Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1267-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1267-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution underway measurements of phytoplankton photosynthesis and abundance as an innovative addition to water quality monitoring programs
Laboratory for Hydrobiological Analysis, Rijkswaterstaat (RWS),
Zuiderwagenplein 2, 8224 AD Lelystad, the Netherlands
Department of Climate Geochemistry, Max Planck Institute for
Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Machteld Rijkeboer
Laboratory for Hydrobiological Analysis, Rijkswaterstaat (RWS),
Zuiderwagenplein 2, 8224 AD Lelystad, the Netherlands
Alain Lefebvre
Ifremer, Laboratoire Environnement et Ressources, BP 699, 62321
Boulogne sur Mer, France
Arnold Veen
Laboratory for Hydrobiological Analysis, Rijkswaterstaat (RWS),
Zuiderwagenplein 2, 8224 AD Lelystad, the Netherlands
Jacco C. Kromkamp
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands
Institute for Sea Research and Utrecht University, P.O. box 140, 4400 AC
Yerseke, the Netherlands
Related authors
No articles found.
David Devreker, Guillaume Wacquet, and Alain Lefebvre
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-479, https://doi.org/10.5194/essd-2024-479, 2024
Preprint under review for ESSD
Short summary
Short summary
This article presents a 45-year data series (1978–2023) acquired in the South Bight of the North Sea. It provides an overview of the main statistical characteristics of the time series (hydrological parameters and plankton species), including long-term trends and shifts analysis. The aim of this paper is to make this valuable dataset available to help decipher the local and global influence of anthropogenic activities in a world increasingly affected by climate change.
Raed Halawi Ghosn, Émilie Poisson-Caillault, Guillaume Charria, Armel Bonnat, Michel Repecaud, Jean-Valery Facq, Loïc Quéméner, Vincent Duquesne, Camille Blondel, and Alain Lefebvre
Earth Syst. Sci. Data, 15, 4205–4218, https://doi.org/10.5194/essd-15-4205-2023, https://doi.org/10.5194/essd-15-4205-2023, 2023
Short summary
Short summary
This article describes a long-term (2004–2022) dataset from an in situ instrumented station located in the eastern English Channel and belonging to the COAST-HF network (ILICO). It provides high temporal resolution (sub-hourly) oceanographic and meteorological measurements. The MAREL Carnot dataset can be used to conduct research in marine ecology, oceanography, and data science. It was utilized to characterize recurrent, rare, and extreme events in the coastal area.
Alain Lefebvre and David Devreker
Earth Syst. Sci. Data, 15, 1077–1092, https://doi.org/10.5194/essd-15-1077-2023, https://doi.org/10.5194/essd-15-1077-2023, 2023
Short summary
Short summary
The Suivi Regional des Nutriments (SRN) data set includes long-term time series on marine phytoplankton and physicochemical measures in the eastern English Channel and the Southern Bight of the North Sea. These data sets should be useful for comparing contrasted coastal marine ecosystems to further knowledge about the direct and indirect effects of human pressures and environmental changes on ecosystem structure and function, including eutrophication and harmful algal bloom issues.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Biological Processes
Seabirds as samplers of the marine environment – a case study of northern gannets
Stefan Garthe, Verena Peschko, Ulrike Kubetzki, and Anna-Marie Corman
Ocean Sci., 13, 337–347, https://doi.org/10.5194/os-13-337-2017, https://doi.org/10.5194/os-13-337-2017, 2017
Short summary
Short summary
We investigated how the largest seabird of the North Atlantic, the northern gannet, uses the southern North Sea as its habitat to search for food. We deployed small GPS trackers on the birds that recorded the birds' movements in detail. Birds were away from the breeding colony mostly for 1–15 h and up to 80 km distance to find prey for their chicks and themselves. To obtain food, they dove frequently to depths of 1–3 m, with a maximum of 11 m.
Cited articles
Aardema, H. M., Rijkeboer, M., Levebvre, A., Veen, A., and Kromkamp, J. C.: Data presented in the paper “High-resolution underway measurements of phytoplankton photosynthesis and abundance as innovative addition to water quality monitoring programs”, https://doi.org/10.4121/uuid:84406786-219d-4f33-a60a-a0f5301032d0, 2019.
