Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1247-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1247-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synoptic-scale variability of surface winds and ocean response to atmospheric forcing in the eastern austral Pacific Ocean
Centro i-mar de la Universidad de los Lagos, Puerto Montt, Chile
Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
Romanet Seguel
Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
Instituto de Fomento Pesquero, Putemún, Castro, Chile
Wolfgang Schneider
Departamento de Oceanografía, Campus Concepción, Universidad de Concepción, Concepción, Chile
Millennium Institute of Oceanography (IMO), University of Concepción, Concepción, Chile
Pamela Linford
Programa de Doctorado en Ciencias mención Conservación y Manejo de Recursos Naturales, Centro i-mar, Universidad de Los Lagos, Puerto Montt, Chile
David Donoso
Departamento de Oceanografía, Campus Concepción, Universidad de Concepción, Concepción, Chile
Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Eduardo Navarro
Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
Millennium Institute of Oceanography (IMO), University of Concepción, Concepción, Chile
Constanza Amaya-Cárcamo
Departamento de Geofísica, Universidad de Concepción, Concepción, Chile
Elías Pinilla
Instituto de Fomento Pesquero, Putemún, Castro, Chile
Giovanni Daneri
Centro de Investigaciones en Ecosistemas de la Patagonia, Coyhaique, Chile
Related authors
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Iván Pérez-Santos, Leonardo Castro, Lauren Ross, Edwin Niklitschek, Nicolás Mayorga, Luis Cubillos, Mariano Gutierrez, Eduardo Escalona, Manuel Castillo, Nicolás Alegría, and Giovanni Daneri
Ocean Sci., 14, 1185–1206, https://doi.org/10.5194/os-14-1185-2018, https://doi.org/10.5194/os-14-1185-2018, 2018
Short summary
Short summary
Fjord systems play an important role in primary production and carbon export. Acoustic, hydrographic and in situ abundance measurements were used to study macrozooplankton assemblages at 44.7° S. Diel vertical migration of zooplankton stopped at the hypoxic boundary layer and apparently did not tolerate the hypoxic conditions. Turbulence appears to be the oceanographic process that contributes to vertical mixing around the sill, helping the interchange of nutrients, feeding and carbon export.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Iván Pérez-Santos, Leonardo Castro, Lauren Ross, Edwin Niklitschek, Nicolás Mayorga, Luis Cubillos, Mariano Gutierrez, Eduardo Escalona, Manuel Castillo, Nicolás Alegría, and Giovanni Daneri
Ocean Sci., 14, 1185–1206, https://doi.org/10.5194/os-14-1185-2018, https://doi.org/10.5194/os-14-1185-2018, 2018
Short summary
Short summary
Fjord systems play an important role in primary production and carbon export. Acoustic, hydrographic and in situ abundance measurements were used to study macrozooplankton assemblages at 44.7° S. Diel vertical migration of zooplankton stopped at the hypoxic boundary layer and apparently did not tolerate the hypoxic conditions. Turbulence appears to be the oceanographic process that contributes to vertical mixing around the sill, helping the interchange of nutrients, feeding and carbon export.
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: Deep Seas: South Pacific | Phenomena: Air-Sea Fluxes
Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air–sea flux
Carolyn F. Walker, Mike J. Harvey, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, Andrew S. Marriner, John A. McGregor, and Cliff S. Law
Ocean Sci., 12, 1033–1048, https://doi.org/10.5194/os-12-1033-2016, https://doi.org/10.5194/os-12-1033-2016, 2016
Cited articles
Aguirre, C., Pizarro, Ó., Strub, P. T., Garreaud, R., and Barth, J. A.:
Seasonal dynamics of the near-surface alongshore flow off central Chile,
J. Geophys. Res., 117, C01006, https://doi.org/10.1029/2011JC007379, 2012.
Ancapichun, S. and Garcés-Vargas, J.: Variability of the Southeast
Pacific Subtropical Anticyclone and its impact on sea surface temperature
off north-central Chile, Cienc. Mar., 41, 1–20,
https://doi.org/10.7773/cm.v41i1.2338, 2015.
