Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of ocean analysis and forecast from an atmosphere–ocean coupled data assimilation operational system
Catherine Guiavarc'h
Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
Jonah Roberts-Jones
Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
Chris Harris
CORRESPONDING AUTHOR
Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
Daniel J. Lea
Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
Andrew Ryan
Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
Isabella Ascione
Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
Related authors
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1414, https://doi.org/10.5194/egusphere-2024-1414, 2024
Short summary
Short summary
The Southern Ocean is a key region of the world ocean in the context of climate change studies. We show that the HadGEM3 coupled model with intermediate ocean resolution struggles to accurately simulate the Southern Ocean. Increasing the frictional drag that the sea floor exerts on ocean currents, and introducing a representation of unresolved ocean eddies both appear to reduce the large-scale biases in this model.
Catherine Guiavarc'h, Dave Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene T. Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
EGUsphere, https://doi.org/10.5194/egusphere-2024-805, https://doi.org/10.5194/egusphere-2024-805, 2024
Short summary
Short summary
GOSI9 is the new UK’s hierarchy of global ocean and sea ice models. Developed as part of a collaboration between several UK research institutes it will be used for various applications such as weather forecast and climate prediction. The models, based on NEMO, are available at three resolutions 1°, ¼° and 1/12°. GOSI9 improves upon previous version by reducing global temperature and salinity biases and enhancing the representation of the Arctic sea ice and of the Antarctic Circumpolar Current.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1414, https://doi.org/10.5194/egusphere-2024-1414, 2024
Short summary
Short summary
The Southern Ocean is a key region of the world ocean in the context of climate change studies. We show that the HadGEM3 coupled model with intermediate ocean resolution struggles to accurately simulate the Southern Ocean. Increasing the frictional drag that the sea floor exerts on ocean currents, and introducing a representation of unresolved ocean eddies both appear to reduce the large-scale biases in this model.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Catherine Guiavarc'h, Dave Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene T. Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
EGUsphere, https://doi.org/10.5194/egusphere-2024-805, https://doi.org/10.5194/egusphere-2024-805, 2024
Short summary
Short summary
GOSI9 is the new UK’s hierarchy of global ocean and sea ice models. Developed as part of a collaboration between several UK research institutes it will be used for various applications such as weather forecast and climate prediction. The models, based on NEMO, are available at three resolutions 1°, ¼° and 1/12°. GOSI9 improves upon previous version by reducing global temperature and salinity biases and enhancing the representation of the Arctic sea ice and of the Antarctic Circumpolar Current.
Diego Bruciaferri, Marina Tonani, Isabella Ascione, Fahad Al Senafi, Enda O'Dea, Helene T. Hewitt, and Andrew Saulter
Geosci. Model Dev., 15, 8705–8730, https://doi.org/10.5194/gmd-15-8705-2022, https://doi.org/10.5194/gmd-15-8705-2022, 2022
Short summary
Short summary
More accurate predictions of the Gulf's ocean dynamics are needed. We investigate the impact on the predictive skills of a numerical shelf sea model of the Gulf after changing a few key aspects. Increasing the lateral and vertical resolution and optimising the vertical coordinate system to best represent the leading physical processes at stake significantly improve the accuracy of the simulated dynamics. Additional work may be needed to get real benefit from using a more realistic bathymetry.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Pierre Mathiot, Adrian Jenkins, Christopher Harris, and Gurvan Madec
Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, https://doi.org/10.5194/gmd-10-2849-2017, 2017
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Short summary
We examine the impact in a coupled model of increasing atmosphere and ocean horizontal resolution and the frequency of coupling between the atmosphere and ocean. We demonstrate that increasing the ocean resolution from 1/4 degree to 1/12 degree has a major impact on ocean circulation and global heat transports. The results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.
J. G. L. Rae, H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters
Geosci. Model Dev., 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015, https://doi.org/10.5194/gmd-8-2221-2015, 2015
Short summary
Short summary
The paper presents a new sea ice configuration, GSI6.0, in the Met Office coupled atmosphere-ocean-ice model. Differences in the sea ice from a previous configuration (GSI4.0) are explained in the context of a previously published sensitivity study. In summer, Arctic sea ice is thicker and more extensive than in GSI4.0, bringing it closer to the observationally derived data sets. In winter, the Arctic ice is thicker but less extensive than in GSI4.0.
