Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1381-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1381-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variability of intermediate water masses in the Gulf of Cádiz: implications of the Antarctic and subarctic seesaw
Institute of Marine Sciences of Andalusia (ICMAN-CSIC), University
Campus Rio San Pedro, Puerto Real, Cádiz 11510, Spain
Ivan Parras-Berrocal
Applied Physics Department, University of Cádiz, Puerto Real,
Cádiz 11130, Spain
Miguel Bruno
Applied Physics Department, University of Cádiz, Puerto Real,
Cádiz 11130, Spain
Ricardo Sánchez-Leal
Spanish Institute of Oceanography (IEO), Cádiz Oceanographic
Centre, Muelle de Levante, Puerto Pesquero, Cádiz 11006, Spain
Francisco Javier Hernández-Molina
Department of Earth Sciences, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK
Related authors
No articles found.
Iván M. Parras-Berrocal, Rubén Vázquez, William Cabos, Dimitry V. Sein, Oscar Álvarez, Miguel Bruno, and Alfredo Izquierdo
Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, https://doi.org/10.5194/os-19-941-2023, 2023
Short summary
Short summary
Global warming may strongly affect dense water formation in the eastern Mediterranean, potentially impacting basin circulation and water properties. We find that at the end of the century dense water formation is reduced by 75 % for the Adriatic, 84 % for the Aegean, and 83 % for the Levantine Sea. This reduction is caused by changes in the temperature and salinity of surface and intermediate waters, which strengthen the vertical stratification, hampering deep convection.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
Ivan M. Parras-Berrocal, Ruben Vazquez, William Cabos, Dmitry Sein, Rafael Mañanes, Juan Perez-Sanz, and Alfredo Izquierdo
Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, https://doi.org/10.5194/os-16-743-2020, 2020
Short summary
Short summary
This work presents high-resolution simulations of a coupled regional model in the Mediterranean basin. The approach allows us to assess the role of ocean feedbacks in the downscaled climate. Our results show good skills in simulating present climate; the model's robustness introduces improvements in reproducing physical processes at local scales. Our climate projections reveal that by the end of the 21st century the Mediterranean Sea will be warmer and saltier although not in a homogeneous way.
Dolores Jiménez-López, Ana Sierra, Teodora Ortega, Soledad Garrido, Nerea Hernández-Puyuelo, Ricardo Sánchez-Leal, and Jesús Forja
Ocean Sci., 15, 1225–1245, https://doi.org/10.5194/os-15-1225-2019, https://doi.org/10.5194/os-15-1225-2019, 2019
Short summary
Short summary
The present study describes the surface distribution of the partial pressure of CO2 in the continental shelf of the eastern Gulf of Cádiz. For this, eight oceanographic cruises were carried out between March 2014 and February 2016. This distribution presents a linear dependence with the temperature and it decreases with distance from the coast. The Gulf of Cádiz shows a mean rate of −0.18 ± 1.32 mmol m-2 d-1, with an annual uptake capacity of CO2 of 4.1 Gg C year-1.
Roger D. Flood, Roberto A. Violante, Thomas Gorgas, Ernesto Schwarz, Jens Grützner, Gabriele Uenzelmann-Neben, F. Javier Hernández-Molina, Jennifer Biddle, Guillaume St-Onge, and APVCM workshop participants
Sci. Dril., 22, 49–61, https://doi.org/10.5194/sd-22-49-2017, https://doi.org/10.5194/sd-22-49-2017, 2017
Elena Tel, Rosa Balbin, Jose-Manuel Cabanas, Maria-Jesus Garcia, M. Carmen Garcia-Martinez, Cesar Gonzalez-Pola, Alicia Lavin, Jose-Luis Lopez-Jurado, Carmen Rodriguez, Manuel Ruiz-Villarreal, Ricardo F. Sánchez-Leal, Manuel Vargas-Yáñez, and Pedro Vélez-Belchí
Ocean Sci., 12, 345–353, https://doi.org/10.5194/os-12-345-2016, https://doi.org/10.5194/os-12-345-2016, 2016
Short summary
Short summary
The Spanish Institute of Oceanography supports different operational programmes in order to observe and measure ocean characteristics. Their combination allows responses to ocean research activities and marine ecosystem management, as well as official agency requirements and industrial and main society demands. All these networks are linked to international initiatives, framed largely in supranational Earth observation sponsored by the United Nations and the European Union.