Alvarez-Fernandez, S. and Riegman, R.: Chlorophyll in North Sea coastal and
offshore waters does not reflect long term trends of phytoplankton biomass,
J. Sea Res., 91, 35–44, https://doi.org/10.1016/j.seares.2014.04.005, 2014.
Azam, F., Fenchel, T., Field, J., Gray, J., Meyer-Reil, L., and Thingstad,
F.: The Ecological Role of Water-Column Microbes in the Sea, Mar. Ecol.
Prog. Ser., 10, 25–263, 1983.
Baretta-Bekker, J. G., Baretta, J. W., Latuhihin, M. J., Desmit, X., and
Prins, T. C.: Description of the long-term (1991–2005) temporal and spatial
distribution of phytoplankton carbon biomass in the Dutch North Sea, J. Sea Res., 61, 50–59. https://doi.org/10.1016/j.seares.2008.10.007, 2009.
Beardall, J., Berman, T., Heraud, P., Kadiri, M. O., Light, B. R.,
Patterson, G., Roberts, S., Sulzberger, B., Sahan, E., Uehlinger, U., and
Wood, B.: A comparison of methods for detection of phosphate limitation in
microalgae, Aquat. Sci., 63, 107–121, 2001.
Behrenfeld, M. J., Maranon, E., Siegel, D. A., and Hooker, S. B.:
Photoacclimation and nutrient-based model of light-saturated photosynthesis
for quantifying oceanic primary production, Mar. Ecol. Prog. Ser., 228,
103–117, 2002.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G.,
Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary
ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317,
2006.
Brandsma, J., Hopmans, E. C., Philippart, C. J. M.,
Veldhuis, M. J. W., Schouten, S., and Sinninghe Damsté, J. S.: Low temporal variation in the intact
polar lipid composition of North Sea coastal marine water reveals limited chemotaxonomic value, Biogeosciences,
9, 1073–1084, https://doi.org/10.5194/bg-9-1073-2012, 2012.
Burson, A., Stomp, M., Akil, L., Brussaard, C. P. D., and Huisman, J.:
Unbalanced reduction of nutrient loads has created an offshore gradient from
phosphorus to nitrogen limitation in the North Sea, Limnol. Oceanogr., 61,
869–888, https://doi.org/10.1002/lno.10257, 2016.
Capuzzo, E., Stephens, D., Silva, T., Barry, J., and Forster, R. M.: Decrease in
water clarity of the southern and central North Sea during the 20th century,
Glob. Change Biol., 21, 2206–2214, https://doi.org/10.1111/gcb.12854, 2015.
Capuzzo, E., Lynam, C. P., Barry, J., Stephens, D., Forster, R. M.,
Greenwood, N., McQuatters-Gollop, A., Silva, T., van Leeuwen, S. M., and
Engelhard, G. H.: A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock
recruitment, Glob. Change Biol., 0, 1–13, https://doi.org/10.1111/gcb.13916, 2017.
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014.
Cohen, S. E. and Golden, S. S.: Circadian Rhythms in Cyanobacteria,
Microbiol. Mol. Biol. R., 79, 373–385, https://doi.org/10.1128/MMBR.00036-15, 2015.
Cullen, J. J. and Davis, R. F.: The blank can make a big difference in
oceanographic measurements, Limnol. Oceanogr. Bulletin, 12, 29–35, 2003.
Dijkman, N. A. and Kromkamp, J. C. Phospholipid-derived fatty acids as
chemotaxonomic markers for phytoplankton: application for inferring
phytoplankton composition, Mar. Ecol. Progr. Ser., 424, 113–125, 2006.
Falkowski, P. G.: Biogeochemical Controls and Feedbacks on Ocean Primary
Production, Science, 281, 200–206, https://doi.org/10.1126/science.281.5374.200,
1998.
Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., and
Raven, J. A.: Phytoplankton in a changing world: cell size and elemental
stoichiometry, J. Plankton Res., 32, 119–137, https://doi.org/10.1093/plankt/fbp098,
2010.
Flameling, I. A. and Kromkamp, J. C.: Light dependence of quantum yields for
PSII charge separation and oxygen evolution in eukaryotic algae, Limnol.