Arkhipkin, A. I., Schuchert, P. C., and Danyushevsky, L.: Otolith chemistry
reveals fine population structure and close affinity to the Pacific and
Atlantic oceanic spawning grounds in the migratory southern blue whiting
(Micromesistiusaustralisaustralis), Fish. Res., 96, 188–194,
https://doi.org/10.1016/j.fishres.2008.11.002, 2009.
Bentamy, A., Croize-Fillon, D., and Perigaud, C.: Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations, Ocean Sci., 4, 265–274, https://doi.org/10.5194/os-4-265-2008, 2008.
Bentamy, A. and Croize-Fillon, D.: Gridded surface wind fields from
Metop/ASCAT measurements, Int. J. Remote Sens., 33, 1729–1754, 2011.
Bravo, L., Ramos, M., Astudillo, O., Dewitte, B., and Goubanova, K.: Seasonal variability of the Ekman transport and pumping in the upwelling system off central-northern Chile (∼ 30∘ S) based on a high-resolution atmospheric regional model (WRF), Ocean Sci., 12, 1049–1065, https://doi.org/10.5194/os-12-1049-2016, 2016.
Buschmann, A., Farías, L., Tapia, F., Varela, D., and Vásquez, M.:
Informe Final: ComisiónMareaRoja (CMR), Alphen aan den Rijn: Wolters
Kluwer, 2016.
Castelao, R. M. and Barth J. A.: Upwelling around Cabo Frio, Brazil: The
importance of wind stress curl, Geophys. Res. Lett., 33, L03602,
https://doi.org/10.1029/2005GL025182, 2006.
Chelton, D. B., Schlax, M. G., Freilich, M. H., and Milliff, R. F.: Satellite
measurements reveal persistent small scale features in ocean winds, Science,
303, 978–983, 2004.
Daneri, G., Montero, P., Lizárraga, L., Torres, R., Iriarte, J. L., Jacob, B., González, H. E., and Tapia, F. J.: Primary Productivity and heterotrophic activity in an enclosed marine area of central Patagonia (Puyuhuapi channel; 44∘ S, 73∘ W), Biogeosciences Discuss., 9, 5929–5968, https://doi.org/10.5194/bgd-9-5929-2012, 2012.
Díaz, P., Álvarez, G., Varela, D., Pérez-Santos, I., Díaz, M., Molinet, C., Seguel, M., Aguilera-Belmonte, A., Guzmán, L., Uribe, E., Rengel, J., Hernández, C., Segura C., and Figueroa, R. Impacts of harmful algal blooms on the aquaculture industry: Chile as a case study, Perspectives in Phycology, 6, 39–50, https://doi.org/10.1127/pip/2019/0081, 2019.
Emery, W. J. and Thomson R. E.: Data analysis methods in physical
oceanography, Pergamon Press, Oxford, 634 pp., 1998.
Epifanio, C. E. and Garvine, R. W.: Larval transport on the Atlantic
Continental Shelf of North America: A review, Estuar. Coast. Shelf S., 52,
51–77, https://doi.org/10.1006/ecss.2000.0727, 2001.
Escribano, R., Bustos-Ríos, E., Hidalgo, P., and Morales, C. E.:
Non-limiting food conditions for growth and production of the copepod
community in a highly productive upwelling zone, Cont. Shelf Res., 126,
1–14, https://doi.org/10.1016/J.CSR.2016.07.018, 2016.
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., and Bravo L.: Satellite
altimetry data reveal jet-like dynamics of the Humboldt Current, J. Geophys.
Res., 113, C07043, https://doi.org/10.1029/2007JC004684, 2008.
Garland, E. D., Zimmer, C. A., and Lentz, S. J.: Larval distributions in
inner-shelf waters: The roles of wind-driven cross-shelf currents and diel
vertical migrations, Limnol.Oceanogr., 47, 803–817, 2002.
Holton, J.: An Introduction to Dynamic Meteorology, Academic Press, San
Diego, 511 pp., 1992.