E. Prieto, C. González-Pola, A. Lavín, R. F. Sánchez, and M. Ruiz-Villarreal
Ocean Sci., 9, 411–429, https://doi.org/10.5194/os-9-411-2013, https://doi.org/10.5194/os-9-411-2013, 2013
Cited articles
Álvarez, M., Pérez, F. F., Bryden H., and Ríos, A. F.: Physical and Biogeochemical Transports Structure in the North Atlantic Subpolar Gyre, J. Geophys. Res.-Oceans, 109, C03027, https://doi.org/10.1029/2003JC002015, 2004.
Ambar, I. and Howe, M.: Observations of the Mediterranean Outflow-I. Mixing in
the Mediterranean outflow, Deep-Sea Res., 26A, 535–554,
https://doi.org/10.1016/0198-0149(79)90095-5, 1979a.
Ambar, I. and Howe, M.: Observations of the Mediterranean Outflow-I. The deep
circulation in the vicinity of the Gulf of Cadiz. Deep-Sea Res.,
26A, 555–568, https://doi.org/10.1016/0198-0149(79)90096-7, 1979b.
Baringer, M. O. and Price, J. F.: Momentum and energy balance of the
Mediterranean outflow, J. Phys. Oceanogr., 27, 1678–1692,
https://doi.org/10.1175/1520-0485(1997)027<1678:MAEBOT>2.0.CO;2, 1997.
Baringer, M. O. and Price, J. F.: A review of the physical oceanography of the
Mediterranean outflow, Mar. Geol., 155, 63–82,
https://doi.org/10.1016/S0025-3227(98)00141-8, 1999.
Barrier, N., Cassou, C., Deshayes, J., and Treguier, A. M.: Response of North
Atlantic Ocean Circulation to Atmospheric Weather Regimes, J. Phys. Oceanogr., 44, 179–201,
https://doi.org/10.1175/JPO-D-12-0217.1, 2014.
Bellanco, M. J. and Sánchez-Leal, R. F.: Spatial Distribution and
Intra-Annual Variability of Water Masses on the Eastern Gulf of Cadiz
Seabed, Cont. Shelf Res., 128, 26–35,
https://doi.org/10.1016/j.csr.2016.09.001, 2016.
Borenäs, K. M., Wahlin, A. K., Ambar, I., and Serra, N.: The Mediterranean
outflow splitting-a comparison between theoretical models and CANIGO data,
Deep-Sea Res. II, 49, 4195–4205,
https://doi.org/10.1016/S0967-0645(02)00150-9, 2002.
Bostock, H., Sutton, P., Williams, M. J. M., and Opdyke, B.: Reviewing the
circulation and mixing of Antarctic Intermediate Water in the South Pacific
using evidence from geochemical tracers and Argo float trajectories,
Deep-Sea Res. I, 73, 84–98, https://doi.org/10.1016/j.dsr.2012.11.007, 2013.
Bozzano, G., Violante, R. A., and Cerredo, M. E.: Middle slope contourite de
posits
and associated sedimentary facies off NE Argentina, Geo.-Mar. Lett., 31,
495–507, https://doi.org/10.1007/s00367-011-0239-x, 2011.
Brogueira, M. J., Cabeçadas, G., and Gonçalves, C.: Chemical Resolution
of a Meddy Emerging off Southern Portugal, Cont. Shelf Res.,
24, 1651–1657, https://doi.org/10.1016/j.csr.2004.05.012, 2004.
Cabeçadas, G., Brogueira, M. J., and Gonçalves, C.: The Chemistry of
Mediterranean Outflow and Its Interactions with Surrounding Waters, Deep-Sea Res. II, 49, 4263–4270,
https://doi.org/10.1016/S0967-0645(02)00154-6, 2002.
Carracedo, L. I., Gilcoto, M., Mercier, H., and Pérez, F. F.: Seasonal
Dynamics in the Azores-Gibraltar Strait Region: A Climatologically-Based
Study, Prog. Oceanogr., 122, 116–130,
https://doi.org/10.1016/j.pocean.2013.12.005, 2014.
Cheng, H., Sinha, A., Wang, X., Cruz, F. W., and Edwards, R. L.: The Global
Paleomonsoon as seen through speleothem records from Asia and the Americas,
Clim. Dynam., 39, 1045–1062, https://doi.org/10.1007/s00382-012-1363-7,
2012.
