Articles | Volume 14, issue 4
https://doi.org/10.5194/os-14-887-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-887-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What are the prospects for seasonal prediction of the marine environment of the North-west European Shelf?
Jonathan Tinker
CORRESPONDING AUTHOR
Met Office Hadley Centre, Exeter, EX1 3PB, UK
Justin Krijnen
Met Office Hadley Centre, Exeter, EX1 3PB, UK
Richard Wood
Met Office Hadley Centre, Exeter, EX1 3PB, UK
Rosa Barciela
Met Office Hadley Centre, Exeter, EX1 3PB, UK
Stephen R. Dye
Cefas, Lowestoft, NR33 0HT, UK
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Related authors
Jonathan Tinker, Matthew D. Palmer, Benjamin J. Harrison, Enda O'Dea, David M. H. Sexton, Kuniko Yamazaki, and John W. Rostron
Ocean Sci., 20, 835–885, https://doi.org/10.5194/os-20-835-2024, https://doi.org/10.5194/os-20-835-2024, 2024
Short summary
Short summary
The northwest European shelf (NWS) seas are economically and environmentally important but poorly represented in global climate models (GCMs). We combine use of a shelf sea model with GCM output to provide improved 21st century projections of the NWS. We project a NWS warming of 3.11 °C and freshening of −1.01, and we provide uncertainty estimates. We calculate the climate signal emergence and consider warming levels. We have released our data for the UK's Climate Change Risk Assessment.
Heather Cannaby, Matthew D. Palmer, Tom Howard, Lucy Bricheno, Daley Calvert, Justin Krijnen, Richard Wood, Jonathan Tinker, Chris Bunney, James Harle, Andrew Saulter, Clare O'Neill, Clare Bellingham, and Jason Lowe
Ocean Sci., 12, 613–632, https://doi.org/10.5194/os-12-613-2016, https://doi.org/10.5194/os-12-613-2016, 2016
Short summary
Short summary
The Singapore government commissioned a modelling study of regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events. We find that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century, these being 0.52 m(0.74 m) under the RCP 4.5(8.5) scenario.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Jonathan Tinker, Matthew D. Palmer, Benjamin J. Harrison, Enda O'Dea, David M. H. Sexton, Kuniko Yamazaki, and John W. Rostron
Ocean Sci., 20, 835–885, https://doi.org/10.5194/os-20-835-2024, https://doi.org/10.5194/os-20-835-2024, 2024
Short summary
Short summary
The northwest European shelf (NWS) seas are economically and environmentally important but poorly represented in global climate models (GCMs). We combine use of a shelf sea model with GCM output to provide improved 21st century projections of the NWS. We project a NWS warming of 3.11 °C and freshening of −1.01, and we provide uncertainty estimates. We calculate the climate signal emergence and consider warming levels. We have released our data for the UK's Climate Change Risk Assessment.
David J. Morris, John K. Pinnegar, David L. Maxwell, Stephen R. Dye, Liam J. Fernand, Stephen Flatman, Oliver J. Williams, and Stuart I. Rogers
Earth Syst. Sci. Data, 10, 27–51, https://doi.org/10.5194/essd-10-27-2018, https://doi.org/10.5194/essd-10-27-2018, 2018
Short summary
Short summary
This paper brings together over 10 million previously unpublished, quality-controlled seawater temperature measurements from 130 years of government-funded marine science investigations in the United Kingdom (UK).
The records focus around the UK but also extend from Greenland to the Bay of Biscay. Making the data open and accessible provides valuable information to assess changing hydrological conditions.
The data are now all publicly available at https://www.cefas.co.uk/cefas-data-hub/.
