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Abstract. Marine waters can be highly heterogeneous both
on a spatial and temporal scale, yet monitoring programs
currently rely primarily on low-resolution methods. This po-
tentially leads to undersampling. This study explores the po-
tential of two high-resolution methods for monitoring phy-
toplankton dynamics: fast repetition rate fluorometry for in-
formation on phytoplankton photosynthesis and productiv-
ity and automated scanning flow cytometry for information
on phytoplankton abundance and community composition.
These methods were tested in combination with an underway
Ferrybox system during four cruises on the Dutch North Sea
in April, May, June, and August 2017. The high-resolution
methods were able to visualize both the spatial and tempo-
ral variability of the phytoplankton community in the Dutch
North Sea. Spectral cluster analysis was applied to objec-
tively interpret the multitude of parameters and visualize po-
tential spatial patterns. This resulted in the identification of
biogeographic regions with distinct phytoplankton commu-
nities, which varied per cruise. Our results clearly show that
the sampling based on fixed stations does not give a good rep-
resentation of the spatial patterns, showing the added value of
underway high-resolution measurements. To fully exploit the
potential of the tested high-resolution measurement setup,
methodological constraints need further research. Among
these constraints are accounting for the diurnal cycle in pho-
tophysiological parameters concurrent to the spatial varia-
tion, better predictions of the electron requirement for carbon
fixation to estimate gross primary productivity, and the iden-

tification of more flow cytometer clusters with informative
value. Nevertheless, the richness of additional information
provided by high-resolution methods can improve existing
low-resolution monitoring programs towards a more precise
and ecosystemic ecological assessment of the phytoplankton
community and productivity.

1 Introduction

The Dutch North Sea is of major socioeconomic importance
because of its close proximity to densely populated areas
and its intensive utilization for shipping, fishing, sand extrac-
tion, and the development of offshore windmill farms. Due to
this high anthropogenic pressure, the North Sea has under-
gone considerable biogeochemical and biological changes
in the past decades (Burson et al., 2016; Capuzzo et al.,
2015, 2017). For example, nutrient load and stoichiometry
were fluctuating substantially due to the inflow of wastewa-
ter and agricultural runoff and subsequent mitigation efforts
(Burson et al., 2016; Philippart et al., 2000). Additionally,
water clarity decreased in large parts of the North Sea dur-
ing the 20th century (Capuzzo et al., 2015). These abiotic
changes affect primary productivity and community compo-
sition shifts throughout the trophic levels, with large implica-
tions for ecosystem functioning and fisheries production (Ca-
puzzo et al., 2017; Burson et al., 2016). Over time, further
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changes are expected due to the planned energy transition
and under the impact of climate change. Anticipated climate
change effects include increasing temperatures, sea level rise,
and ocean acidification. Already, the North Sea is warming
more rapidly than most other seas (Philippart et al., 2011).
These changing environmental conditions will have a big
impact on marine biogeochemistry, phytoplankton commu-
nity composition, and primary productivity (Sarmiento et al.,
2004; Behrenfeld et al., 2006; Marinov et al., 2010). Changes
in phytoplankton community composition and primary pro-
ductivity affect the entire ecosystem and global biogeochem-
ical cycles (Montes-Hugo et al., 2009; Falkowski et al., 1998;
Schiebel et al., 2017). Systematic and sufficient monitoring
of these changes is of crucial importance to recognize threats
and, once identified as such, develop mitigation actions.

Although phytoplankton community composition and pro-
ductivity can be highly variable on a spatial and tempo-
ral scale, governmental monitoring still consists mainly of
low-resolution measurements (Baretta-Bekker et al., 2009;
Kromkamp and van Engeland, 2010; Cloern et al., 2014;
Rantajarvi et al., 1998). Currently, biological monitoring
of phytoplankton in the Dutch North Sea is dictated by
the requirements set by OSPAR and the EU Marine Strat-
egy Framework Directive (MSFD 2008/56/EC). Samples are
taken between March and October with a frequency of ev-
ery 2 or 4 weeks. The phytoplankton analysis consists of
high-performance liquid chromatography (HPLC) analysis
of Chl a concentration, microscopy counts of Phaeocystis
cells, and, at some stations, coccolithophore or toxic di-
noflagellate cells. Sampling points were reduced from al-
most 70 in 1984 to less than 20 today, while strong sea-
sonal patterns, high riverine input, and tidal forces make the
Dutch North Sea a region with high spatiotemporal variabil-
ity. Modern automated flow-through underway systems have
the potential to be an effective addition to monitoring pro-
grams because they offer the opportunity to record the sur-
face ocean with high spatial and temporal resolution. Such
high-resolution methods are well established in physical
oceanography, but for biological parameters the implementa-
tion has been lacking. This is mostly due to the complicated
interpretation of biological parameters, resulting in high un-
certainties in the current global estimates of net primary pro-
ductivity (Silsbe et al., 2016). Underway measurements are
not able to replace some more detailed low-resolution mea-
surements, but their higher spatial and temporal resolutions
provide the possibility to identify short-lived events, detect
small-scale changes in phytoplankton dynamics, evaluate the
consequences of possible (spatial) undersampling, and act as
an early warning system. Additionally, underway measure-
ments acquire information on living organisms and samples
unaffected by transport, storage, or conservation. Two nonin-
vasive, high-resolution methods with the potential to be im-
plemented in phytoplankton monitoring programs are scan-
ning flow cytometry (FCM) for information on phytoplank-
ton abundance and community composition and fast repe-

tition rate fluorometry (FRRf) to give information on phy-
toplankton photophysiology. Scanning flow cytometry is a
method for counting and pulse-shape recording phytoplank-
ton cells informative on size, fluorescence, and scattering
properties per algal cell. Based on these characteristics clus-
ter analysis allows for division into groups of similar pig-
ment characteristics and size classes (Thyssen et al., 2015;
Rijkeboer, 2018). The FRRf uses active fluorescence to gain
insight into phytoplankton photophysiology. This technique
is an alternative to traditional production–light curves (PE
curves) by estimating the photosynthetic electron transport
rate (or gross photosynthesis) at increasing ambient light
levels (Suggett et al., 2009a; Silsbe and Kromkamp, 2012).
Electron transport rate per unit volume is estimated based on
the fluorescence response to a series of single turnover light
flashes that cumulatively close all photosystems (Kromkamp
and Forster, 2003; Suggett et al., 2003). This single turnover
technique allows for the calculation of the effective absorp-
tion cross section and, in combination with an instrument-
specific calibration coefficient, the number of reaction cen-
ters per volume (Kolber et al., 1998; Kromkamp and Forster,
2003; Oxborough et al., 2012; Silsbe et al., 2015). Elec-
tron transport rate per volume can be used to estimate gross
primary productivity (Kromkamp et al., 2008; Smyth et al.,
2004; Suggett et al., 2009a). These two methods are supple-
mentary because the interaction of phytoplankton with their
environment is always a sum of the community composition
and their physiology. For instance, if waters become more
turbid, phytoplankton can acclimate by increasing their ef-
fective absorption cross section, but it could also lead to a
shift in community composition toward species with higher
light use efficiency (Moore et al., 2006). Therefore, the com-
bination of these two instruments allows for more in-depth
analysis and understanding of ecosystem processes.