Coulbourne, B. and Foote, K. D.: Variability of Stratification and Circulation
on the Flemish Cap during the Decades of 1950s–1990s, J. Nortw. Atla. Fish.
Sci., 26, 103–122, 2000.
Curry, W. B. and Oppo, D. W.: Glacial Water Mass Geometry and the Distribution
of δ13C of ΣCO2 in the Western Atlantic Ocean,
Paleoceanography, 20, 1–12, https://doi.org/10.1029/2004PA001021, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M.,
van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K.,
Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.:
The ERA-Interim Reanalysis: Configuration and Performance of the Data
Assimilation System, Q. J. Roy. Meteorol. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Downes, S. M., Bindoff, N. L., and Rintoul, S. R.: Changes in the subduction of
Southern Ocean water masses at the end of the twenty-first century in eight
IPCC models, J. Climate, 23, 6526–6541,
https://doi.org/10.1175/2010JCLI3620.1, 2010.
Expedition 339 Scientists: Mediterranean outflow: environmental
significance of the Mediterranean outflow water and its global implications,
IODP Preliminary Report, 339 pp., https://doi.org/10.2204/iodp.pr.339.2012,
2012.
Faugères, J. C., Mézerais, M. L., and Stow, D.: Contourite drift types and
their distribution in the North and South Atlantic Ocean basins, Sed. Geol.,
82, 189–203, https://doi.org/10.1016/0037-0738(93)90121-K, 1993.
Fratantoni, D. M.: North Atlantic surface circulation during the 1990s
observed with satellite-tracked drifters, J. Geophys. Res., 106, 22067–22093,
https://doi.org/10.1029/2000JC000730, 2001.
García, M., Hernández-Molina, F. J., Llave, E., Stow, D., León, R.,
Fernández-Puga, M. C., Díaz del Río, V., and Somoza, L.: Contourite
erosive features caused by the Mediterranean Outflow Water in the Gulf of
Cadiz: quaternary tectonic and oceanographic implications, Mar. Geol.,
257, 24–40, https://doi.org/10.1016/j.margeo.2008.10.009, 2009.
Gil, J., Sánchez, R., Cerviño, S., and Garabana, D.: Geostrophic
Circulation and Heat Flux across the Flemish Cap, 1988–2000, J. Northw.
Atla. Fish. Sci., 34, 61–81, https://doi.org/10.2960/J.v34.m510, 2008.
Hernández-Molina, F. J., Llave, E., Somoza, L., Fernández-Puga, M. C.,
Maestro, A., León, R., Medialdea, T., Barnolas, A., García, M.,
Díaz del Río, V., Fernández-Salas, L. M., Vázquez, J. T.,
Lobo, F., Alveirinho Dias, J. M., Rodero, J., and Gardner, J.: Looking for clues
to paleoceanographic imprints: A diagnosis of the Gulf of Cadiz contournite
depositional systems, Geology, 31, 19–22,
https://doi.org/10.1130/0091-7613(2003)031<0019:LFCTPI>2.0.CO;2, 2003.
Hernández-Molina, F. J., Serra, N., Stow, D. A. V., Llave, E., Ercilla, G., and van
Rooij, D.: Along-slope oceanographic processes and sedimentary products around
the Iberian margin, Geo.-Mar. Lett., 31, 315,
https://doi.org/10.1007/s00367-011-0242-2, 2011.
Hernández-Molina, F. J., Stow, D., Alvarez-Zarikian, C., and Expedition IODP 339 Scientists: IODP Expedition 339 in the Gulf of Cadiz and off West Iberia: decoding the environmental significance of the Mediterranean outflow water and its global influence, Sci. Dril., 16, 1–11, https://doi.org/10.5194/sd-16-1-2013, 2013.
Hernández-Molina, F. J., LLave, E., Preu, B.,Ercilla, G., Fontan, A.,
Bruno, M., Serra, N., Gomiz, J. J., Brackenridge, R. E., Sierro, F. J., Stow,
D. A. V., García, M., Juan, C., Sandoval, N., and Arnaiz, A.: Contourite
Processes Associated with the Mediterranean Outflow Water after Its Exit
from the Strait of Gibraltar: Global and Conceptual Implications, Geology,
42, 227–230, https://doi.org/10.1130/G35083.1, 2014.