David A. Ford, Johan van der Molen, Kieran Hyder, John Bacon, Rosa Barciela, Veronique Creach, Robert McEwan, Piet Ruardij, and Rodney Forster
Biogeosciences, 14, 1419–1444, https://doi.org/10.5194/bg-14-1419-2017, https://doi.org/10.5194/bg-14-1419-2017, 2017
Short summary
Short summary
This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea. These observations were used to validate two physical–biogeochemical ocean model simulations, each of which used different variants of the widely used European Regional Seas Ecosystem Model (ERSEM). The results suggest the ability of the models to reproduce the observed phytoplankton community structure was dependent on the details of the biogeochemical model parameterizations used.
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
Short summary
Accurately representing coastal and shelf seas in global ocean models is one of the grand challenges of Earth system science. Here, we explore what the options are for improving this by exploring what the important physical processes are that need to be represented. We use a simple scale analysis to investigate how large the resulting models would need to be. We then compare this with how computer power is increasing to provide estimates of when this might be feasible in the future.
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Short summary
We examine the impact in a coupled model of increasing atmosphere and ocean horizontal resolution and the frequency of coupling between the atmosphere and ocean. We demonstrate that increasing the ocean resolution from 1/4 degree to 1/12 degree has a major impact on ocean circulation and global heat transports. The results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.
Heather Cannaby, Matthew D. Palmer, Tom Howard, Lucy Bricheno, Daley Calvert, Justin Krijnen, Richard Wood, Jonathan Tinker, Chris Bunney, James Harle, Andrew Saulter, Clare O'Neill, Clare Bellingham, and Jason Lowe
Ocean Sci., 12, 613–632, https://doi.org/10.5194/os-12-613-2016, https://doi.org/10.5194/os-12-613-2016, 2016
Short summary
Short summary
The Singapore government commissioned a modelling study of regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events. We find that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century, these being 0.52 m(0.74 m) under the RCP 4.5(8.5) scenario.
J. K. Ridley, R. A. Wood, A. B. Keen, E. Blockley, and J. A. Lowe
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-28, https://doi.org/10.5194/tc-2016-28, 2016
Revised manuscript has not been submitted
Short summary
Short summary
The internal variability in model projections of Arctic sea ice extent is high. As a consequence an ensemble of projections from a single model can show considerable scatter in the range of dates for an "ice-free" Arctic. This paper investigates if the scatter can be reduced for a variety of definitions of "ice-free". Daily GCM data reveals that only a high emissions scenario results in the optimal definition of five conservative years in with ice extent is below one million square kilometer.
L. Kwiatkowski, A. Yool, J. I. Allen, T. R. Anderson, R. Barciela, E. T. Buitenhuis, M. Butenschön, C. Enright, P. R. Halloran, C. Le Quéré, L. de Mora, M.-F. Racault, B. Sinha, I. J. Totterdell, and P. M. Cox
Biogeosciences, 11, 7291–7304, https://doi.org/10.5194/bg-11-7291-2014, https://doi.org/10.5194/bg-11-7291-2014, 2014
Cited articles
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan,
C., Graham, R., Fereday, D., Camp, J., Scaife, A. A., Xavier, P., McLean, P.,
Colman, A., and Cusack, S.: The GloSea4 ensemble prediction system for
seasonal forecasting, Mon. Weather Rev., 139, 1891–1910,
https://doi.org/10.1175/2010MWR3615.1, 2011.
Baker, L. H., Shaffrey, L. C., Sutton, R. T., Weisheimer, A., and Scaife, A.
A.: An intercomparison of skill and over/underconfidence of the wintertime
North Atlantic Oscillation in multi-model seasonal forecasts, Geophys. Res.
Lett., https://doi.org/10.1029/2018GL078838, online first, 2018.