The aim of this study is to test two high-resolution meth-
ods, a pulse-shape recording flow cytometer and an FRR flu-
orometer, on their potential to be developed into a novel phy-
toplankton monitoring method. The two instruments were
deployed concurrently on four 4 d cruises in April, May,
June, and August to meet a wide range of environmental con-
ditions and phytoplankton community states. These measure-
ments allow for the quantification of temporal and mesoscale
spatial patterns in phytoplankton abundance, photophysiol-
ogy, and gross primary production. In this paper we provide
an overview of the acquired results, use spectral cluster anal-
ysis to visualize spatial heterogeneity, and evaluate the po-
tential of these methods to optimize current monitoring pro-
grams.
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2 Methods

2.1 Study site and sampling

The Dutch North Sea is a shallow tidal shelf sea in the
southern part of the North Sea. The main water flow is
northward. Atlantic water enters the North Sea from the
south via the channel and from the northeast where it curves
around Scotland. Both currents meet north of the Dutch
coast, forming the Frisian Front. For a detailed description on
the North Sea physical oceanography, see Sündermann and
Pohlman (2011). Along the Dutch coast, high river input, es-
pecially from the Rhine, decreases the salinity and loads the
coastal zone with high nutrient concentrations (Burson et al.,
2016). Anthropogenic pressure is high in the Dutch North
Sea, resulting in a history of large shifts in nutrient concen-
trations and water clarity (Capuzzo et al., 2015; Burson et al.,
2016).

The monitoring of the Dutch North Sea is performed by
the Dutch government (Rijkswaterstaat) in a monitoring pro-
gram called MWTL (Monitoring Waterstaatkundige Toes-
tand des Lands, freely translated as “Monitoring of the status
of the governmental waters of the country”). The locations
of the sampling stations of the program are organized along
transects (Fig. 1). The stations are sampled between March
and October with a frequency of every 2 or 4 weeks, depen-
dent on the transect.

In 2017, four 4 d sampling surveys (10–13 April, 15–
18 May, 12–15 June, and 14–17 August) were conducted
for the JERICO-NEXT project onboard the RV Zirfaea dur-
ing their regular monitoring cruises on the Dutch North Sea.
To assess the heterogeneity of the Dutch North Sea and
the benefits associated with high-resolution monitoring, the
four cruises were conducted in different months (April, May,
June, and August), thereby aiming to cover different seasons
and stages of the phytoplankton bloom (Baretta-Bekker et
al., 2009).

The water inlet of the underway system was situated ap-
proximately 3.5 m below sea surface level. From the wa-
ter inlet the sample water, with a flow rate of approxi-
mately 24 L min−1, was split towards (1) a flow-through Fer-
rybox (-4H-JENA engineering GmbH, Germany) equipped
with an FSI Excell® Thermosalinograph (Sea-Bird Scien-
tific, USA) to measure temperature and salinity and (2) a
230 cm3 flow-through sampling chamber (CytoBuoy BV, the
Netherlands) wherein water was cleared from bubbles and
sand (∼flow rate of 1 L min−1). The time from the water
inlet to the sampling chamber was approximately 2 min. A
FastOcean fast repetition rate fluorometer (FRRf) with an
Act2-based laboratory flow-through system (Chelsea Tech-
nologies Group Ltd, UK) and a CytoSense scanning flow cy-
tometer (CytoBuoy BV, the Netherlands) automatically sam-
pled from the sampling chamber every 30 min. Since the
average speed of the ship was 8 knots, the average spa-
tial resolution of FCM and FRRf measurements was 7.5 km.

The Ferrybox sensors stored data every minute. During the
cruises the high-resolution methods (FRRf, FCM, and Fer-
rybox) were combined with lower-resolution methods, con-
sisting of measurements at 13 to 19 stations. At these sta-
tions, surface samples were taken for nutrient and chloro-
phyll a analyses (see Sect. 2.2) using a rosette sampler
equipped with a conductivity–temperature–depth (CTD) in-
strument and Niskin bottles.

2.2 Chemical analyses

Samples for nutrient analyses were filtered over Whatman
GF/F filters and kept frozen (−18 ◦C) until analyses. The
analyses of ammonium (NH+4 ), nitrite (NO−2 ), nitrate (NO−3 ),
phosphate (PO4), and silicate (Si) concentrations were con-
ducted by the Rijkswaterstaat laboratory (RWS; the Nether-
lands) according to ISO 13395, 15681, and 16264 using a
San++ Analyzer (Skalar Analytical B.V., the Netherlands).
In the RWS internal protocol, nitrite+ nitrate is measured
by first reducing nitrate to nitrite using a cadmium–copper
column and the addition of ammonium chloride as a buffer.
Thereafter, sulfanilamide, α-naphthyl ethylenediamine di-
hydrochloride, and phosphoric acid are added and the ex-
tinction at 540 nm is compared to a NaNO2 standard. For
measurement of ammonium concentrations first ethylenedi-
aminetetraacetic acid (EDTA) was added to bind calcium and
magnesium. Then, sodium salicylate, sodium nitroprusside,
and sodium hypochlorite were added and the extinction at
630 nm was compared to a NH4Cl standard. Phosphate was
measured by adding molybdate reagent and ascorbic acid to
the sample and led through an oil bath at 37±2 ◦C, followed
by measuring the extinction at 880 nm and comparing to a
standard. Silicate concentration was measured by subsequent
addition of molybdate reagent, oxalic acid, and ascorbic acid.
The silicate concentration was then determined by measuring
the extinction at 810 nm and compared to a silicate standard.
The detection limits of the nutrient analyses were NO3NO2:
0.7 µM, Si: 0.36 µM, and PO3−

4 : 0.03 µM.
Chlorophyll a concentration (hereafter Chl a) was deter-

mined by filtering over Whatman GF/C filters and freez-
ing the filter at −80 ◦C. The Chl a was extracted in 20 ml
90 % acetone and centrifuged for 15 min with glass pearls
(1.00–1.05 mm) using a bullet blender tissue homogenizer
(Next Advance, Inc., Troy, USA) under cooling of solid
CO2. The extract was analyzed in duplicate using ultrahigh-
performance liquid chromatography (UHPLC). The calibra-
tion of the UHPLC system is performed every analysis day
by making a 12-point standard calibration curve calculated
using quadratic regression with weighting method 1 /A to
better distinguish smaller peaks (R2>0.995). The injection
volume was 20 µL unless the concentration was below the
lowest standard, in which case a second injection of 40 µL
was reanalyzed. The analysis was conducted by the MUMM
laboratory (Belgium) according to RWS analysis protocol
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Figure 1. Sampling locations of the MWTL monitoring program referred to in this study. The stations are named according to the transect
(Terschelling, Noordwijk, and Walcheren), followed by the number of kilometers from the coast (labels next to sampling points). The
boundaries of the Exclusive Economic Zone (EEZ) are indicated by the grey dotted lines, and the Dutch EEZ is colored light blue. The
locations of three major inflows to the Dutch North Sea are named at the corresponding locations (the Rhine, Dutch delta, and the Wadden
Sea). The inset visualizes the location of the Dutch North Sea in a broader map of Europe. Figure made with QGIS v2.14.2 using EEZ zone
data from the Flanders Marine Institute (2018).

A200. Quality control was performed by the RWS laboratory
(the Netherlands).

2.3 High-frequency methods

2.3.1 Variable fluorescence

Variable fluorescence was measured with a FastOcean fast
repetition rate fluorometer (FRRf) and Act2-based laboratory
system (Chelsea Technologies Group Ltd, UK). The temper-
ature was controlled by connecting a LAUDA Ecoline cooler
(LAUDA-Brinkmann, LP., USA) to the water jacket of the
Act2 system.

The acquisition protocol consisted of 100 excitation
flashes with a flash pitch of 2 µs and 40 relaxation flashes
with a flash pitch of 60 µs. Excitation flashes were performed
with the blue LED (450 nm), and the strength of the LEDs
was automatically adjusted to the phytoplankton concentra-
tion by the FastPro software. A loop of simultaneous blue and
green flashes (450 nm+ 530 nm) was performed after the ac-
quisition loop of only blue LEDs in the case that the blue
LEDs were not able to reach saturation (for instance, with
high cyanobacteria concentrations), but as this was not the
case, only the parameters measured by blue LEDs were used
for further calculation. The sequence was repeated 20 times
with a sequence interval of 100 ms. The sample was re-
freshed before each fluorescent light curve (FLC) by flushing

for 60 s and kept well mixed by flushing for 200 ms between
acquisition loops.