Iriarte, J. L., Vargas, C. A., Tapia, F. J., Bermúdez, R., and Urrutia, R. E.: Primary production and plankton carbon biomass in a river-influenced
upwelling area off Concepción, Chile, Prog. Oceanogr., 92–95, 97–109,
https://doi.org/10.1016/J.POCEAN.2011.07.009, 2012.
Kaihatu, J. M., Handler, R. A., Marmorino, G. O., and Shay, L. K.: Empirical
orthogonal function analysis of ocean surface currents using complex and
real-vector methods, J. Atmos. Ocean. Tech., 15, 927–941, https://doi.org/10.1175/1520-0426(1998)015<0927:EOFAOO>2.0.CO;2, 1998.
Kämpf, J. and Chapman, P.: Upwelling systems of the world: a scientific
journey to the most productive marine ecosystems, Springer, Berlin, 425 pp.,
2016.
Kilian, R. and Lamy, F.: A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55∘ S), Quaternary Sci. Rev., 53, 1–23, https://doi.org/10.1016/j.quascirev.2012.07.017, 2012.
León-Muñoz, J., Urbina, M. A., Garreaud, R., and Iriarte, J. L. : Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016), Scientific Reports, 8, 1330, https://doi.org/10.1038/s41598-018-19461-4, 2018.
Marcotte, D.: Cokrigeage with MATLAB, Comput. Geosci., 17, 1265–1280,
https://doi.org/10.1016/0098-3004(91)90028-C, 1991.
Montero, P., Daneri, G., Cuevas, L. A., González, H. E., Jacob, B.,
Lizárraga, L., and Menschel, E.: Productivity cycles in the coastal
upwelling area off Concepción: The importance of diatoms and
bacterioplankton in the organic carbon flux, Progr. Oceanogr., 75,
518–530, https://doi.org/10.1016/j.pocean.2007.08.013, 2007.
Montero, P., Pérez-Santos, I., Daneri, G., Gutiérrez, M., Igor, G.,
Seguel, R., Crawford, D., and Duncan, P.: A winter dinoflagellate bloom
drives high rates of primary production in a Patagonian Fjord ecosystem,
Estuar. Coast. Shelf S., 199, 105–116, 2017.
Narváez, D., Vargas, C., Cuevas, A., García-Loyola, S., Lara, C.,
Segura, C., Tapia, F., and Broitman, B.: Dominant scales of subtidal variability in coastal hydrography of the Northern Chilean Patagonia, J. Marine Syst., 193, 59–73, https://doi.org/10.1016/j.jmarsys.2018.12.008, 2019.
Orlanski, I.: A rational subdivision of scales for atmospheric
processes, B. Am. Meteorol. Soc., 56, 527–530, 1975.
Paredes, J., Varela D., Martínez C., Zúñiga A., Correa K.,
Villarroel A., and Olivares B.: Population genetic structure at the northern edge of the distribution of Alexandriumcatenella in the Patagonian Fjords and its expansion along the open Pacific Ocean coast, Front. Mar. Sci., 5, 532, https://doi.org/10.3389/fmars.2018.00532, 2019.
Pickett, M. H. and Paduan J. D.: Ekman transport and pumping in the
California Current based on the U.S. Navy's high resolution atmospheric
model (COAMPS), J. Geophys. Res., 108, 3327, https://doi.org/10.1029/2003JC001902,
2003.
Piolle, J. F. and Bentamy, A.: Mean Wind Fields (MWF product), User Manual,
QuikSCAT, CERSAT, Plouzané, 42 pp, 2002.
Rahn, D. and Garreaud, R.: A synoptic climatology of the near-surface wind
along the west coast of South America, Int. J. Climatol., 34: 780-792. https://doi.org/10.1002/joc.3724, 2013.
Ray, P. S.: Mesoscale meteorology and forecasting, American Meteorological Society, Boston, MA, 793 pp., 1986.
Ross, L., Valle-Levinson, A., Pérez-Santos, I., Tapia, F., and Schneider,
W.: Baroclinic annular variability of internal motions in a Patagonian
fjord, J.Geophys. Res.-Oceans, 120, 5668–5685,
https://doi.org/10.1002/2014JC010669, 2015.