Bean, T. P., Greenwood, N., Beckett, R., Biermann, L., Bignell, J. P., Brant,
J. L., Copp, G. H., Devlin, M. J., Dye, S. R., Feist, S. W., Fernand, L.,
Foden, D., Hyder, K., Jenkins, C. M., van der Kooij, J., Kröger, S.,
Kupschus, S., Leech, C., Leonard, K. S., Lynam, C. P., Lyons, B. P., Maes,
T., Nicolaus, E. E. M., Malcolm, S. J., and McIlwaine, P.: A Review of the
Tools Used for Marine Monitoring in the UK: Combining Historic and
Contemporary Methods with Modelling and Socioeconomics to Fulfil Legislative
Needs and Scientific Ambitions, Frontiers in Marine Science, 4, 1–39,
https://doi.org/10.3389/fmars.2017.00263, 2017.
Becker, G. A. and Pauly, M.: Sea surface temperature changes in the North Sea
and their causes, ICES J. Mar. Sci., 53, 887–898, 1996.
Belkin, I. M., Levitus, S., Antonov, J., and Malmberg, S. A.: “Great
Salinity Anomalies” in the North Atlantic, Prog. Oceanogr., 41, 1–68,
https://doi.org/10.1016/S0079-6611(98)00015-9, 1998.
Bell, M. J., Forbes, R. M., and Hines, A.: Assessment of the FOAM global data
assimilation system for real time operational ocean forecasting, J. Marine
Syst., 25, 1–22, https://doi.org/10.1016/S0924-7963(00)00005-1, 2000.
Beraud, C., van der Molen, J., Armstrong, M., Hunter, E., Fonseca, L., and
Hyder, K.: The influence of oceanographic conditions and larval behaviour on
settlement success – the European sea bass Dicentrarchus labrax
(L.), ICES J. Mar. Sci., 75, 455–470, https://doi.org/10.1093/icesjms/fsx195, 2017.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H.,
Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N.,
Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C.
S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES),
model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4,
677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bourdalle-Badie, R. and Treguier, A. M.: A climatology of runoff for the
global ocean-ice model ORCA025, Mercator-Ocean, MOO-RP-425-365-MER, Toulouse,
France, 2006.
Bouwer, L. M., Vermaat, J. E., and Aerts, J. C. J. H.: Regional sensitivities
of mean and peak river discharge to climate variability in Europe, J.
Geophys. Res.-Atmos., 113, D19103, https://doi.org/10.1029/2008JD010301, 2008.
Brown, A., Milton, S. F., Cullen, M., Golding, B., Mitchell, J., and Shelly,
A.: Unified modeling and prediction of weather and climate: A 25-year
journey, B. Am. Meteorol. Soc., 93, 1865–1877,
https://doi.org/10.1175/BAMS-D-12-00018.1, 2012.
Brown, I., Thompson, D., Bardgett, R., Berry, P., Crute, I., Morison, J.,
Morecroft, M., Pinnegar, J., Reeder, T., and Topp, K.: UK Climate Change Risk
Assessment Evidence Report: Chapter 3, Natural Environment and Natural
Assets, Report prepared for the Adaptation Sub-Committee of the Committee on
Climate Change, London, UK, 2016.
Cannaby, H. and Hüsrevoğlu, Y. S.: The influence of low-frequency
variability and long-term trends in North Atlantic sea surface temperature on
Irish waters, ICES J. Mar. Sci., 66, 1480–1489, https://doi.org/10.1093/icesjms/fsp062,
2009.
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from
Continents: Latitudinal and Seasonal Variations, J. Hydrometeorol., 3,
660–687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002.
Dawson, R. J., Thompson, D., Johns, D., Gosling, S., Chapman, L., Darch, G.,
Watson, G., Powrie, W., Bell, S., Paulson, K., Hughes, P., and Wood, R. A.:
UK Climate Change Risk Assessment Evidence Report: Chapter 4, Infrastructure,
Report prepared for the Adaptation Sub-Committee of the Committee on Climate
Change, London, UK, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Dippner, J. W.: SST anomalies in the north sea in relation to the North
Atlantic Oscillation and the influence on the theoretical spawning time of
fish, Deutsche Hydrografische Zeitschrift, 49, 267–275,
https://doi.org/10.1007/BF02764038, 1997.