The FLC protocol consisted of 14 light steps of 100 s, the
light intensity of which was automatically adjusted to get the
optimal FLC shape based on the previous light curve. A pre-
illumination step (55 s on 12 µ mol photons m−2 s−1) was in-
cluded before the FLC to low-light acclimate the phytoplank-
ton and to relax non-photochemical quenching (NPQ) of di-
atoms and other chlorophyll a and c algae as they stay in the
light-activated state in the dark (Goss et al., 2006). After each
light step, measurements were made in the dark for 18 s to re-
tain a value for F ′0 (minimal fluorescence in light-acclimated
state). The data were corrected for the background fluores-
cence by taking sample blanks multiple times per day by
filtration over a 0.45 µm filter and subtracting the last de-
termined background fluorescence from the sample fluores-
cence.

An overview of the derived photosynthetic parameters can
be found in Table 1. To derive values for the maximum pho-
tosynthetic electron transport rate (Pmax), minimum saturat-
ing irradiance (Ek), and the light utilization efficiency (α)
the relative electron transport rate (rETR) of the samples was
fitted to the exponential model of Webb et al. (1974), after
normalizing the data to the irradiance as described by Silsbe

Ocean Sci., 15, 1267–1285, 2019 www.ocean-sci.net/15/1267/2019/



Hedy M. Aardema et al.: Underway measurements of phytoplankton photosynthesis and abundance 1271

Table 1. The derived photosynthetic parameters used in the text (see Oxborough et al., 2012, and Silsbe et al., 2015, for more information).
Variables used in Eqs. (1)–(8) are not included but discussed in the text.

Description unit

Parameters derived from fluorescence induction curve

F0 Minimum fluorescence, measured at zeroth flashlet of an FRRf single turnover
measurement when all PSII reaction centers (RCII) are open; estimate for
chlorophyll a concentration

Dimensionless

Fm Maximum fluorescence, reached at nth flashlet of an FRRf single turnover mea-
surement when all PSII reaction centers are closed

Dimensionless

1/τ Rate of reopening of a closed RCII ms−1

σPSII Effective absorption cross section of PSII photochemistry nm2 PSII−1

Parameters calculated from parameters derived from fluorescence induction curve

JVPII PSII charge separation rate per unit volume (see Eq. 3) µmol electrons m−3 h−1

Fv/Fm Quantum efficiency of PSII under dark conditions (see Eq. 4) Dimensionless

aLHII Absorption coefficient of PSII light harvesting (see Eq. 5) m−1

RCII Functional PSII reaction centers per volume (see Eq. 6) nmol RCII m−3

Parameters derived from fluorescence light curve (FLC)

αPSII Initial slope of the FLC, an estimate of affinity for light µmol electrons (µmol photons)−1

Ek Minimum saturating irradiance of fluorescence light curve µmol photons m−2 s−1

Pmax Maximum photosynthetic electron transport rate µmol electrons m−2 s−1

Parameters calculated from parameters derived from fluorescence light curve and irradiance

Surface GPP Surface gross primary productivity (see Eq. 3) calculated based on the FLC
parameters and incoming irradiance

µg C L−1 h−1

and Kromkamp (2012):

F ′q/F
′
m =

Pmax

(
1− exp

(
−E
Ek

))
E

, (1)

where E is the irradiance (µmol photons m−2 s−1), F ′q/Fm’
the effective quantum efficiency of photosystem II (PSII), α
the initial slope of the rETR vs. irradiance curve, and Ek the
light saturation parameter (in µmol photons m−2 s−1). The
relative maximum rate of photosynthetic electron transport
(Pmax) was calculated as

Pmax = Ek × α. (2)

The PSII flux (µmol electrons m−3 h−1) was calculated as the
product of the effective PSII efficiency (F ′q/F

′
m), the optical

absorption cross section of the light-harvesting pigments of
PSII (aLHII), and the irradiance (E):

JVPII(µmol electrons (m−3)h−1)=

F ′q/F
′
m · aLHII ·E, (3)

where

F ′q/F
′
m =

F ′m−F
′

F ′m
(4)

and

aLHII (m−1)=
F0 ·Fm

Fm−F0
·Ka. (5)

Ka (m−1) is an instrument-specific factor necessary for ob-
taining absolutes rate of photosynthetic transport (see Oxbor-
ough et al., 2012, and Silsbe et al., 2015, for more informa-
tion). The number of reaction centers of PSII per cubic meter
(RCII) was calculated as

(RCII) (nmolm−3)=Ka ·
F0

σPSII
. (6)

For more information on the calculation of RCII and aLHII,
see Oxborough et al. (2012) and Silsbe et al. (2015).
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QA reoxidation or the rate of reopening of a closed RCII
was calculated as 1 divided by the time constant of reopening
of a closed RCII with an empty QB site (τES; unit: ms−1).

Standardized daily anomalies (Z scores) were calculated
for the photophysiological parameters as

Z score=
x− daily mean(x0 . . . x24)

daily standard deviation(x0 . . . x24)
. (7)

Partial days were excluded because this could potentially off-
set the daily mean and standard deviation.

Gross primary productivity (GPP) was estimated by fit-
ting JVPII (µmol photons m−3 h−1) to Eq. (1) (the exponen-
tial model of Webb et al., 1974) to derive a volumetric Pmax
and α. GPP (µg C L−1 h−1) was then calculated using Eq. (1)
and incident surface irradiance. To avoid the effects of chang-
ing incident surface irradiance (Esurface) on the spatial pat-
tern and to be able to compare GPP between regions we used
monthly average surface irradiances (Esurface) in our calcula-
tions of primary productivity. From 2010 to 2016 irradiance
(400–700 nm) was measured at the roof of the NIOZ building
in Yerseke using an LI-190 quantum photosynthetically ac-
tive radiation (PAR) sensor and hourly averages stored using
an LI1000 datalogger.Esurface was then calculated by averag-
ing all irradiance data from the years 2010–2016 for the re-
spective month. The primary productivity in electrons units
was converted to carbon units by assuming that 6 moles of
electrons were required to fix 1 mole of carbon based on a
study in the adjacent Oosterschelde and Westerschelde estu-
aries (Jacco C. Kromkamp, personal observation, 2019).

2.3.2 CytoSense scanning flow cytometry

Single cell measurements of the phytoplankton community
were conducted using a bench-top scanning flow cytometer
(CytoBuoy BV, the Netherlands) equipped with two lasers
(488 and 552 nm; 60 mW each). Both laser beams were ca.
5 µm high, 300 µm wide, and focused on the same spot in the
middle of the flow-through chamber. The speed of the par-
ticles was ca. 2.2 m s−1. The system contained three fluores-
cence detector channels separating fluoresced wavelengths of
550–600 nm (FLY; phycoerythrin), 600–650 nm (FLO; phy-
cocyanin), and above 650 nm (FLR; chlorophyll a). Addi-
tionally, the forward light scatter (FWS) and sideward light
scatter (SWS) of all particles were measured. The FCM
was equipped with a double set of detectors (photomultiplier
tubes – PMTs) for each of the three fluorescence channels
to increase the dynamic range (Rutten, 2015). Per cell, the
pulse shape of the parameters (FWS, SWS, FLR, FLO, and
FLY) plus their affiliates (length, total and maximum values)
were recorded and saved. The instrument was checked daily
for drift using 3 µm Cyto-Cal™ 488 nm alignment beads
(Thermo Fisher Scientific Inc., USA). Additionally, the FCM
was equipped with an image-in-flow camera to take pictures
of the nanophytoplankton and microphytoplankton. This al-
lows for linking pulse-shape recordings to microscopy results

and thereby the identification of represented phytoplankton
groups in the respective clusters.