Hernández-Molina, F. J., Sierro, F. J., Llave, E., Roque, C., Stow, D. A. V.,
Williams, T., Lofi, J., Van der Schee, M., Arnáiz, A., Ledesma, S., Rosales,
C., Rodríguez-Tovar, F. J., Pardo-Igúzquiza, E., and Brackenridge, R. E.: Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339,
Mar. Geol., 377, 7–39, https://doi.org/10.1016/j.margeo.2015.09.013, 2016.
Iorga, M. and Lozier, M. S.: Signatures of the Mediterranean outflow from a
North Atlantic climatology 1. Salinity and density fields, J. Geophys. Res.,
104, 25985–26009, https://doi.org/10.1029/1999JC900115, 1999.
Johnson, G. C.: Quantifying Antarctic Bottom Water and North Atlantic Deep
Water Volumes, J. Geophys. Res.-Oceans, 113, 1–13,
https://doi.org/10.1029/2007JC004477, 2008.
Jung, S. J. A., Kroon, D., Ganssen, G., Peeters, F., and Ganeshram, R.: Southern
Hemisphere Intermediate Water Formation and the Bi-Polar Seesaw, PAGES News,
18, 36–39, 2010.
Kanzow, T., Cunningham, S. A., Johns, W. E., Hirschi, J. J.-M., Marotzke, J.,
Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C., Beal, L. M.,
Bryden, H. L., and Collins, J.: Seasonal Variability of the Atlantic Meridional
Overturning Circulation at 26.5∘ N, J. Climate,
23, 5678–5698, https://doi.org/10.1175/2010JCLI3389.1, 2010.
Knoll, M., Hernández-Guerra, A., Lenz, B., López Laatzen, F.,
Machín, F., Müller, T. J., and Siedler, G: The Eastern Boundary Current
System between the Canary Islands and the African Coast, Deep-Sea Res.
II, 49, 3427–3440,
https://doi.org/10.1016/S0967-0645(02)00105-4, 2002.
Krauss, W., Fahrbach, E., Aitsam, A., Elken, J., and Koske, P.: The North
Atlantic Current and its associated eddy field southeast of Flemish Cap,
Deep Sea Res., 34, 1163–1185, https://doi.org/10.1016/0198-0149(87)90070-7,
1987.
Lavander, K. L., Davis, R. E., and Owens, W. B.: Mid-depth recirculation observed
in the Labrador and Irminger seas by direct velovity measurements, Nature,
407, 66–68, https://doi.org/10.1038/35024048, 2000.
Lebreiro, S. M., Antón, L., Reguera, M. I., and Marzocchi, A.: Paleoceanographic
and climatic implications of a new Mediterranean Outflow branch in the
southern Gulf of Cadiz, Quaternary Sci. Rev., 197, 92–111,
https://doi.org/10.1016/j.quascirev.2018.07.036, 2018.
Llave, E., Schönfeld, J., Hernández-Molina, F. J., Mulder, T., Somoza, L.,
Díaz del Río, V., and Sánchez-Almazo, I.: High-resolution sta
tigraphy of the Mediterranean outflow contourite system in the Gulf of Cadiz
during the late Pleistocene: the impact of Heinrich events, Mar. Geol.,
227, 241–262, https://doi.org/10.1016/j.margeo.2005.11.015, 2006.
Llave, E., Hernández-Molina, F. J., Somoza, L., Stow, D. A. V., and Díaz del
Río, V.: Quaternary evolution of the contourite depositional system in
the Gulf of Cadiz. Economic and paleoceanographic importance of contourites,
Geol. Soc. Lond. Spec. Publ., 276, 49–79,
https://doi.org/10.1144/GSL.SP.2007.276.01.03, 2007.
Lofi, J., Voelker, A. H. L., Ducassou, E., Hernández-Molina, F. J.,
Sierro, F. J., Bahr, A., Galvani, A., Lourens, L. J., Pardo-Igúzquiza,
E., and Pezard, P.: Quaternary chronostratigraphic framework and sedimentary
processes for the Gulf of Cadiz and Portuguese Contourite Depositional
Systems derived from Natural Gamma Ray records, Mar. Geol., 377,
40–57, https://doi.org/10.1016/j.margeo.2015.12.005, 2016.