Donnelly, C., Arheimer, B., Capell, R., Dahne, J., and Strömqvist, J.:
Regional overview of nutrient load in Europe – challenges when using a
large-scale model approach, E-HYPE, Gothenburg, Sweden, 2013.
Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R.,
and Skjoldal, H. R.: Climate change and deepening of the North Sea fish
assemblage: a biotic indicator of warming seas, J. Appl. Ecol., 45,
1029–1039, https://doi.org/10.1111/j.1365-2664.2008.01488.x, 2008.
Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N.,
Andrews, M. B., and Knight, J. R.: Skilful predictions of the winter North
Atlantic Oscillation one year ahead, Nat. Geosci., 9, 809–814,
https://doi.org/10.1038/ngeo2824, 2016.
Dye, S. R., Holliday, N. P., Hughes, S. L., Inall, M., Kennington, K., Smyth,
T., Tinker, J., Andres, O., and Beszczynska-Möller, A.: Climate change
impacts on the waters around the UK and Ireland: Salinity, MCCIP Science
Review. MCCIP, Lowestoft, UK, 60–66, https://doi.org/10.14465/2013.arc07.060-066,
2013.
Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L.,
and Robinson, N.: Do seasonal-to-decadal climate predictions underestimate
the predictability of the real world?, Geophys. Res. Lett., 41, 5620–5628,
https://doi.org/10.1002/2014GL061146, 2014.
Egbert, G. and Ray, R. D.: Estimates of M2 tidal energy dissipation from
TOPEX/Poseidon altimeter data, J. Geophys. Res., 106, 22475–22502,
https://doi.org/10.1029/2000JC000699, 2001.
Engelhard, G. H., Righton, D. A., and Pinnegar, J. K.: Climate change and
fishing: a century of shifting distribution in North Sea cod, Glob. Change
Biol., 20, 2473–2483, https://doi.org/10.1111/gcb.12513, 2014.
Fernandes, J. A.: Evaluating machine-learning techniques for recruitment
forecasting of seven North East Atlantic fish species, Ecol. Inform., 25,
35–42, https://doi.org/10.1016/j.ecoinf.2014.11.004, 2015.
Frost, M., Bayliss-Brown, G., Buckley, P., Cox, M., Dye, S. R., Sanderson, W.
G., Stoker, B., and Withers Harvey, N.: A review of climate change and the
implementation of marine biodiversity legislation in the United Kingdom,
Aquat. Conserv., 26, 576–595, https://doi.org/10.1002/aqc.2628, 2016.
González-Pola, C., Larsen, K. M. H., Fratantoni, P.,
Beszczynska-Möller, A., and Hughes, S. L.: ICES Report on Ocean Climate
2016, ICES, Copenhagen, Denmark, 110 pp., 2018.
Hall, R. J., Jones, J. M., Hanna, E., Scaife, A., and Erdélyi, A.:
Drivers and potential predictability of summer time North Atlantic polar
front jet variability, Clim. Dynam., 48, 3869, https://doi.org/10.1007/s00382-016-3307-0,
2017.
Hobday, A. J., Spillman, C. M., Paige Eveson, J., and Hartog, J. R.: Seasonal
forecasting for decision support in marine fisheries and aquaculture, Fish.
Oceanogr., 25, 45–56, https://doi.org/10.1111/fog.12083, 2016.
Holt, J., Butenschön, M., Wakelin, S. L., Artioli, Y., and Allen, J. I.:
Oceanic controls on the primary production of the northwest European
continental shelf: model experiments under recent past conditions and a
potential future scenario, Biogeosciences, 9, 97–117,
https://doi.org/10.5194/bg-9-97-2012, 2012.
Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp,
L., Butenschon, M., Fach, B., Harle, J., Pushpadas, D., Salihoglu, B., and
Wakelin, S.: Potential impacts of climate change on the primary production of
regional seas: a comparative analysis of five European seas, Prog. Oceanogr.,
140, 91–115, https://doi.org/10.1016/j.pocean.2015.11.004, 2016.