K. D. Williams, C. M. Harris, A. Bodas-Salcedo, J. Camp, R. E. Comer, D. Copsey, D. Fereday, T. Graham, R. Hill, T. Hinton, P. Hyder, S. Ineson, G. Masato, S. F. Milton, M. J. Roberts, D. P. Rowell, C. Sanchez, A. Shelly, B. Sinha, D. N. Walters, A. West, T. Woollings, and P. K. Xavier
Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, https://doi.org/10.5194/gmd-8-1509-2015, 2015
E. W. Blockley, M. J. Martin, A. J. McLaren, A. G. Ryan, J. Waters, D. J. Lea, I. Mirouze, K. A. Peterson, A. Sellar, and D. Storkey
Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, https://doi.org/10.5194/gmd-7-2613-2014, 2014
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS
NGDC-24, 2009. a
Apache Software foundation:
Apache Subversion,
available at: http://subversion.apache.org/,
last access: 27 September 2019. a
Blockley, E. W., Martin, M. J., and Hyder, P.: Validation of FOAM near-surface ocean current forecasts using Lagrangian drifting buoys, Ocean Sci., 8, 551–565, https://doi.org/10.5194/os-8-551-2012, 2012. a
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014. a, b, c, d
Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologically significant effects
of some approximations in the bulk parameterizations of turbulent air-sea
fluxes, J. Phys. Oceanogr., 47, 5–28, https://doi.org/10.1175/JPO-D-16-0169.1, 2017. a
Browne, P. A., de Rosnay, P., Zuo, H., Bennett, A., and Dawson, A.: Weakly
Coupled Ocean Atmosphere Data Assimilation in the ECMWF NWP System, Remote
Sens., 11, 234, https://doi.org/10.3390/rs11030234,
2019. a
Burchard, H.: Energy-conserving discretisation of turbulent shear and buoyancy
production, Ocean Model., 4, 347–361, 2002. a
Cameron, J. and Bell, W.: The testing and planned implementation of variational
bias correction (VarBC) at the Met Office, 20th International TOVS study
conference, Madison, WI,
available at: https://cimss.ssec.wisc.edu/itwg/itsc/itsc20/papers/11_01_cameron_paper.pdf (last access: 27 September 2019),
2016. a
Dawe, J. T. and Thompson, L. A.: Effect of ocean surface currents on wind
stress, heat flux, and wind power input to the ocean, Geophys. Res. Lett.,
33, 1–5, 2006. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017,
2012. a
Duhaut, T. H. A. and Straub, D. N.: Wind stress dependence on ocean surface
velocity: implications for mechanical energy input to ocean circulation, J.
Phys. Oceanogr., 36, 202–211, 2006. a
Etienne, H.: Quality Information Document for Global Ocean Delayed Mode in-situ
Observations of Ocean Surface Currents and Temperature from Drifters.
INSITU_GLO_UV_L2_REP_OBSERVATIONS_013_044, CMEMS Quality Information
Document,
available at: http://marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-044.pdf
(last access: 27 September 2019),
2017. a
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.:
Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the
COARE Algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2,
2003. a
Fiedler, E.: Improvements to feature resolution in the OSTIA sea surface
temperature analysis using the NEMOVAR assimilation scheme,
Q. J. Roy. Meteorol. Soc., online first, https://doi.org/10.1002/qj.3644, 2018. a, b
Gaspar, P., Gregoris, Y., and Lefevre, J. M.: A simple eddy kinetic energy
model for simulations of the ocean vertical mixing: tests at station Papa and
long-term upper ocean study site, J. Geophys. Res., 95, 16179–16193,
https://doi.org/10.1029/JC095iC09p16179, 1990. a
Haney, R. L.: Surface Thermal Boundary Condition for Ocean Circulation Models,
J. Phys. Oceanogr., 1, 241–248,
https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2,
1971. a
Hollingsworth, A., Arpe, K., Tiedtke, M., Capaldo, M., and Savijrvi, H.: The
Performance of a Medium-Range Forecast Model in Winter: Impact of Physical
Parameterizations, Mon. Weather Rev., 108, 1736–1773,
https://doi.org/10.1175/1520-0493(1980)108<1736:TPOAMR>2.0.CO;2,
1980. a
Hunke, E. C. and Dukowicz, J. K.: The elastic-viscous-plastic sea ice dynamics
model in general orthogonal curvilinear coordinates on a sphere –