Louarn, E. and Morin, P.: Antarctic Intermediate Water Influence on
Mediterranean Sea Water Outflow, Deep-Sea Res. I, 58, 932–942, https://doi.org/10.1016/j.dsr.2011.05.009,
2011.
Machín, F. and Pelegrí, J. L.: Northward Penetration of Antarctic
Intermediate Water off Northwest Africa, J. Phys. Oceanogr.,
39, 512–535, https://doi.org/10.1175/2008JPO3825.1, 2009.
Machín, F. J. and Pelegrí, J. L.: Interaction of Mediterranean
Water Lenses with Antarctic Intermediate Water off Northwest Africa,
Scientia Marina, 80(S1) 205–214, https://doi.org/10.3989/scimar.04289.06A,
2016.
Machín, F. J., Pelegrí, J. L., Fraile-Nuez, E., Vélez-Bechí, P., López-Laatzen, F., and Hérnandez-Guerra, A.: Seasonal Flow Reversals of Intermediate Waters in
the Canary Current System East of the Canary Islands, J. Phys. Oceanogr., 40, 1902–1909, https://doi.org/10.1175/2010JPO4320.1, 2010.
Mackie, J.: Paleocurrent and paleoclimate reconstruction of the Western
Boundary Undercurrent and Labrador Current on the Grand Banks of
Newfoundland, thesis, Dalhousie University, 2005.
Madelain, F.: Influence de la topographie du fond sur l'ecoulement
méditerrané en entre le Detroit de Gibraltar et le Cap
Saint-Vincent, Cahiers Oceanographiques, 22, 43–61, 1970.
Makou, M. C., Oppo, D. W., and Curry, W. B.: South Atlantic Intermediate Water
Mass Geometry for the Last Glacial Maximum from Foraminiferal Cd/Ca,
Paleoceanography, 25, 1–7, https://doi.org/10.1029/2010PA001962, 2010.
Melières, F.: Recherches sur la dynamique sédimentaire du Golfe de
Cádiz (Espagne), These de Doctoral, University of Paris A, 235 pp., 1974.
Millot, C., Candela, J., Fuda, J. L, and Tber, Y.: Large warming and salinification
of the Mediterranean outflow due to changes in its composition, Deep Sea
Res. I, 53, 656–666, 2006.
Muratli, J., Chase, Z., Mix, A. C., and McManus, J.: Increased Glacial-Age
Ventilation of the Chilean Margin by Antarctic Intermediate Water, Nature
Geosci., 3, 23–26, https://doi.org/10.1038/ngeo715, 2010.
Nelson, C. H., Baraza, J., and Maldonado, A.: Mediterranean undercurrent sandy
contourites, Gulf of Cadiz, Spain, Sed Geol., 82, 103–131,
https://doi.org/10.1016/0037-0738(93)90116-M, 1993.
Nelson, C. H., Baraza, J., Maldonado, A., Rodero, J., Escutia, C., and Barber Jr.,
J. H.: Influence of the Atlantic inflow and Mediterranean outflow
currents on Late Quaternary sedimentary facies of the Gulf of Cadiz
continental margin, Mar Geol., 155, 99–129,
https://doi.org/10.1016/S0025-3227(98)00143-1, 1999.
Oppo, D. W. and Horowitz, M.: Glacial Deep Water Geometry?: South Atlantic
Benthic Foraminiferal Cd/Ca and / 53C Evidence, 15, 147–160,
https://doi.org/10.1029/1999PA000436, 2000.
Pahnke, K., Goldstein S. L., and Hemming S. R.: Abrupt Changes in Antarctic
Intermediate Water Circulation over the Past 25,000 Years, Nature Geosci.,
1, 870–974, https://doi.org/10.1038/ngeo360, 2008.
Pardo, P. C., Pérez, F. F., Velo, A., and Gilcoto, M.: Water Masses Distribution
in the Southern Ocean: Improvement of an Extended OMP (EOMP) Analysis.
Prog. Oceanogr., 103, 92–105,
https://doi.org/10.1016/j.pocean.2012.06.002, 2012.
Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in
Space, Philosophical Magazine, 2, 559–572, 1901.
Peliz, A., Dubert, J., Santos, A. M. P., Oliveira, P. B., and LeCann, B.: Winter
upper ocean circulation in the Western Iberian Basin–fronts, eddies and
poleward flows: an overview, Deep Sea Res. I, 52,
621–646, https://doi.org/10.1016/j.dsr.2004.11.005, 2005.