Holt, J., Hyder, P., Ashworth, M., Harle, J., Hewitt, H. T., Liu, H., New, A.
L., Pickles, S., Porter, A., Popova, E., Allen, J. I., Siddorn, J., and Wood,
R.: Prospects for improving the representation of coastal and shelf seas in
global ocean models, Geosci. Model Dev., 10, 499–523,
https://doi.org/10.5194/gmd-10-499-2017, 2017.
Hughes, S. L., Tinker, J., Dye, S. R., Andres, O., Berry, D. I., Hermanson,
L., Hewitt, H., Holliday, P., Kent, E. C., Kennington, K., Inall, M., and
Smyth, T.: Temperature, MCCIP Science Review. MCCIP, Lowestoft, UK, 22–41,
https://doi.org/10.14465/2017.arc10.003-tem, 2017.
Hughes, S. L., Hindson, J., Berx, B., Gallego, A., and Turrell, W. R.:
Scottish Ocean Climate Status Report 2016, Scottish Marine and Freshwater
Science, 9, 167, https://doi.org/10.7489/12086-1, 2018.
Hunke, E. C. and Lipscomb, W. H.: CICE: The sea ice model documentation and
software user's manual, version 4.1, Technical report LA-CC-06-012, Los
Alamos National Laboratory, Los Alamos, NM, USA, 2010.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation – regional
temperatures and precipitation, Science, 269, 676–679, 1995.
Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of
the North Atlantic Oscillation, J. Marine Syst., 78, 28–41,
https://doi.org/10.1016/j.jmarsys.2008.11.026, 2009.
Hurrell, J. W. and Van Loon, H.: Decadal Variations in Climate Associated
with the North Atlantic Oscillation, Climate Change, 36, 301–328,
https://doi.org/10.1023/A:1005314315270, 1997.
ICES: Report of the working group on assessment of new MoU species (WGNEW),
ICES CM 2012/ACOM:20, Copenhagen, Denmark, 258 pp., 2012.
Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R., and Cheung, W. W. L.:
Using scenarios to project the changing profitability of fisheries under
climate change, Fish Fish., 16, 603–622, https://doi.org/10.1111/faf.12081, 2015.
Joyce, A. E.: The coastal temperature network and ferry route programme:
long-term temperature and salinity observations, Cefas, Lowestoft, UK,
129 pp., 2006.
Large, W. and Yeager, S.: The global climatology of an interannually varying
air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Larsen, K. M. H., Gonzalez-Pola, C., Fratantoni, P., Beszczynska-Möller,
A., and Hughes, S. L.: ICES Report on Ocean Climate 2015, ICES, Copenhagen,
Denmark, 79 pp., 2016.
Lowe, J. A., Howard, T. P., Pardaens, A., Tinker, J., Holt, J., Wakelin, S.,
Milne, G., Leake, J., Wolf, J., Horsburgh, K., Reeder, T., Jenkins, G.,
Ridley, J., Dye, S., and Bradley, S.: UK Climate Projections science report:
Marine and coastal projections, Met Office Hadley Centre, Exeter, UK, 2009.
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D.,
Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp,
J., Xavier, P., and Madec, G.: Global Seasonal forecast system version 5
(GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteor.
Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396, 2014.
Marsh, R., Haigh, I. D., Cunningham, S. A., Inall, M. E., Porter, M., and
Moat, B. I.: Large-scale forcing of the European Slope Current and associated
inflows to the North Sea, Ocean Sci., 13, 315–335,
https://doi.org/10.5194/os-13-315-2017, 2017.
Mathis, M., Mayer, B., and Pohlmann, T.: An uncoupled dynamical downscaling
for the North Sea: Method and evaluation, Ocean Model., 72, 153–166,
https://doi.org/10.1016/j.ocemod.2013.09.004, 2013.