incorporation of metric terms, Mon. Weather Rev., 130, 1848–1865, 2002. a
Hunke, E. C. and Lipscomb, W.: CICE: the Los Alamos sea ice model documentation
and software user's manual. Version 4.1, LA-CC-06-012, Technical report,
Los Alamos National Laboratory, N.M., 2010. a
IOC, IHO and BODC: Edition of the GEBCO Digital Atlas, published on CD-ROM on
behalf of the Intergovernmental Oceanographic Commission and the
International Hydrographic Organization as part of the General Bathymetric
Chart of the Oceans, British Oceanographic Data Centre, Liverpool, UK, 2003. a
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.: An optimal definition for
ocean mixed layer depth, J. Geophys. Res.-Oceans, 105,
16803–16821, https://doi.org/10.1029/2000JC900072,
2000. a
King, R. R., While, J., Martin, M. J., Lea, D. J., Lemieux-Dudon, B., Waters,
J., and O'Dea, E.: Improving the initialisation of the Met Office operational
shelf-seas model, Ocean Modell., 130, 1–14,
https://doi.org/10.1016/j.ocemod.2018.07.004,
2018. a, b
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018. a
Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., André, J.-M.,
and Madec, G.: Influence of the oceanic biology on the tropical Pacific
climate in a coupled general circulation model, Clim. Dynam., 5,
503–516, https://doi.org/10.1007/s00382-006-0200-2, 2007. a
Lorenc, A.: VSDP32. VAR documentation, Met Office report, 2013. a
MacLachlan, C., Arribas, A., Peterson, A., Fereday, D., Scaife, A. A., Gordon,
M., Vellinga, M., A., W., Comer, R., Camp, J., and Xavier, P.: Description of
GloSea5: the Met Office high resolution seasonal forecast system, Q. J. Roy.
Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396, 2014. a
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôle de modélisation,
Institut Pierre-Simon Laplace (IPSL), No. 27, ISSN 1288-1619, 2008. a
Martin, M. J., Hines, A., and Bell, M. J.: Data assimilation in the FOAM
operational short-range ocean forecasting system: a description of the scheme
and its impact, Q. J. Roy. Meteor. Soc., 133, 981–995, 2007. a
Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B.: GO5.0: the joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications, Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, 2014. a
Met Office:
Unified Model Met Office,
available at: http://www.metoffice.gov.uk/research/modelling-systems/unified-model,
last access: 27 September 2019a. a
Met Office:
Joint UK Land Environment Simulator (JULES) Documentation,
available at: https://jules-lsm.github.io/,
last access: 27 September 2019b. a
Met Office:
CICE code,
https://code.metoffice.gov.uk/trac/cice/browser,
last access: 27 September 2019c. a
Mirouze, I. and Weaver, A.: Representation of correlation functions in
variational assimilation using an implicit diffusion operator, Q. J. Roy.
Meteor. Soc., 136, 1421–1443, 2010. a
Mirouze, I., Blockley, E. W., Lea, D. J., Martin, M. J., and Bell, M. J.: A
multiple length scale correlation operator for ocean data assimilation,
Tellus A, 68, 29744,
https://doi.org/10.3402/tellusa.v68.29744,
2016. a
Mogensen, K., Balmaseda, M. A., and Weaver, A.: The NEMOVAR ocean data
assimilation system as implemented in the ECMWF ocean analysis for System 4,
European Centre for Medium-Range Weather Forecasts, 2012. a
Mulholland, D. P., Laloyaux, P., Haines, K., and Balmaseda, M. A.: Origin and
Impact of Initialization Shocks in Coupled Atmosphere–Ocean Forecasts,
Mon. Weather Rev., 143, 4631–4644, https://doi.org/10.1175/MWR-D-15-0076.1,
2015. a
Murphy, A. H. and Epstein, E. S.: Skill Scores and Correlation Coefficients in
Model Verification, Mon. Weather Rev., 117, 572–582,
https://doi.org/10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2,
1989. a
NEMO consortium:
NEMO Community ocean model,
available at: http://www.nemo-ocean.eu,
last access: 27 September 2019. a
Penny, S. G. and Hamill, T. M.: Coupled Data Assimilation for Integrated Earth
System Analysis and Prediction, B. Am. Meteorol.