Peliz, A., Marchesiello, P., Santos, A. M. P., Dubert, J., Teles-Machado, A.,
Marta-Almeida, M., and LeCann, B.: Surface circulation in the Gulf of Cadiz: 2.
Inflow–outflow coupling and the Gulf of Cadiz slope current, J. Geophys. Res.,
114, C03011, https://doi.org/10.1029/2008jc004771, 2009.
Pérez, F. F., Mercier, H., Vázquez-Rodríguez, M., Lherminier,
P., Velo, A., Pardo, P. C., Rosón, G., and Ríos, A. F.: Atlantic Ocean
CO2 uptake reduced by weakening of the meridional overturning circulation,
Nature Geosci., 6, 146–152, https://doi.org/10.1038/ngeo1680, 2013.
Pérez-Hernández, M. D., Hernández Guerra, A., Fraile-Nuez, E.,
Comas-Rodríguez, I., Benítez-Barrios, V. M., Dominguez-Yanes, J. F.,
Vélez-Belchí, P., and De Armas, D.: The Source of the Canary Current in
Fall 2009, J. Geophys. Res.-Oceans, 118, 2874–2891,
https://doi.org/10.1002/jgrc.20227, 2013.
Pickart, R. S., McKee, T. K., Torres, D. J., and Harrington, S. A.: Mean Structure
and Interannual Variabillity of the Slopewater System South of Newfoundland,
J. Phys. Oceanogr., 29, 2541–2558,
https://doi.org/10.1175/1520-0485(1999)029<2541:MSAIVO>2.0.CO;2, 1999.
Pollard, R. T. and Pu, S.: Structure and Circulation of the Upper Atlantic
Ocean Northeast of the Azores, Prog. Oceanogr., 14, 443–462,
https://doi.org/10.1016/0079-6611(85)90022-9, 1985.
Poole, R. and Tomczak, M.: Optimum Multiparameter Analysis of the Water Mass
Structure in the Atlantic Ocean Thermocline, Deep-Sea Res. I,
46, 1895–1921, https://doi.org/10.1016/S0967-0637(99)00025-4, 1999.
Preu, B., Schwenk, T., Hernández-Molina, F. J., Violante, R., Paterlini,
M., Krastel, S., Tomasini, J., and Spieß, V.: Sedimentary growth pattern on
the northern Argentine slope: The impact of North Atlantic Deep Water on
southern hemisphere slope architecture, Mar. Geol., 329–331, 113–125,
https://doi.org/10.1016/j.margeo.2012.09.009, 2012.
Preu, B., Hernández-Molina, F. J., Violante, R., Piola, A. R., Paterline,
C. M., Schwenk, T., Voigt, I., Krastel, S., and Spiess, V.: Morphosedimentary and
Hydrographic Features of the Northern Argentine Margin: The Interplay
between Erosive, Depositional and Gravitational Processes and Its Conceptual
Implications, Deep-Sea Res. I,
75, 157–174, https://doi.org/10.1016/j.dsr.2012.12.013, 2013.
Rahmstorf, S.: Thermohaline Ocean Circulation, Encyclopedia of Quaternary Sciences, 739–750, https://doi.org/10.1016/B0-44-452747-8/00014-4, 2007.
Raymo, M. E., Oppo, D. W., Flower, B. P., Hodell, D. A., McManus, J. F., Venz,
K. A., Kleiven, K. F., and McIntyre, K.: Stability of North Atlantic Water masses
in face of pronounced natural climate variability, Paleoceanography, 19,
PA2008, https://doi.org/10.1029/2003PA000921, 2004.
Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., and Wåhlin, A.:
Contourites and associated sediments controlled by deep-water circulation
processes: state of the art and future considerations, Mar. Geol., 352,
111–154, https://doi.org/10.1016/j.margeo.2014.03.011, 2014.
Rhein, M.: Oceanography: Drifters reveal deep circulation, Nature, 407,
30–31, https://doi.org/10.1038/35024186, 2000.
Rios, A. F., Perez, F. F., and Fraga, F.: Water masses in the upper and middle North-Atlantic Ocean East of the Azores, Deep Sea Res. A, 39, 645–658, 1992.