Phytoplankton cells were clustered based on the pulse-
shape recording of the individually scanned phytoplankton.
In this paper, we discriminate the phytoplankton groups
based on their size (pico, nano, and micro) and orange / red
fluorescence ratio (hereafter O /R ratio; Table 2). The chosen
cluster criteria were based on expert judgment (SeaDataNet,
2018) and corresponding to other studies (Sieburth et al.,
1978; Vaulot et al., 2008). The clustering was done using the
software Easyclus 1.26 (Thomas Rutten Projects, the Nether-
lands) according to these criteria. Noise, air bubbles, and
other potential outliers were removed. The acceleration of
the particles in the sheath fluid positions the cells along their
long axis, which allows for size estimation based on the FWS
pulse shape. A linear relation was found between length FWS
and the measured length of diverse phytoplankton species
(length FWS= 0.92·measured length−1.57; R2

= 0.98; Ri-
jkeboer, 2018). Size estimation is limited by the width of the
laser beam (5 µm), so estimations of cell sizes<5 µm are not
possible based on the FWS.

2.4 Data analysis

Outliers of the complete dataset were removed after visual in-
spection of pair plots made with the pair-plot function of the
HighstatLib.V4 script (Zuur et al., 2009). For the FRRf data,
quality control of the FLC fits was done based on the quality
ratio of the induction curve fit per FLC light step and the r2

of the FLC fit. The quality ratio of the induction curve fit was
calculated as the ratio of Fv or F ′v to the standard error (SE)
of the linear regression of the saturation phase. FLC fits with
an r2<0.75, or with over 30 % of the data points with a qual-
ity ratio below 6, were visually inspected and removed based
on expert judgment. This led to the removal of 1 % to 7 % of
the FLC fits per month. Unsatisfactory fits occurred when the
auto-LED settings misadjusted the maximum irradiance or
when fluorescence was too low to retrieve a reliable fluores-
cence signal. Especially at low biomass, FLCs became noisy,
and therefore a minimum fluorescence signal was set for cal-
culations of photosynthetic parameters. Below this blank-
corrected instrument-specific fluorescence signal F ′q/F

′
m be-

came noisy and often reached above the biologically unlikely
limit of 0.65 (Kolber and Falkowski, 1993). The datasets of
the high-resolution measurements (FRRf, FCM, and Ferry-
box) were linked using corresponding time stamps. When
multiple measurements were performed within one FLC, the
average was used. To test whether environmental conditions
(as present in the different months) had a significant effect on
fluorescence as a predictor for Chl a concentration, an analy-
sis of covariance (ANCOVA) was performed with the month
as a factorial predictor. To find regions with similar phy-
toplankton communities, data were spectrally clustered us-
ing the uHMM R package (Poisson-Caillault and Ternynck,
2016) in the statistical software R (version 3.4.1; R Core
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Table 2. The phytoplankton groups distinguished in the current study.

Name Cluster criteria Main corresponding taxonomic group(s)

Length FWS O /R ratio

Pico-red <4 µm∗ <1 Pico-eukaryotes
Pico-synecho <4 µm∗ >1 Synechococcus
Nano-crypto 4–20 µm >1 Cryptophyceae
Nano-red 4–20 µm <1 Diatoms, haptophytes, dinoflagellates
Micro-red >20 µm <1 Diatoms, haptophytes, dinoflagellates

∗In June<6 µm.

Team, 2017). The package default settings normalize data be-
fore clustering and automatically find the number of clusters
based on spectral classification and the geometry of the data.
This new methodology is more robust than the classical hi-
erarchical and k-means technics (Rousseeuw et al., 2015).
Phytoplankton parameters were first tested for collinearity
and predictors with a variance inflation factor (VIF) over 6
were removed (Zuur et al., 2009; see the Supplement for pair
plots). This left for the cluster analysis the FCM parame-
ters pico-red, nano-red, micro-red, and Synechococcus and
the FRRf parameters σPSII, Fv/Fm, aLHII, 1/τ , and Ek . Data
points were then labeled per cluster and plotted on a map
to visually identify regions. Principal component analyses
(PCAs) were performed to find which variables contributed
most to the cluster results. The PCAs were based on corre-
lation matrixes with scaled parameters to correct for unequal
variances and were carried out with the prcomp() function
in R (version 3.4.1; R Core Team, 2017). The PCA visual-
ization was done using the supplemental R package factoex-
tra (Kassambra and Mundt, 2017). Maps were made using
QGIS v2.14.2, and other figures were made with ggplot2 in
R (Wickham, 2009).

3 Results

3.1 Abiotic conditions

Environmental conditions in the Dutch North Sea were spa-
tially heterogeneous and differed strongly between months.
Sea surface temperature increased from 9.5±1.0 ◦C in April
to 19.0± 0.6 ◦C in August (Table S1 in the Supplement).
Differences in salinity between cruises were small, with the
highest monthly mean salinity in April (34.1±1.8). The spa-
tial variability of salinity was higher, with river influx de-
creasing the salinity down to 26 in the coastal zone. The
monthly average of turbidity was higher in April (2.3±
3.0 NTU) in comparison to other months. This was also
reflected in the Kd values, which were highest in April
(0.39±0.28 m−1; Table S1). It needs to be noted that monthly
averages are not fully comparable because of differences
in sampling route and stations (Fig. 3). Dissolved inor-

ganic nitrogen (DIN; nitrate+ nitrite+ ammonium) and sili-
cate (Si) concentrations showed spatial variability and var-
ied per cruise (Table S2). Spatially, two trends were dis-
tinguishable: a coastal–offshore gradient and a longitudi-
nal gradient. Per cruise the strength and position of these
spatial gradients changed. The coastal to offshore gradient
moved shoreward from April to August, and the southern
stations were depleted earlier in the year in comparison to
the more northerly stations. In April DIN and Si concentra-
tions were on average higher and only potentially limiting
(Si<1.8 µmol L−1, DIN<2 µmol L−1; Peeters and Peperzak
et al. (1990) and references therein) in the most southerly part
of the Dutch North Sea (Walcheren transect) and at offshore
stations (>70 km offshore west of the Netherlands,>135 km
north of the Netherlands). In later months, DIN and Si lim-
itations gradually moved towards the coastal zone. Stations
closest to freshwater influx (Noordwijk 2 and 10) became
DIN and Si limited later in the year (Table S2). The increased
DIN concentration at the transect close to the Rhine out-
flow was absent 70 km offshore (Noordwijk 70), suggesting
that the Rhine water remained close to the coast. Phosphate
concentrations were low and possibly limiting throughout
the Dutch North Sea (orthophosphate PO3−

4 <0.5 µmol L−1;
Peeters and Peperzak et al., 1990), with exceptions in April
north of Terschelling between 50 and 100 km offshore and in
May at Noordwijk 2, a region with high freshwater influx. In
June and August, phosphate concentrations recovered in the
southern part of the Dutch North Sea, reaching up to 0.6 µM
(Table S2).