Rykaczewski, R. R. and Checkley, D. M.: Influence of ocean winds on the
pelagic ecosystem in upwelling regions, P. Natl. Acad. Sci. USA, 105, 1965–1970, 2008.
Saldías, G. S., Sobarzo, M., and Quiñones, R.: Freshwater structure
and its seasonal variability off western Patagonia, Progr. Oceanogr., 174,
143–153, https://doi.org/10.1016/j.pocean.2018.10.014, 2018.
Schneider, W., Donoso, D., Garcés-Vargas, J., and Escribano, R.:
Water-column cooling and sea surface salinity increase in the upwelling
region off central-south Chile driven by a poleward displacement of the
South Pacific High, Prog. Oceanogr., 151, 38–48,
https://doi.org/10.1016/j.pocean.2016.11.004, 2017.
Smith, R. L.: Upwelling, Oceanogr. Mar. Biol., 6, 11–46, 1968.
Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental
shelf limited by submarine canyons, Concepción, central Chile, J.
Geophys. Res., 109, C12012, https://doi.org/10.1029/2004JC002350, 2004.
Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.:
Coastal upwelling and seasonal cycles that influence the water column over
the continental shelf off central Chile, Prog. Oceanogr., 75, 363–382, 2007.
Stewart, R. H.: Introduction to physical oceanography, Spring 2002 edn.,
Department of Oceanography, Texas A and M University, 350 pp., 2002.
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Descriptive
physical oceanography, an introduction, 6th edn., Academic Press,
Elsevier, 1–983 pp., 2011.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/592 2000JD900719,
2001.
Thiel, M., Macaya, E. C., Acuña, E., Arntz, W. E., Bastias, H., Brokordt, K., Camus, P. A., Castilla, J. C., Castro, L. R., Cortés, M., Dumont, C. P., Escribano, R., Fernandez, M., Gajardo, J. A., Gaymer, C. F., Gomez, I., González, A. E., González, H. E., Haye, P. A., Illanes, J.-E., Iriarte, J. L., Lancellotti, D. A., Luna-Jorquera, G., Luxoro, C., Manriquez, P. H., Marín, V., Muñoz, P., Navarrete, S. A., Perez, E., Poulin, E., Sellanes, J., Sepúlveda, H. H., Stotz, W., Tala, F., Thomas, A., Vargas, C. A., Vasquez, J. A., and Vega, J. M.: The Humboldt Current System of Northern and Central Chile: oceanographic processes, ecological interactions and socioeconomic feedback, Oceanogr. Mar. Biol., 45, 195–344, 2007.
Thompson, D. W. J. and Barnes, E. A.: Periodic variability in the
large-scale southern hemisphere atmospheric circulation, Science, 343,
641–645, 2014.
Thompson, D. W. J. and Woodworth, J. D.: Barotropic and baroclinic annular
variability in the southern hemisphere, J. Atmos. Sci., 71, 1480–1493,
https://doi.org/10.1175/JAS-D-13-0185.1, 2014.
Thurman, H. V. and Trujillo, A. P.: Introductory Oceanography, 10th edn.,
Pearson, Prentice Hall, Upper Saddle River, New Jersey 07458, 597 pp., 2004.
Tomasz, N.: El Niño/Southern oscillation and selected environmental
consequences, Adv. Geophys., 55, 77–122, 2014.
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An Introduction, Pergamon Press, Oxford, England, 422 pp., 1994.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Yelland, M. and Taylor, P. K.: Wind stress measurements from the open ocean,
J. Phys. Oceanogr., 26, 541–558, https://doi.org/10.1175/1520-0485(1996)026<0541:WSMFTO>2.0.CO;2, 1996.
Short summary
Satellite wind data were used to understand surface wind variability in the eastern austral Pacific Ocean, a region dominated generally by strong westerlies, but the empirical orthogonal function demonstrated that wind variability was dominated by a synoptic scale. Nighttime heatwave events were detected to produce air temperature maxima which exceeded the normal midday maxima caused by solar radiation. Downwelling conditions prevailed in the study region due to onshore Ekman transport.
Satellite wind data were used to understand surface wind variability in the eastern austral...