Rogerson, M., Rohling, E. J., Bigg, G. R., and Ramirez, J.: Paleoceanography of
the Atlantic-Mediterranean exchange: Overviewand first quantitative
assessment of climatic forcing, Rev. Geophys., 50, RG2003,
https://doi.org/10.1029/2011RG000376, 2012.
Roque, C., Duarte, H., Terrinha, P., Valadares, V., Noiva, J., Cachão,
M., Ferreira, J., Legoinha, P., and Zitellini, N.: Pliocene and Quaternary
depositional model of the Algarve margin contourite drifts (gulf of Cadiz,
SW Iberia): seismic architecture, tectoni control and paleoceanographic
insights, Mar. Geol., 303–306, 42–62,
https://doi.org/10.1016/j.margeo.2011.11.001, 2012.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L.,
Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J.,
Peng, T .H., Kozyr, A., Ono, T., and Ríos, A. F.: The Oceanic Sink for
Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403,
2004.
Sánchez-Leal, R. F., Bellanco, M. J., Fernández-Salas, L. M.,
García-Lafuente, J., Gasser-Rubinat, M., González-Pola, C.,
Hernández-Molina, F. J., Pelegrí, J. L., Peliz, A., Relvas, P.,
Roque, D., Ruiz-Villarreal, M., Sammartino, S., and Sánchez-Garrido, J. C.:
The Mediterranean Overflow in the Gulf of Cadiz: A rugged journey,
Scientific Reports, 3, eaao0609, https://doi.org/10.1126/sciadv.aao0609, 2017.
Schlitzer, R., Ocean Data View, available at: https://odv.awi.de, last access: October 2018.
Schönfeld, J. and Zahn, R.: Late glacial to Holocene history of the
Mediterranean Outflow. Evidence from benthic foraminiferal assemblages and
stable isotopes at the Portuguese margin, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 159, 85–111,
https://doi.org/10.1016/S0031-0182(00)00035-3, 2000.
Schönfeld, J., Zahn, R., and Abreu, L.: Surface and deep water response to
rapid climate changes at the Western Iberian Margin, Glob. Planet. Chang.,
36, 237–264, https://doi.org/10.1016/S0921-8181(02)00197-2, 2003.
Shmidtko, S. and Johnson, G. C.: Multidecadal Warming and Shoaling of Antarctic
Intermediate Water, J. Climate, 25, 207–221,
https://doi.org/10.1175/JCLI-D-11-00021.1, 2012.
Stein, M.: Oceanography of the Flemish Cap and Adjacent Waters, J. Northw.
Atla. Fish. Sci., 37, 135–146, https://doi.org/10.2960/J.v37.m652, 2007.
Stow, D. A. V., Hernández-Molina, F. J., Alvarez Zarikian, C. A., the
Expedition 339 Scientists: Proceedings IODP, 339, Integrated Ocean
Drilling Program Management International, Tokyo,
https://doi.org/10.2204/iodp.proc.339.2013, 2013.
Stramma, L. and England, M.: On the Water Masses and Mean Circulation of the
South Atlantic Ocean, J. Geophys. Res., 104, 20863–20883,
https://doi.org/10.1029/1999JC900139, 1999.
Stramma, L. and Siedler, G.: Seasonal changes in the North Atlantic subtropical
gyre, J. Geophys. Res., 93, 8111–8118, https://doi.org/10.1029/JC093iC07p08111,
1988.
Talley, L. D.: Some aspects of ocean heat transport by the shallow,
intermediate and deep overturning circulations, in: Mechanisms of Global
Climate Change at Millennial Time Scales, Geophys. Mono. Ser., 112, American
Geophysical Union, ed. Clark, Webb and Keigwin, 1–22,
https://doi.org/10.1029/GM112p0001, 1999.
Talley, L. D.: Shallow, Intermediate, and Deep Overturning Components of the
Global Heat Budget, J. Phys. Oceanogr., 33, 530–560,
https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2, 2003.
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: an Introduction 2nd edn.,
63–82, 2003.
Tomczak, M. and Large, D.: Optimum Multiparameter Analysis of Mixing in the
Thermocline of the Eastern Indian Ocean, J. Geophys. Res.,
94, 16141–16149, https://doi.org/10.1029/JC094iC11p16141, 1989.