3.2 Phytoplankton abundance and fluorescence

Before the ANCOVA, natural logarithm transformations
were required to correct for the inhomogeneity of the resid-
uals and unequal variances between months. Both the FRRf
F0 (p<0.01, adjusted R2

= 0.66) and FCM total red fluo-
rescence (p<0.01, adjusted R2

= 0.90) provided significant
predictors of HPLC-derived Chl a concentration (Fig. 2).
The ANCOVA with the FRRf-derived F0 as a Chl a predictor
revealed that the slope did not differ per month, but the in-
tercept did (p<0.01). The ANCOVA with the FCM-derived
TFLR as a Chl a predictor resulted not only in a significant
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Figure 2. Linear regression of the natural logarithms of Chl a concentration (µg L−1) as determined by HPLC (y axis); on the x axis is the
natural logarithm of FCM-derived total red fluorescence (in relative fluorescence units – RFUs; a) and FRRf-derived minimum fluorescence
(F0 in RFUs; b). Both FCM red fluorescence (p<0.01, adjusted R2

= 0.90) and the FRRf F0 (p<0.01, adjusted R2
= 0.66) are significant

predictors for Chl a concentrations. The months (April, May, June, and August) were a significant predictor of Chl a concentration for both
the FRRf (p<0.05) and the FCM (p<0.01). The interaction between the x and y axis was only significant for the FCM data (p<0.05).
Figure made using the ggplot2 package in R (Wickham, 2009).

Figure 3. Relative phytoplankton community composition using FCM-derived total red fluorescence (a–d) and cell numbers (e–h) in April,
May, June, and August (from left to right). The groups are clustered according to Table 2. Figure made with QGIS v2.14.2 using EEZ zone
data from the Flanders Marine Institute (2018).

difference of the Chl a concentration per month (p<0.01)
but also in a significantly different slope (p<0.05), suggest-
ing that other predictors that differ per month were influenc-
ing the fluorescence per Chl a molecule (Fig. 2).

3.3 Phytoplankton community composition

In April the northern part of the Dutch North Sea was nu-
merically dominated by picoplankton, whereas the southern
part and the northern coastal area of the Dutch EEZ were nu-
merically dominated by nanophytoplankton. The taxa with
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a high phycoerythrin content (Synechococcus and Crypto-
phyceae) made up only a small proportion of the total phyto-
plankton community in April (generally less than 10 %) and
were most abundant in the northern part of the Dutch North
Sea (Fig. 3e). Microphytoplankton always represented less
than 3 % of the total community. The highest microphyto-
plankton abundance was found close to the Dutch delta and
along the Noordwijk transect. The spatial patterns of the phy-
toplankton community in May were smaller in comparison to
April (Fig. 3b, f, j). Picophytoplankton abundance was high-
est offshore (60 %–80 %), whereas the highest percentage of
nanophytoplankton was observed north of Terschelling 100
and in the coastal zone (Fig. 3f). Between May and June
the community composition shifted and phytoplankton cell
numbers increased. Both groups of picophytoplankton (Syne-
chococcus and pico-red) increase in relative abundance be-
tween May and June, while the nanophytoplankton shows
a strong decrease (Fig. 3). The highest abundance of pico-
phytoplankton was observed offshore. The microphytoplank-
ton was the largest contributor to red fluorescence in the
coastal region, although this group does not increase in rela-
tive abundance in comparison to May (Fig. 3). In August the
picophytoplankton dominated the phytoplankton communi-
ties, with an average contribution to total cell numbers of
over 80 %, and only slightly lower values were observed (but
still>70 %) along the southern Dutch coast, where the abun-
dance of nanophytoplankton was higher. Microphytoplank-
ton were hardly observed, although with their high red fluo-
rescence per cell, they contributed to up to half of the total
red fluorescence in coastal regions.

3.4 Photophysiology

In April, the photophysiology of the phytoplankton com-
munities in the Dutch North Sea showed low variability.
The Fv/Fm values stayed above 0.5 in northern regions and
above 0.4 in southern regions (Fig. 4a). The σPSII stayed
in a narrow range between 2.5 and 4 nm2 PSII−1 (Fig. 4e).
The Ek in April showed more variability in comparison to
the Fv/Fm and σPSII. In the coastal zone, the Ek was lower
off the coast of Walcheren and higher off the coast of No-
ordwijk. In offshore regions, no clear spatial patterns were
present (Fig. 4i). In May the photophysiological parameters
of the phytoplankton communities in the Dutch North Sea
were strongly heterogeneous with only smaller-scale spa-
tial patterns (Fig. 4b, f, j). Fv/Fm was in general lower
in May (0.1–0.5) than in April (>0.4) across most of the
Dutch EEZ (Fig. 4b). In May the σPSII was high (average
5.9 nm2 PSII−1) across the Dutch North Sea, except near the
coast of Noordwijk (Fig. 4f). In the same region, the Ek was
high (>450 µmol photons m−2 s−1), but this concurrent sig-
nal (high Ek , low σPSII) did not occur in other regions of
the Dutch North Sea. The Ek across the Dutch North Sea in
May was heterogeneous without large-scale spatial patterns.
In June the spatial patterns in the photophysiology of the phy-

toplankton in the Dutch North Sea were less heterogeneous
and larger mesoscale spatial patterns could be identified. The
Fv/Fm values recovered in comparison to May to above 0.4
in the coastal zone but not in offshore regions in the south-
ern North Sea. The Fv/Fm of the southern offshore phyto-
plankton, between Walcheren 70 and Noordwijk 70 (Fig. 1),
remained low (<0.2; Fig. 4c). The σPSII was lower in com-
parison to May across the Dutch North Sea, apart from the
southern offshore region (Fig. 4g). In a small region around
Noordwijk 70, the phytoplankton community had a partic-
ularly low σPSII (<2.5 nm2 PSII−1), which did not present
itself in anomalies in the other photophysiological parame-
ters. The Ek in June was low in the northern coastal zone and
higher in offshore regions (Fig. 4k). In August the Fv/Fm
recovered across the Dutch North Sea (Fig. 4d). The σPSII
was high in the northern offshore region and comparable to
June in the rest of the Dutch North Sea (Fig. 4h). In Au-
gust the regions of the Noordwijk coast and the coast of the
Wadden Islands were sampled twice at two different times
of the day. This repeated measurement resulted in a higher
Ek , suggesting diurnal variability. To further investigate daily
patterns standardized, daily anomalies (Z scores) were cal-
culated. These show a clear diurnal trend in photosynthetic
activity (Fig. 5). The Fv/Fm was lowest during the middle of
the day, whileEk , σPSII, and 1/τ peaked during the middle of
the day. As Ek was strongly correlated with Pmax (Fig. S2),
a clear diurnal pattern was also present in the photosynthetic
electron transport rate.

3.5 Gross primary productivity

Gross primary productivity ranged from 0.35 µg C L−1 h−1

in June to 602 µg C L−1 h−1 in the coastal zone in May
(Fig. 6). The average GPP was highest in April and
lowest in August. Monthly averages ranged from 116±
59 µg C L−1 h−1 in April to 8.7± 8.3 µg C L−1 h−1 in Au-
gust, although these averages are not completely compa-
rable due to different ship routes per month (Fig. 6). In
April, spatial heterogeneity in GPP was low. The highest
rates in April were measured offshore (>250 µg C L−1 h−1)
and in the coastal regions close to the Wadden Islands (Ter-
schelling 10 in Fig. 1). In May, the GPP was heteroge-
neous without a clear spatial pattern. Most production rates
stayed below 30 µg C L−1 h−1, with local GPP peak rates
over 600 µg C L−1 h−1 in the southern coastal zone. In June,
the GPP was on average lower than in May and showed more
large-scale spatial patterning. The highest values in June
were observed (30–40 µg C L−1 h−1) northwest of Noord-
wijk. In August, GPP was low throughout the Dutch North
Sea, with the majority of productivity rates staying below
10 µg C L−1 h−1. In the southern coastal zone, slightly higher
rates were found, reaching up to 50 µg C L−1 h−1.
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Figure 4. Maps of the photophysiological parameters Fv/Fm (a–d), σPSII (e–h; nm2 PSII−1) andEk (i–l; µmol photons m−2 s−1) per month
(from left to right: April, May, June, and August). For more details on the location see Fig. 1. Figure made with QGIS v2.14.2 using EEZ
zone data from the Flanders Marine Institute (2018).