Oceanogr., 43, 284–297, 1998.
Flanders Marine Institute: Maritime Boundaries Geodatabase: Maritime
Boundaries and Exclusive Economic Zones (200NM), version 10,
https://doi.org/10.14284/312, 2018.
Flynn, K. J.: Algal carbon-nitrogen metabolism: a biochemical basis for
modelling the interactions between nitrate and ammonium uptake, J.
Plankton. Res., 13, 373–387, 1991.
Flynn, K. J.: Modelling marine phytoplankton growth under eutrophic
conditions, J. Sea Res., 54, 92–103, 2005.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: Dynamic model of
phytoplankton growth and acclimation: responses of the balanced growth rate
and the chlorophyll a : carbon ratio to light, nutrient-limitation and
temperature, Mar. Ecol. Prog. Ser., 148, 187–200, 1997.
Gohin, F., Loyer, S., Lunven, M., Labry, C., Froidefond, J.-M., Delmas, D.,
Huret, M., and Herbland. A.: Satellite-derived parameters for biological
modelling in coastal waters: Illustration over the eastern continental shelf
of the Bay of Biscay, Remote Sens. Environ., 95, 29–46, 2005.
Goss, R., Ann Pinto, E., Wilhelm, C., and Richter, M.: The importance of a
highly active and ΔpH-regulated diatoxanthin epoxidase for the
regulation of the PS II antenna function in diadinoxanthin cycle containing
algae, J. Plant Physiol., 163, 1008–1021,
https://doi.org/10.1016/j.jplph.2005.09.008, 2006.
Halsey, K. H. and Jones, B. M.: Phytoplankton Strategies for Photosynthetic
Energy Allocation, Annu. Rev. Mar. Sci., 7, 265–97,
https://doi.org/10.1146/annurev-marine-010814-015813, 2015.
Hughes, D. J., Campbell, D. A., Doblin, M. A., Kromkamp, J. C., Lawrenz, E., Moore, C. M., Oxborough, K., Prášil, O., Ralph, P. J., Alvarez, M. F., and Suggett, D. J.: Roadmaps and Detours: Active Chlorophyll a Assessments of
Primary Productivity Across Marine and Freshwater Systems, Environ. Sci.
Technol., 52, 12039–12054, https://doi.org/10.1021/acs.est.8b03488, 2018.
Kassambara, A. and Mundt, F.: factoextra: Extract and Visualize the Results
of Multivariate Data Analyses, R package version 1.0.5, available at:
https://CRAN.R-project.org/package=factoextra (last access: 1 February 2018), 2017.
Kolber, Z. and Falkowski, P. G.: Use of active fluorescence to estimate
phytoplankton photosynthesis in situ, Limnol. Oceanogr., 38, 1646–1665,
1993.
Kolber, Z., Zehr, J., and Falkowski, P. G.: Effects of growth irradiance and
nitrogen limitation on photosynthetic energy conversion in photosystem II,
Plant Physiol., 88, 923–929, 1988.
Kolber, Z. S., Prášil, O., and Falkowski, P. G.: Measurements of
variable chlorophyll fluorescence using fast repetition rate techniques:
Defining methodology and experimental protocols, BBA-Bioenergetics, 1367, 88–106, https://doi.org/10.1016/S0005-2728(98)00135-2, 1998.
Kromkamp, J. C. and Forster, R. M.: The use of variable fluorescence
measurements in aquatic ecosystems: differences between multiple and single
turnover measuring protocols and suggested terminology, Eur. J. Phycol., 38, 103–112, https://doi.org/10.1080/0967026031000094094, 2003.
Kromkamp, J. C. and Van Engeland, T.: Changes in phytoplankton biomass in
the western Scheldt estuary during the period 1978–2006, Estuaries Coasts,
33, 270–285, https://doi.org/10.1007/s12237-009-9215-3, 2010.
Kromkamp, J. C., Dijkman, N. A., Peene, J., Simis, S. G. H., and Gons, H.
