: operational products
and roadmap to the future Copernicus Service, J. Oper. Oceanogr., 8, 63–79,
https://doi.org/10.1080/1755876X.2015.1014663, 2015.
Sotillo, M. G., Levier, B., and Lorente, P.: Quality Information Document
(CMEMS-IBI-QUID-005-001), available at: http://marine.copernicus.eu/documents/QUID/CMEMS-IBI-QUID-005-001.pdf (last
access: 28 October 2019),
2018.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Sverdrup, H.: On conditions of the vernal blooming of phytoplankton, ICES J.
Mar. Sci., 18, 287–295, https://doi.org/10.1093/icesjms/18.3.287, 1953.
Tagliabue, A., Bopp, L., Dutay, J.-C., Bowie, A. R., Chever, F.,
Jean-Baptiste, P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G.,
Aumont, O., Gehlen, M., and Jeandel, C.: On the importance of hydrothermalism
to the oceanic dissolved ironinventory, Nat. Geosci., 3, 252–256,
https://doi.org/10.1038/ngeo818, 2010.
Taylor, J. R. and Ferrari, R.: Shutdown of turbulent convection as a new
criterion for the onset of spring phytoplankton blooms, Limnol. Oceanogr.,
56, 2293–2307, https://doi.org/10.4319/lo.2011.56.6.2293, 2011.
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and
Cossarini, G.: Assimilation of coastal and open sea biogeochemical data to
improve phytoplankton simulation in the Mediterranean Sea, Ocean Modell.,
132, 46–60, https://doi.org/10.1016/j.ocemod.2018.09.007, 2018.
Thierry, V., Bittig, H., Gilbert, D., Kobayashi, T., Kanako, S., and Schmid,
C.: Processing Argo oxygen data at the DAC level cookbook, https://doi.org/10.13155/39795, 2016.
Tonani, M., Teruzzi, A., Korres, G., Pinardi, N., Crise, A., Adani, M., Oddo, P., Dobricic, S., Fratianni, C., Drudi, M., Salon, S., Grandi, A., Girardi, G., Lyubartsev, V., and Marino, S.: The Mediterranean monitoring and forecasting centre, a component of
the MyOcean system, in Proceedings of the Sixth International Conference on
EuroGOOS 4–6 October 2011, edited by: Dahlin, H., Fleming, N. C., and
Petersson, S. E.,
Sopot, Eurogoos Publication, 2014.
Valdés, L. and Lavín, A.: Dynamics and human impact in the Bay of Biscay:
An ecological perspective, in: Large Marine Ecosystems of the North Atlantic – Changing States and
Sustainability, edited by: Sherman, K. and Skjoldal, H. R., 293–320, Elsevier Science, Amsterdam, the Netherlands, 2002.
Valdés, L., Alvarez-Ossorio, M. T., Lavín, A., Varela, M., and Carballo,
R.: Ciclo anual de paraìmetros hidrograìficos, nutrientes y plancton en la
plataforma continental de La CorunÞa (NO, EspanÞa), Bol. Inst. Esp.
Oceanog., 7, 91–138, 1991.
Vichi, M., Cossarini, G., Gutierrez Mlot, E., Lazzari, P., Lovato, T.,
Mattia, G., Masina, S., McKiver, W., Pinardi, N., Solidoro, C., and Zavatarelli,
M.: The BiogeochemicalFlux Model (BFM): Equation Description and User
Manual, BFM version 5 (BFM-V5), Release 1.0, BFM Report series N. 1, March 2013, CMCC, Bologna, Italy, available at: http://bfm-community.eu (last
access: 28 October 2019), 87 pp., 2013.
von Schuckmann, K., Le Traon, P.-Y., et al.: The Copernicus Marine
Environment Monitoring Service Ocean State Report, J. Oper. Oceanogr., 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446, 2016.
von Schuckmann, K., Le Traon, P.-Y., et al.: Copernicus Marine Service Ocean
State Report, J. Oper. Oceanogr., 11, S1–S142, https://doi.org/10.1080/1755876X.2018.1489208, 2018.
Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss, E.: Carbon-based
primary productivity modeling with vertically resolved photoacclimation,
Global Biogeochem. Cy., 22, GB2024, https://doi.org/10.1029/2007GB003078, 2008.
Williams, R. G., McClaren, A. J., and Follows., M. J.: Estimating the
convective supply of nitrate and implied variability in export production
over the North Atlantic, Global Biogeochem. Cy., 14, 1299–1313,
https://doi.org/10.1029/2000GB001260, 2000.
Wong, A., Keeley, R., Carval, T., and Argo Data Management Team: Argo
Quality Control Manual for CTD and Trajectory Data, https://doi.org/10.13155/33951, 2015.
Wooster, W. S., Bakun, A., and Mclain, D. R.: Seasonal Upwelling Cycle Along the
Eastern Boundary of the North-Atlantic, J. Mar. Res.,
34, 131–141, 1976.
Zalezak, S. T.: Fully multidimensional flux-corrected transport algorithms
for fluids, J. Computat. Phys., 31, 335–362, 1979.
Short summary
As part of the Copernicus Marine Environment Monitoring Service, an operational ocean forecasting system monitors the ocean dynamics and marine ecosystems of the European waters. This paper assesses the performance of the key biogeochemical variables (oxygen, nutrients, Chl a, primary production) using a 7-year pre-operational qualification simulation (2010–2016). The simulation can be used to better understand the current state, the changes and the health of European marine ecosystems.
As part of the Copernicus Marine Environment Monitoring Service, an operational ocean...