Figure 5. Standardized daily anomalies (z scores) of Fv/Fm, Ek , σPSII, and 1/τ showing the diurnal trends in photophysiological data. On
the x axis is the time of the day and on the y axis is the z score. Figure made using the ggplot2 package in R (Wickham, 2009).

Ocean Sci., 15, 1267–1285, 2019 www.ocean-sci.net/15/1267/2019/



Hedy M. Aardema et al.: Underway measurements of phytoplankton photosynthesis and abundance 1277

Figure 6. Gross primary productivity of the surface (a–d; µg C L−1 h1) per month (a–d: April, May, June, and August). Colors represent
rates; blue is low and red is high (see legend). Figure made with QGIS v2.14.2 using EEZ zone data from the Flanders Marine Institute (2018).

3.6 Spatial clustering

Strong collinearity between measured parameters was
present. For spatial clustering these were removed based on
the variable inflation factor (VIF>6; see the Supplement for
pair plots), which resulted in the removal of the photophysi-
ological parameters Pmax, α, aLHII, nPSII, the FCM param-
eter of the total red fluorescence, and the GPP. From the
five defined phytoplankton groups (Table 2), the nano-crypto
group was not used in the clustering because of collinear-
ity (VIF>6). The remaining variables were the abundance
of the remaining four FCM-defined phytoplankton groups
(pico-red, pico-synecho, nano-red, and micro-red), the total
O /R ratio, and five photophysiological parameters (Fv/Fm,
σPSII, 1/τ , RCII, and Ek). For an overview of the collinearity
between variables, see the pair plots in the Supplement.

Spectral cluster analysis resulted in the identification of
two to four clusters in each cruise. Most of these clusters
were spatially separated and can therefore be considered re-
gions with distinct phytoplankton communities (Fig. 7). In
April, the clustering resulted in three clusters with a clear
spatial pattern. In the PCA, the variables that contributed
most to the first principal component were all biomass re-
lated: RCII and aLHII, related to the photosynthetic capacity
per reaction center and per volume, and the abundance of the
nano-red group. The second principal component has pho-
tosynthetic parameters as two main contributors (σPSII and
1/τ ; 51.5 %). Cluster 1 covered most of the northern part of
the Dutch North Sea and a small part of the Noordwijk tran-
sect to the coast. The bi-plot of the PCA showed that the
first cluster was negatively correlated with the main contrib-
utors of PC1 (RCII and aLHII; Fig. 7), so this region con-
sisted of a phytoplankton community with lower photosyn-
thetic capacity per liter. The coastal region was separated
into two clusters, 2 and 3, with overlapping confidence el-
lipses (Fig. 7). The confidence interval of cluster 2 is larger
than cluster 3, suggesting that the phytoplankton community
in cluster 2 was more heterogeneous. Both clusters are pos-
itively correlated with the main contributors to PC1 (RCII
and aLHII), meaning these clusters consist of a community

with higher photosynthetic capacity per volume. In May, the
cluster analysis resulted in four different clusters but with-
out a well-defined spatial pattern. The PCA bi-plots showed
that the confidence interval of cluster 5 overlaps most of the
other clusters, indicating that this cluster has weak support.
Ek was negatively correlated with cluster 4 and σPSII, sug-
gesting that cluster 4 contained low-light-acclimated algae.
In contrast, in June only two clusters with a distinct sepa-
ration between coastal and offshore phytoplankton commu-
nities were found. The PCA showed that the offshore phy-
toplankton community consisted of a diverse phytoplankton
community, while the coastal phytoplankton community had
high Fv/Fm, aLHII, and RCII. In August not all clusters were
spatially separated (Fig. 7). Different clusters were appointed
to the same region visited within a 2 d time span twice: in
the northeastern coastal region and at the transect of Noord-
wijk. Both times, cluster 11 is one of the overlapping spa-
tial clusters. Cluster 11 corresponds to only nighttime sam-
pling periods and was defined by low Ek and low 1/τ , in-
dicative of a low-light-acclimated phytoplankton community.
This suggests that cluster 11 was a temporal cluster instead of
a spatial cluster. To test this we repeated the analysis for the
month of August but only including the measurements per-
formed within an 8 h timeframe around noon (12:00± 4 h LT;
Fig. S4). In this timeframe, the southern coastal zone was dis-
tinct from the rest of the Dutch North Sea and corresponded
to cluster 10 in the analysis of the complete dataset (Fig. 7d),
so this cluster was defined by spatial variability. Clusters 12
and 13 were grouped together in the 12:00± 4 h timeframe
as cluster 1. Cluster 11 was not recognized as a cluster within
the 12:00± 4 h timeframe, so it indeed seemed controlled by
temporal rather than spatial variability.

4 Discussion

The objective of this study was to evaluate the added value
of FRR fluorometry and flow cytometry for monitoring pur-
poses. During four cruises spread over 5 months, a wide vari-
ety of environmental conditions and phytoplankton commu-
nity states were sampled. Here, these data are used to evalu-
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Figure 7. Overview of the spectral cluster analysis based on the non-collinear phytoplankton parameters (FCM: pico-red, nano-red, micro-
red, Synechococcus; FRRf: σPSII, Fv/Fm, aLHII, 1/τ ,Ek) separated per month (a to d: April, May, June, and August). On the left the clusters
are visualized on maps and in the middle are the bi-plots of the PCA of the data with confidence ellipses per cluster (confidence 95 %). In
all graphics clusters are visualized by different colors as shown in the legend inset. For the confidence ellipses the border lines (and not the
fill) correspond to the clusters. In the bi-plot overlapping confidence ellipses suggest a high similarity between groups, while the size of the
ellipse is a measure of variability within the group. On the right is the PCA table with contributions in percent of the different variables; in
bold are the three variables that contribute most to the principal component. Maps were made with QGIS v2.14.2 using EEZ zone data from
the Flanders Marine Institute (2018). The PCA visualization was done in R using the supplemental R package factoextra (Kassambra and
Mundt, 2017).
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ate the potential of this approach to be developed as a novel
method to improve existing monitoring (OSPAR, MSFD).

Biomass is an important parameter to understand the role
of phytoplankton in the ecosystem and biogeochemical cy-
cles. Its direct measurement using high-resolution methods
is challenging. Chlorophyll a concentration is often used
as an estimate for biomass, although the carbon :Chl a ra-
tio is dependent on abiotic conditions and species-specific
phenotypic plasticity, and chlorophyll a is therefore not di-
rectly related to biomass (Flynn, 1991, 2005; Geider et al.,
1997; Alvarez-Fernandez and Riegman, 2014; Halsey and
Jones, 2015). In this study, chlorophyll concentrations are
estimated by red fluorescence, which results in a good fit
for both the FRRf (adjusted R2