Tsuchiya, M., Talley, L. D., Michael, S., and McCartney, M. S.: An Eastern Atlantic
Section from Iceland Southward across the Equator, Deep Sea Res. A, 39, 1885–1917,
https://doi.org/10.1016/0198-0149(92)90004-D, 1992.
Van Aken, H. M.: The Hydrography of the Mid-Latitude Northeast Atlantic
Ocean I, The Deep Water Masses, 47, 757–788,
https://doi.org/10.1016/S0967-0637(99)00092-8, 2000.
Van Aken, H. M.: The Hydrography of the Mid-Latitude Northeast Atlantic
Ocean – Part III: The Subducted Thermocline Water Mass, Deep-Sea Res.
I, 48, 237–267,
https://doi.org/10.1016/S0967-0637(00)00059-5, 2001.
Vandorpe, T., Van Rooij, D., and de Haas, H.: Statigraphy and paleoceanography of a
topography-controlled contourite drift in the Pen Duick area, southern Gulf
of Cádiz, Mar. Geol., 349, 136–151,
https://doi.org/10.1016/j.margeo.2014.01.007, 2014.
Vandorpe, T., Martins, I., Vitorino, J., Hebbeln, D., García, M., and Van Rooij,
D.: Bottom currents and their influence on the sedimentation pattern in the
El Arraiche mud volcano province, southern Gulf of Cadiz, Mar. Geol.,
378, 114–126, https://doi.org/10.1016/j.margeo.2015.11.012, 2016.
Velez-Belchi, P., Perez-Hernandez, M. D., Casanova-Masjoan, M., Cana, L., and
Hernandez-Guerra, A.: On the Seasonal Variability of the Canary Current and
the Atlantic Meridional Overturning Circulation, J. Geophys. Res.-Oceans, 122, 4518–4538, https://doi.org/10.1002/2017JC012774, 2017.
Viana, A. R., Hercos, C. M., Almeida Jr., W., Magalhães, J. L. C., and Andrade,
S. B.: Evidence of bottom current Influence on the Neogene to Quaternary
sedimentation along the Northern Campos Slope, SW Atlantic Margin,
Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and
Sedimentary Characteristics. Geological Society, London, Memoirs 22,
249–259, https://doi.org/10.1144/GSL.MEM.2002.022.01.18, 2002.
Voelker, A. H. L., Lebreiro, S. M., Schönfeld, J., Cacho, I., Erlenkeuser,
H., and Abrantes, F.: Mediterranean outflow strengthening during northern
hemisphere coolings: a salt source for the glacial Atlantic?, Earth Planet
Sc. Lett., 245, 39e55, https://doi.org/10.1016/j.epsl.2006.03.014, 2006.
Voelker, A. H. L., Colman, A., Olack, G., Waniek, J. J., and Hodell, D.: Oxygen and
hydrogen isotope signatures of Northeast Atlantic water masses, Deep Sea
Res. II, 116, 89–106, 2015.
Voigt, I., Henrich, R., Preu, B. M., Piola, A. R., Hanebuth, T. J. J., Schwenk,
T., and Chiessi, M.: A submarine canyon as a climate archive – Interaction of
the Antarctic Intermediate Water with the Mar de Plata Canyon (Southwest
Atlantic), Mar. Geol., 341, 46–57,
https://doi.org/10.1016/j.margeo.2013.05.002, 2013.
Wainer, I., Goes, M., Murphy, L. N., and Brady, E.: Changes in the Intermediate
Water Mass Formation Rates in the Global Ocean for the Last Glacial Maximum,
Mid-Holocene and Pre-Industrial Climates, Paleoceanography, 27, 1–11,
https://doi.org/10.1029/2012PA002290, 2012.
Yashayaev, I. and Clarke, A.: Evolution of North Atlantic water masses inferred
from Labrador Sea salinity series, Oceanography, 21, 30–45,
https://doi.org/10.5670/oceanog.2008.65, 2008.
Short summary
Global circulation of intermediate water masses has been extensively studied; however, its regional and local circulation along continental margins and variability and implications on sea floor morphologies are still not well known. In this study the intermediate water mass variability in the Gulf of Cádiz and adjacent areas has been analysed and its implications discussed. Remarkable seasonal variations of the Antarctic Intermediate Water and the Subarctic Intermediate Water are determined.
Global circulation of intermediate water masses has been extensively studied; however, its...