J.: Estimating phytoplankton primary production in Lake IJsselmeer (the
Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques
Estimating phytoplankton primary production in Lake IJsselmeer (the
Netherlands) using variable fluoresce, Eur. J. Phycol., 43, 327–344,
https://doi.org/10.1080/09670260802080895, 2008.
Kruskopf, M. and Flynn, K. J.: Chlorophyll content and fluorescence responses
cannot be used to gauge reliably phytoplankton biomass, nutrient status or
growth rate, New Phytol., 169, 525–536, 2005.
Latasa, M., Cabello, A. M., Morán, X. A. G., Massana, R., and Scharek,
R.: Distribution of phytoplankton groups within the deep chlorophyll
maximum, Limnol. Oceanogr., 62, 665–685, 2017.
Lawrenz, E., Silsbe, G., Capuzzo, E., Ylöstalo, P., Forster, R. M.,
Simis, S. G. H., Prášil, O., Kromkamp, J. C., Hickman, A. E., Moore,
C. M., Forget, M. H., Geider, R. J., and Suggett, D. J.: Predicting the
Electron Requirement for Carbon Fixation in Seas and Oceans, PLoS ONE, 8, e58137,
https://doi.org/10.1371/journal.pone.0058137, 2013.
Lefebvre, A. and Poisson-Caillault, E.: High resolution overview of
phytoplankton spectral groups and hydrological conditions in the eastern
English Channel using unsupervised clustering, Mar. Ecol. Prog. Ser., 608, 73–92,
https://doi.org/10.3354/meps12781, 2019.
Ly, J., Philippart, C. J. M., and Kromkamp, J. C.: Phosphorus limitation
during a phytoplankton spring bloom in the western Dutch Wadden Sea, J. Sea Res., 88, 109–120, 2014.
Marinov, I., Doney, S. C., and Lima, I. D.: Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light, Biogeosciences, 7, 3941–3959, https://doi.org/10.5194/bg-7-3941-2010, 2010.
Marrec, P., Grégori, G., Doglioli, A. M., Dugenne, M., Della Penna, A., Bhairy, N., Cariou, T., Hélias Nunige, S., Lahbib, S., Rougier, G., Wagener, T., and Thyssen, M.: Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea, Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, 2018.
Melrose, D. C., Oviatt, C. A., O'Reilly, J. E., and Berman, M. S.:
Comparisons of fast repetition rate fluorescence estimated primary
production and 14C uptake by phytoplankton, Mar. Ecol. Prog. Ser., 311,
37–46, https://doi.org/10.3354/meps311037, 2006.
Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D.,
Stammerjohn, S. E., and Schofield, O.: Recent Changes in Phytoplankton
Communities Associated with Rapid Regional Climate Change Along the Western
Antarctic Peninsula, Science, 323, 1470–1473,
https://doi.org/10.1126/science.1164533, 2009.
Moore, C. M., Suggett, D. J., Hickman, A. E., Kim, Y.-N., Tweddle, J. F.,
Sharples, J., Geider, R. J., and Holligan, P. M.: Phytoplankton
photoacclimation and photoadaptation in response to environmental gradients
in a shelf sea, Limnol. Oceanogr., 44, 1–46,
https://doi.org/10.4319/lo.2006.51.2.0936, 2006.
Oxborough, K., Moore, C. M., Suggett, D. J., Lawson, T., Chan, H. G., and
Geider, R. J.: Direct estimation of functional PSII reaction center
concentration and PSII electron flux on a volume basis: a new approach to
the analysis of Fast Repetition Rate fluorometry (FRRf) data, Limnol. Oceanogr.-Meth., 10, 142–154, https://doi.org/10.4319/lom.2012.10.142, 2012.
Peeters, J. and Peperzak, L.: Nutrient limitation in the North Sea: a
bioassay approach, Neth. J. Sea Res., 26, 61–73,
https://doi.org/10.1016/0077-7579(90)90056-M, 1990.
Philippart, C. J. M., Cade, G. C., van Raaphorst, W., and Riegman, R.:
Long-term phytoplankton – nutrient interactions in a shallow coastal sea:
Algal community structure, nutrient budgets, and denitrification potential,
Limnol. Oceanogr., 45, 131–144, 2000.