McCarthy, G. D., Smeed, D. A., Cunningham, S. A., and Roberts, C. D.:
Atlantic Meridonal Overturning Circulation, MCCIP Science Review. MCCIP,
Lowestoft, UK, 1–7, https://doi.org/10.14465/2017.arc10.002-atl, 2017.
MCCIP: Marine Climate Change Impacts: 10 years' experience of science to
policy reporting, edited by: Frost, M., Baxter, J., Buckley, P., Dye, S. R.,
and Stoker, B., MCCIP, Lowestoft, UK, 12 pp.,
https://doi.org/10.14465/2017.arc10.000-arc, 2017.
Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T.,
Hyder, P., Siddorn, J., and Sinha, B.: GO5.0: the joint NERC–Met Office NEMO
global ocean model for use in coupled and forced applications, Geosci. Model
Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, 2014.
Mysak, L. A., Ingram, R. G., Wang, J., and van der Baaren, A.: The anomalous
sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three
simultaneous NAO and ENSO episodes, Atmos. Ocean, 34, 313–343, 1996.
Nolan, G., Gillooly, M., and Whelan, K.: Irish Ocean Climate and Ecosytem
Status Report 2009, Marine Institute, Galway, Ireland, 116 pp., 2010.
O'Dea, E., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M.
J., Siddorn, J., Storkey, D., While, J., Holt, J., and Lui, H.: An
operational ocean forecast system incorporating NEMO and SST data
assimilation for the tidally driven European North-West shelf, J. Oper.
Oceanogr., 5, 3–17, https://doi.org/10.1080/1755876X.2012.11020128, 2012.
Palin, E. J., Scaife, A. A., Wallace, E., Pope, E. C., Arribas, A., and
Brookshaw, A.: Skillful Seasonal Forecasts of Winter Disruption to the U.K.
Transport System, J. Appl. Meteorol. Clim., 55, 325–344,
https://doi.org/10.1175/JAMC-D-15-0102.1, 2016.
Pinnegar, J. K., Garrett, A., Simpson, S. D., Engelhard, G. H., and Van der
Kooij, J.: Fisheries, MCCIP Science Review. MCCIP, Lowestoft, UK, 1–17,
https://doi.org/10.14465/2017.arc10.007-fis, 2017.
Pörtner, H. O. and Farrell, A. P.: Physiology and climate change,
Science, 322, 690–692, https://doi.org/10.1126/science.1163156, 2008.
Pörtner, H. O. and Peck, M. A.: Climate change effects on fishes and
fisheries: towards a cause-and-effect understanding, J. Fish Biol., 77,
1745–1779, https://doi.org/10.1111/j.1095-8649.2010.02783.x, 2010.
Raabe, T. and Wiltshire, K. H.: Quality control and analyses of the long-term
nutrient data from Helgoland Roads, North Sea, J. Sea Res., 61, 3–16,
https://doi.org/10.1016/j.seares.2008.07.004, 2009.
Rödel, R.: Influence of the North Atlantic Oscillation on spatial and
temporal patterns in Eurasian river flows, Climate Variability and Change –
Hydrological Impacts, Proceedings of the Fifth FRIEND World Conference,
27 November–1 December 2006, Havana, Cuba, IAHS Publ. 308, 2006.
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T.,
Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon, M., Hermanson,
L., Knight, J. R., Lea, D. J., MacLachlan, C., Maidens, A., Martin, M.,
Peterson, A. K., Smith, D., Vellinga, M., Wallace, E., Waters, J., and
Williams, A.: Skillful long-range prediction of European and North American
winters, Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637, 2014.
Schneider, J., Tidwell, A. S., and Fitzwater, S. A.: The nuclear pipeline:
Integrating nuclear power and climate change. In: Engineering Identities,
Epistemologies and Values, Springer International Publishing, Heidelberg,
Germany, 2015.