= 0.66) and the FCM (ad-
justed R2

= 0.90). The impact of abiotic conditions on fluo-
rescence as a predictor for chlorophyll a content was tested
by comparing the relationship in the different months. Only
the flow cytometer data were significantly affected by en-
vironmental conditions. The different environmental condi-
tions per month did not affect the regression line of the FRRf
data. Since the two instruments differ in optics as well as
measurement setup (measurements per cell vs. bulk), differ-
ences are not surprising. The different measurement setup,
with the flow cytometer measuring the fluorescence per par-
ticle, while the FRRf does a measurement of the bulk sam-
ple, might blur the effect of environmental conditions. In
a bulk measurement, other particles in solution scatter the
excitation and emission photons, plus the emitted fluores-
cence of the phytoplankton is subject to reabsorption, espe-
cially at higher biomass densities. Yet, the difference most
affected by environmental conditions is the fluorescent state
of the photosystems. The strong laser of the flow cytometer
can only measure the maximum fluorescence (Fm), which
is a parameter more prone to quenching than the minimum
fluorescence measured by the FRRf. The lower sensitivity
to environmental conditions implies that the FRRf is better
suited to estimate chlorophyll a concentration in compari-
son to the FCM. Other studies that estimate chlorophyll a
concentrations with FCM and fluorometers also find better
fits using bulk measurements by a fluorometer in compar-
ison to flow cytometric measurements per cell (Thyssen et
al., 2015; Marrec et al., 2018). An alternative to the con-
troversial use of chlorophyll a as an estimate for biomass
is the derivation of biomass or biovolume from cell counts.
This requires assumptions on cell size, cell shape, and carbon
content per biovolume (Tarran et al., 2006). Another alter-
native is to derive biovolume from the scattering properties
of the cell using a pulse-shape recording flow cytometer, as
used in this study. This relationship appears to be taxon spe-
cific (Machteld Rijkeboer, personal communication, 2018)
and needs to be further explored by comparison of calcu-
lated biovolume (based on image-in-flow pictures) and the
flow cytometric properties of the cell. The FRRf offers the
possibility to circumvent the use of phytoplankton biomass
as a necessary parameter to estimate primary productivity

altogether by estimating the number of photosystem II re-
action centers or total absorption by the PSII concentration
(i.e., aLHII; Oxborough et al., 2012). As long as there is no
uncontroversial method to derive phytoplankton biomass, the
calculation of multiple parameters and critical evaluation re-
main necessary.

The FCM was able to visualize the spatial variability
of the phytoplankton community in the Dutch North Sea.
The typical spring bloom was partly captured during the
cruise in April, with high total fluorescence and high rela-
tive abundance of microphytoplankton and nanophytoplank-
ton in comparison to other months. In contrast, in August
the community was dominated by picophytoplankton with
only sporadic observations of microphytoplankton. In addi-
tion, spatial variability in size distribution was clearly visible
as a stronger presence of microphytoplankton in coastal re-
gions than offshore. Microphytoplankton are a better food
source for higher trophic levels than picophytoplankton. Pi-
cophytoplankton is part of the microbial food web, with
less trophic efficiency and a low contribution to carbon ex-
port (Azam et al., 1983; Finkel et al., 2010). The shift
from nanophytoplankton-dominated communities in April to
picophytoplankton-dominated communities in August there-
fore indicates that over the year the tropic efficiency and car-
bon export decrease. These spatial and temporal changes are
yearly phenomena, influenced by the strong seasonal dynam-
ics in the Dutch North Sea that affect the spatial distribution
and community composition of the phytoplankton commu-
nity (Baretta-Bekker et al., 2009; Brandsma et al., 2012). It
is important to monitor interannual variability over the years
to monitor changes in biogeochemical cycles and the carry-
ing capacity of the ecosystem. To increase the informational
value of the flow cytometry data beyond size, the FCM clus-
ters would need to reflect taxonomic or functionally relevant
groups. Interesting groups include calcifiers, silicifiers, DMS
producers (such as Phaeocystis), or nitrogen fixers (le Quéré
et al., 2005). The lack of identification of distinct clusters has
made this impossible so far, although some species are rec-
ognizable such as Phaeocystis sp. (Rijkeboer, unpublished).
Marrec et al. (2018) manually separated up to 10 phytoplank-
ton groups from the data of the CytoSense flow cytometer.
Yet, most of these groups comprise many taxonomic genera,
which, apart from the size or pigment composition, hinders
further interpretation of their role in the ecosystem or bio-
geochemical cycles. However, the distinction between differ-
ent pigment groups can provide useful information on food
web functioning. Chlorophyll c containing algae (Chromista)
contain long-chained essential fatty acids like docosahex-
aenoic acid (DHA) and eicosapentaenoic acid (EPA), which
are lacking in green algae (some Prasinophyceae excepted)
and cyanobacteria (Dijkman and Kromkamp, 2006). Thus,
information about food quality can be obtained from FCM.
For the detection of nuisance phytoplankton, distinct clusters
are lacking. Yet, toxicity in phytoplankton can differ even be-
tween strains within one species, so finding a distinct cluster
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by flow cytometry is challenging (Tillman and Rick, 2003).
However, the identification of “suspicious” clusters with po-
tential toxic species could be helpful. These suspicious clus-
ters can flag sampling points to be further inspected by a spe-
cialist using microscopy.

Monitoring of the photophysiology of phytoplankton by
FRR fluorometry can supplement flow cytometry measure-
ments. For instance, the hypothesized spring bloom detected
by flow cytometer in April is confirmed by photophysio-
logical parameters; photophysiology was uniform and pri-
mary productivity high. Between April and May, the effi-
ciency of PSII (Fv/Fm; Fig. 4) decreased throughout the
Dutch North Sea. A decreasing Fv/Fm is generally associ-
ated with limiting nutrient conditions or other abiotic condi-
tions but can also reflect a change in community composition
stressors (Suggett et al., 2009b; Kolber et al., 1988; Kolber
and Falkowski, 1993; Beardall et al., 2001; Ly et al., 2014).
Photophysiological parameters vary per taxonomic group;
smaller taxa typically have lower Fv/Fm values and higher
σPSII values (Kolber et al., 1988; Suggett et al., 2009b). No
major shift in community composition was identified by flow
cytometry between April and May. This suggests that an abi-
otic stressor, such as the nutrient-limiting conditions in a
large part of the Dutch North Sea, instead of the commu-
nity composition was driving the decrease in the efficiency
of PSII. In contrast, the recovery of the Fv/Fm between
May and June coincided with a shift in community compo-
sition. In May the phytoplankton communities were mostly
nanophytoplankton dominated, while in June the commu-
nities were dominated by picophytoplankton (offshore) and
microphytoplankton (coastal). So, although recovery of the
Fv/Fm can also occur as an adaptation of phytoplankton to
nutrient-limiting conditions (Kruskopf and Flynn, 2005), it
seems that the shift in community composition was the ma-
jor driver for the recovery of the Fv/Fm between May and
June. These findings are a good example of how concurrent
measurements by flow cytometry and fast repetition rate fluo-
rometry can supplement improved ecosystem understanding.

When including photophysiology (or photophysiology-
based GPP estimates) in a monitoring program, it is critical
to consider methodological constraints (Hughes et al., 2018).
For instance, at low phytoplankton abundance, the fluores-
cence signal becomes too noisy for the calculation of param-
eters. Moreover, blank correction is essential for retrieving
accurate FRRf data (Cullen and Davis, 2003). FRRf mea-
surements are affected by the interference of colored dis-
solved matter, which can lead to underestimation or overes-
timation of some parameters (like Fv/Fm; Cullen and Davis,
2003). Blank correction is a manual measurement and should
be done regularly, at least when abiotic conditions change
(Hughes et al., 2018). For monitoring purposes, it is impor-
tant to take into account diurnal variability. Diurnal trends
make extrapolation to daily rates challenging. Most of the
photophysiological parameters we measured showed diurnal
trends (Fig. 5). The diurnal trend is dictated by the phyto-

plankton cell cycle, a circadian oscillator, and photophys-
iological response to varying irradiance (Suzuki and John-
son, 2001; Cohen and Golden, 2015; Schuback et al., 2016).
Phytoplankton use photophysiological plasticity to minimize
photodamage and optimize growth under fluctuating irradi-
ance (Schuback et al., 2016; Behrenfeld et al., 2002). The
electron requirement for carbon fixation is also subject to di-
urnal variation (Schuback et al., 2016; Lawrenz et al., 2013;
Raateoja, 2004). To interpret spatial variability separately
from temporal variability and to provide a more reliable es-
timate of gross primary productivity, Schuback et al. (2016)
suggest a correction with normalized Stern–Volmer quench-
ing (NPQNSV). This approach needs further research, for ex-
ample by using a Lagrangian approach whereby the photo-
synthetic activity of the same population is followed dur-
ing the day. Until a reliable correction method has been es-
tablished, a monitoring program including photophysiology
should account for diurnal variability, for instance by using
only measurements collected in a certain timeframe or from
buoys. Despite the limitations of GPP estimates by variable
fluorescence, our results clearly show large spatial variabil-
ity in gross primary production that is not explained by diur-
nal variability. This spatial heterogeneity is not fully captured
by sampling at standard low-resolution monitoring stations,
showing the added value of our approach.