Philippart, C. J. M., Anadón, R., Danovaro, R., Dippner, J. W.,
Drinkwater, K. F., Hawkins, S. J., Oguz, T., O'Sullivan, G., and Reid, P. C.: Impacts of climate change on European marine ecosystems:
Observations, expectations and indicators, J. Exp. Mar. Biol. Ecol., 400, 52–69, https://doi.org/10.1016/j.jembe.2011.02.023, 2011.
Poisson-caillault, E. and Ternynck, P.: uHMM: Construct an Unsupervised
Hidden Markov Model, R Package version 1.0,
available at: https://CRAN.R-project.org/package=uHMM (last access: 1 February 2018), 2016.
Quéré, C. L., Harrison, S. P., Colin Prentice, I., Buitenhuis, E.
T., Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R. J.,
Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T.,
Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow,
D.: Ecosystem dynamics based on plankton functional types for global ocean
biogeochemistry models, Glob. Change Biol., 11, 2016–2040,
https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 22 August 2019), 2017.
Raateoja, M. P.: Fast repetition rate fluorometry (FRRF) measuring
phytoplankton productivity: A case study at the entrance to the Gulf of
Finland, Baltic Sea, Boreal Environ. Res., 9, 263–276, 2004.
Rantajärvi, E., Olsonen, R., Hällfors, S., Leppänen, J. M., and
Raateoja, M.: Effect of sampling frequency on detection of natural
variability in phytoplankton: Unattended high-frequency measurements on
board ferries in the Baltic Sea, ICES J. Mar. Sci., 55, 697–704, https://doi.org/10.1006/jmsc.1998.0384, 1998.
Rijkeboer, M.: Automated characterization of phytoplankton community into
size and pigment groups based on flow cytometry, MEM 2018-20, RWS
Information, Lelystad, 18, 2018.
Rousseeuw, K., Poison Caillault, E., Lefebvre, A., and Hamad, D.: Achimer Hybrid
hidden Markov model for marine environment monitoring, IEEE J-Stars, 8, 204–213, https://doi.org/10.1109/JSTARS.2014.2341219, 2015.
Rutten, T.: Evaluatie testen van diverse CytoSense configuraties,
TRP2015.001, Middelburg, 2015.
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A.
C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V.,
Spall, S. A., and Stouffer, R.: Response of ocean ecosystems to climate
warming, Global Biogeochem. Cy., 18, GB3003, https://doi.org/10.1029/2003GB002134,
2004.
Schiebel, R., Spielhagen, R. F., Garnier, J., Hagemann, J., Howa, H.,
Jentzen, A., Martínez-Garcia, A., Meiland, J., Michel, E.,
Repschläger, J., Salter, I., Yamasaki, M., and Haug, G.: Modern planktic
foraminifers in the high-latitude ocean, Mar. Micropaleontol., 136, 1–13,
https://doi.org/10.1016/j.marmicro.2017.08.004, 2017.
Schuback, N., Flecken, M., Maldonado, M. T., and Tortell, P. D.: Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific, Biogeosciences, 13, 1019–1035, https://doi.org/10.5194/bg-13-1019-2016, 2016.
Seadatanet: SeaDataCloud Flow Cytometry Standardised Cluster Names, Natural
Environment Research Council, Version 3,
available at: http://vocab.nerc.ac.uk/collection/F02/current/F0200007/ (last access: 1 February 2018), 2018.
Sieburth, J. M., Smetacek, V., and Lenz, J.: Pelagic ecosystem structure:
heterotrophic compartments of the plankton and their relationship to
plankton size fractions, Limnol. Oceanogr., 23, 1256–1263, 1978.
Sündermann, J. and Pohlmann, T.: A brief analysis of North Sea physics,
Oceanologia, 53, 663–689, https://doi.org/10.5697/oc.53-3.663, 2011.
Silsbe, G. M. and Kromkamp, J. C.: Modeling the irradiance dependency of the
quantum efficiency of photosynthesis, Limnol. Oceanogr.-Meth., 10, 645–652, https://doi.org/10.4319/lom.2012.10.645, 2012.