Soc., 98, ES169–ES172, https://doi.org/10.1175/BAMS-D-17-0036.1,
2017. a
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., West, A. E., Harris, C. M., Hunke, E. C., and Walters, D. N.: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model, Geosci. Model Dev., 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015, 2015. a
Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity, G. W., Lorenc, A. C., and Payne, T. J.: The Met Office global four‐dimensional variational data assimilation scheme, Q. J. Roy. Meteor. Soc. 133, 347–362, 2007. a
Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F., Lemarié,
F., Chelton, D., Illig, S., and Hall, A.: Modulation of Wind Work by Oceanic
Current Interaction with the Atmosphere, J. Phys. Oceanogr.,
46, 1685–1704, https://doi.org/10.1175/JPO-D-15-0232.1,
2016. a
Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and Schroeder, D.: The sea ice model component of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, 2018. a
Rio, M.-H.: Use of Altimeter and Wind Data to Detect the Anomalous Loss of
SVP-Type Drifters Drogue, J. Atmos. Ocean. Tech., 29,
1663–1674, https://doi.org/10.1175/JTECH-D-12-00008.1, 2012. a
Rio, M.-H., Guinehut, S., , and Larnicol, G.: New CNES-CLS09 global mean
dynamic topography computed from the combination of GRACE data, altimetry,
and in situ measurements, J. Geophys. Res., 116, C07018,
https://doi.org/10.1029/2010JC006505, 2011. a
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides
new insight into geostrophic and Ekman currents, Geophys. Res.
Lett., 41, 8918–8925, https://doi.org/10.1002/2014GL061773,
2014. a
Roberts-Jones, J., Fiedler, E. K., and Martin, M. J.: Daily, Global,
High-Resolution SST and Sea Ice Reanalysis for 1985-2007 Using the OSTIA
System, J. Climate, 25, 6215–6232, https://doi.org/10.1175/JCLI-D-11-00648.1,
2012. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D.,
Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez,
M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The
NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014. a
Semtner, A. J.: A model for the thermodynamic growth of sea ice in numerical
investigations of climate, J. Phys. Oceanogr., 6, 379–389, 1976. a
Smith, G. C., Belanger, J.-M., Roy, F., Pellerin, P., Ritchie, H., Onu, K.,
Roch, M., Zadra, A., Colan, D. S., Winter, B., Fontecilla, J.-S., and Deacu,
D.: Impact of Coupling with an Ice-Ocean Model on Global Medium-Range NWP
Forecast Skill, Mon.Weather Rev., 146, 1157–1180,
https://doi.org/10.1175/MWR-D-17-0157.1,
2018. a
Thorndike, A., Rothrock, D., Maykut, G., and Colony, R.: The thickness
distribution of sea ice, J. Geophys. Res., 80, 4501–4513, 1975. a
Valcke, S.: OASIS3 User Guide (prism 2-5), PRISM Support Initiative No 3, 2006. a
Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017. a
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While, J.:
Implementing a variational data assimilation system in an operational 1/4
degree global ocean model, Q. J. Roy. Meteor.
Soc., 141, 333–349, https://doi.org/10.1002/qj.2388,
2015. a
Weaver, A. T., Deltel, C., Machu, E., Ricci, S., and Daget, N.: A multivariate
balance operator for variational ocean data assimilation, Q. J.
Roy. Meteor. Soc., 131, 3605–3625,
https://doi.org/10.1256/qj.05.119,
2006. a
Wehde, H., V. Schuckmann, K., Pouliquen, S., Grouazel, A., Bartolome, T.,
Tintore, J., De Alfonso Alonso Munoyerro, M., and the INS-TAC team: Quality
Information Document For Near Real Time IN SITU products
INSITU_GLO_NRT_OBSERVATIONS_013_030, CMEMS Quality Information Document, available at:
http://marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-030-036.pdf (last access: 27 September 2019),
2016. a
West, A. E., McLaren, A. J., Hewitt, H. T., and Best, M. J.: The location of the thermodynamic atmosphere–ice interface in fully coupled models – a case study using JULES and CICE, Geosci. Model Dev., 9, 1125–1141, https://doi.org/10.5194/gmd-9-1125-2016, 2016.
a
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for
fluids, J. Computat. Phys., 31, 335–362,
https://doi.org/10.1016/0021-9991(79)90051-2,
1979. a
Short summary
Coupled atmosphere–ocean modelling systems allow changes in the ocean to directly and immediately feed back on the atmosphere and enable improved weather prediction and ocean forecasts. This is particularly true if the coupled feedbacks are also considered in the way real-time observations of the atmospheric and oceanic states are used to obtain the initial conditions for the forecasts. Here we demonstrate promising performance from such a coupled system when used for ocean prediction.
Coupled atmosphere–ocean modelling systems allow changes in the ocean to directly and...