Phytoplankton biomass does not necessarily reflect pri-
mary productivity, as high grazing pressure can keep biomass
low while production is high. This is clearly visualized
by the lack of resemblance between patterns in cell num-
bers (Fig. 3a–d) and gross primary productivity (Fig. 6).
Gross primary productivity estimates by FRR fluorometry
are based on measurements of the first step of photosynthe-
sis: the efficiency at which photons are captured and elec-
trons transferred. However, to interpret gross primary pro-
ductivity in an ecologically or biogeochemically meaning-
ful way, the FRR units of electrons per unit time need to be
converted to carbon units. In general, gross photosynthesis
correlates well with photosynthetic oxygen evolution (Sug-
gett et al., 2003), and multiple studies have shown a good
correlation between 14C-derived estimates of primary pro-
ductivity and FRRf-derived estimates using a constant con-
version factor (Melrose et al., 2006; Kromkamp et al., 2008).
However, in reality, this parameter is not a constant as along
the pathway from electron to carbon atom electrons are con-
sumed by other cell processes (Flameling and Kromkamp,
1998; Halsey and Jones, 2015; Schuback et al., 2016). As the
cell processes from photon absorbance to carbon assimila-
tion are known to vary with abiotic conditions, we expect that
the identification of biogeographic regions can aid in predict-
ing regional 8e,C (Lawrenz et al., 2013). Calibration with
other methods, such as concurrent 14C of 13C incubations,
could help us to better understand the processes from elec-
tron excitation to carbon fixation. However, these methods
introduce other uncertainties; they measure a type of produc-
tivity between net and gross primary productivity, depending
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on the incubation time and growth rate of the phytoplankton
(Halsey and Jones, 2015). For now, a reliable GPP estimate in
carbon units from FRR fluorometry requires more research,
and estimates provide relative rather than qualitative values.
Despite its limitations, the ability to study live phytoplankton
rates without long-term incubation effects makes the method
promising. Additionally, the high sampling resolution allows
for the identification of extra sampling points based on real-
time projections, opening up early warning methodologies.
For example, in the April cruise both Noordwijk 70 and Ter-
schelling 235 km show high gross primary productivity, but
between them both high and low productivity rates occur,
which are not detected with the current sampling program
(Fig. 6). Extrapolation of surface measurements to water col-
umn estimates is required to assess the carrying capacity of
the ecosystem and the contributions to biogeochemical cy-
cles. Surface water measurements are only a good reflec-
tion of the water column when mixed layer depth is deeper
than the euphotic zone. Stratification or a mixed layer depth
shallower than the euphotic zone can result in subsurface
chlorophyll maximum layers and significantly different phy-
toplankton communities (Latasa et al., 2017). Only frequent
CTD casts equipped with PAR sensors can determine the ver-
tical heterogeneity, mixed layer depth, and light extinction in
the water column.

High-resolution methods such as the FRRf and the flow
cytometer result in a multitude of parameters. Cluster meth-
ods can be helpful in bringing together these parame-
ters for interpretation. The spectral clustering method used
in this study was originally designed to detect phyto-
plankton blooms and understanding the involved dynamics
(Rousseeuw et al., 2015; Lefebvre and Poisson-Caillault,
2019). This spectral cluster analysis of parameters from the
FRRf and the flow cytometer allowed for the identification
of distinct phytoplankton communities or biogeographic re-
gions that differed per cruise. A clear distinction between
phytoplankton communities of the coastal zone and offshore
regions could be made in all months, except May. In two
cruises, in April and June, it was indeed possible to iden-
tify regions with distinct phytoplankton communities. Dur-
ing the cruise in May, the clustering did not result in clear
mesoscale patterns but was heterogeneous over the whole
Dutch North Sea. Unfortunately, the model was not able to
visualize all spatial heterogeneity. For instance, in April off
the coast of Terschelling a distinct community with a high
abundance of phycoerythrin-containing taxa did not result
in a separate cluster. Additionally, temporal variation (i.e.,
day–night differences) interfered with the spatial clustering
in August. So, although such models are useful for visualiza-
tion and following changes in spatial heterogeneity, input and
output need to be critically evaluated before implementation
in monitoring programs. To test whether the differences be-
tween months result from seasonal variation or other factors,
results over multiple years and additional seasonal cruises

need to be obtained to better characterize the heterogeneity
of the phytoplankton community structure.

The purpose of a phytoplankton monitoring program is
to monitor the presence of functional types of phytoplank-
ton, including the harmful taxa, the carrying capacity of the
ecosystem, and changes in biogeochemical cycling. The ob-
jective of this study was to evaluate the use of FRR fluo-
rometry and flow cytometry for such monitoring purposes.
The four conducted cruises spread over 5 months offered a
wide variety of environmental conditions and phytoplank-
ton community states, which the utilized methods were able
to visualize. Inclusion of high-resolution methods in mon-
itoring programs allows for analysis of finer-scale events.
Furthermore, it allows for analysis of living phytoplankton
and is thereby able to measure rates and avoid the effects
of preservation and storage of samples. Another advantage
is that high-resolution methods allow for easier compari-
son between countries once common protocols are estab-
lished. Nevertheless, low-resolution methods remain a ne-
cessity for more detailed taxonomic analysis, extrapolation
over the entire water column, and to calibrate and correct
for blanks. Data analysis is a challenge when implement-
ing high-resolution methods, whereby cluster methods could
simplify and standardize analysis. The cluster analysis of
flow cytometric data has potential for improvement to in-
crease the informative value of the method. The identifica-
tion of phytoplankton clusters with a functional quality, such
as nitrogen fixers, calcifiers, DMS producers, or clusters with
high food quality, would particularly be helpful for the inter-
pretation of ecosystem dynamics and biogeochemical fluxes.
Regarding the FRRf, the main challenge is converting the
electron transport rate to gross primary productivity in car-
bon units. Further research on these topics would benefit the
implementation of these methods in monitoring protocols.
Furthermore, it is important to account for diurnal patterns
in monitoring setup to be able to distinguish between diurnal
and spatial variability. Possibly, diurnal variability could be
modeled, but more studies with a Lagrangian-based approach
are needed for a better understanding of the impact of diurnal
variability in the data. The combination of high-resolution in
situ methods with remote sensing has the potential to further
increase the spatial and temporal scale. Estimating biological
parameters using remote sensing is challenging, especially
in turbid waters (Gohin et al., 2005; van der Woerd et al.,
2008). Therefore, in vivo measurements are required to cali-
brate remote-sensing-based models, and we suggest that au-
tomated flow cytometry and production measurements based
on FRRf methodology can fulfill this role. Overall, our pro-
posed high-resolution measurement setup has the potential to
improve phytoplankton monitoring by supplementing exist-
ing low-resolution monitoring programs.
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