Silsbe, G. M., Oxborough, K., Suggett, D. J., Forster, R. M., Ihnken, S.,
Komárek, O., Lawrenz, E., Prášil, O., Röttgers, R.,
Šicner, M., Simis, S. G. H., Van Dijk, M., and Kromkamp, J. C.: Toward
autonomous measurements of photosynthetic electron transport rates: An
evaluation of active fluorescence-based measurements of photochemistry,
Limnol. Oceanogr.-Meth., 13, 138–155, https://doi.org/10.1002/lom3.10014, 2015.
Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J., and Westberry,
T. K.: The CAFE model: A net production model for global ocean phytoplankton,
Global Biogeochem. Cy., 30, 1756–1777, https://doi.org/10.1002/2016GB005521, 2016.
Smyth, T. J., Pemberton, K. L., Aiken, J., and Geider, R. J.: A methodology to
determine primary production and phytoplankton photosynthetic parameters
from Fast Repetition Rate Fluorometry, J. Plankton Res., 26, 1337–1350,
https://doi.org/10.1093/plankt/fbh124, 2004.
Suggett, D. J., Oxborough, K., Baker, N. R., MacIntyre, H. L., Kana, T. M., and Geider, R. J.: Fluorescence Measurements for Assessment of Photosynthetic
Electron Transport in Marine Phytoplankton, Eur. J. Phycol., 38, 371–384, https://doi.org/10.1080/09670260310001612655, 2003.
Suggett, D. J., MacIntyre, H. L., Kana, T. M., and Geider, R. J.: Comparing
electron transport with gas exchange: Parameterising exchange rates between
alternative photosynthetic currencies for eukaryotic phytoplankton, Aquat.
Microb. Ecol., 56, 147–162, https://doi.org/10.3354/ame01303, 2009a.
Suggett, D. J., Moore, C. M., Hickman, A. E., and Geider, R. J.:
Interpretation of fast repetition rate (FRR) fluorescence: signatures of
phytoplankton community structure versus physiological state, Mar. Ecol.
Prog. Ser., 376, 1–19, 2009b.
Suzuki, L. and Johnson, C. H.: Algae Know the Time of Day: Circadian and
Photoperiodic Programs, J. Phycol., 37, 933–942, 2001.
Sündermann, J. and Pohlmann, T.: A brief analysis of North Sea physics,
Oceanologia, 53, 663–689, https://doi.org/10.5697/oc.53-3.663, 2011.
Tarran, G. A., Heywood, J. L., and Zubkov, M. V.: Latitudinal changes in the
standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic
Ocean, Deep-Sea Res. Pt II, 53, 1516–1529,
https://doi.org/10.1016/j.dsr2.2006.05.004, 2006.
Thyssen, M., Alvain, S., Lefèbvre, A., Dessailly, D., Rijkeboer, M., Guiselin, N., Creach, V., and Artigas, L.-F.: High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing, Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, 2015.
Tillmann, U. and Rick, H. J.: North Sea phytoplankton: A review, Senck. Marit., 33, 1–69, https://doi.org/10.1007/BF03043047, 2003.
Van der Woerd, H. J. and Pasterkamp, R.: HYDROPT: A fast and flexible method
to retrieve chlorophyll-a from multispectral satellite observations of
optically complex coastal waters, Remote Sens. Environ., 112, 1795–1807, 2008.
Vaulot, D., Eikrem, W., Viprey, M., and Moreau, H.: The diversity of small
eukaryotic phytoplankton (< or =3 micron) in marine ecosystems,
FEMS Microbiol. Rev., 32, 795–820, 2008.
Webb, W. L., Newton, M., and Starr, D.: Carbon dioxide exchange of Alnus rubra: a mathematical model, Oecologia, 17, 281–291, 1974.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, 2009.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.: Mixed
effects models and extensions in ecology with R, Springer, New York, 2009.
Short summary
Monitoring of marine waters is currently mainly limited to low-resolution methods, while the ocean can be highly variable both in time and space. This study explores the use of two high-resolution methods to study phytoplankton dynamics and uses a model to organize the large amount of data. The results show that the combination of FRR fluorometry and flow cytometry offers an elaborate view of the phytoplankton community and can improve existing monitoring programs.
Monitoring of marine waters is currently mainly limited to low-resolution methods, while the...