Sheehan, P. M. F., Berx, B., Gallego, A., Hall, R. A., Heywood, K. J., and
Hughes, S. L.: Thermohaline forcing and interannual variability of
northwestern inflows into the northern North Sea, Cont. Shelf Res., 138,
120–131, https://doi.org/10.1016/j.csr.2017.01.016, 2017.
Siddorn, J. and Furner, R.: An analytical stretching function that combines
the best attributes of geopotential and terrain-following vertical
coordinates, Ocean Model., 66, 1–13, https://doi.org/10.1016/j.ocemod.2013.02.001, 2013.
Simmons, H. L., Hallberg, R. W., and Arbic, B. K.: Internal wave generation
in a global baroclinic tide model, Deep-Sea Res. Pt. II, 51, 3043–3068,
https://doi.org/10.1016/j.dsr2.2004.09.015, 2004.
Smyth, T., Atkinson, A., Widdicombe, S., Frost, M., Allen, I., Fishwick, J.,
Queiros, A., Sims, D. W., and Barange, M.: The Western Channel Observatory,
Prog. Oceanogr., 137, 335–341, https://doi.org/10.1016/j.pocean.2015.05.020, 2015.
Stige, L. C., Ottersen, G., Brander, K., Chan, K., and Stenseth, N. C.: Cod
and climate: Effect of the North Atlantic Oscillation on recruitment in the
North Atlantic, Mar. Ecol. Prog. Ser., 325, 227–241, https://doi.org/10.3354/meps325227,
2006.
Sündermann, J. and Pohlmann, H.: A brief analysis of North Sea physics,
Oceanologia, 53, 663–689, https://doi.org/10.5697/oc.53-3.663, 2011.
Tinker, J., Lowe, J., Holt, J., Pardaens, A., and Wiltshire, A.: Validation
of an ensemble modelling system for climate projections for the northwest
European shelf seas, Prog. Oceanogr., 138, 211–237,
https://doi.org/10.1016/j.pocean.2015.07.002, 2015.
Tinker, J., Lowe, J., Pardaens, A., Holt, J., and Barciela, R.: Uncertainty
in climate projections for the 21st century northwest European shelf seas,
Prog. Oceanogr., 148, 56–73, https://doi.org/10.1016/j.pocean.2016.09.003, 2016.
Tinker, J., Palmer, M. D., Howard, T. P., Lowe, J., and Copsey, D.:
Quantifying Coastal Sea Level Variability around the UK, in preparation,
2018.
van der Kooij, J., Engelhard, G. H., and Righton, D. A.: Climate change and
squid range expansion in the North Sea, J. Biogeogr., 43, 2285–2298, 2016.
Wakelin, S. L., Holt, J. T., and Proctor, R.: The influence of initial
conditions and open boundary conditions on shelf circulation in a 3D
ocean-shelf model of the North East Atlantic, Ocean Dynam., 59, 67–81, 2009.
Wakelin, S. L., Holt, J., Blackford, J., Allen, I., Butenschön, M., and
Artioli, Y.: Modeling the carbon fluxes of the northwest European continental
shelf: Validation and budgets, J. Geophys. Res.-Oceans, 117, C05020,
https://doi.org/10.1029/2011JC007402, 2012.
Wakelin, S. L., While, J., King, R., O'Dea, E., Holt, J., Furner, R.,
Siddorn, J., Martin, M., and Blockley, E.: North West European Shelf
Reanalysis NORTHWESTSHELF_REANALYSIS_PHYS_004_009, available at:
http://marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-009-011.pdf
(last access: 14 August 2018), 2014.
Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M.,
Falloon, P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J.,
Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M.
R., Boutle, I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G.
M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A.
A., and Williams, K. D.: The Met Office Unified Model Global Atmosphere
3.0/3.1 and JULES Global Land 3.0/3.1 configurations, Geosci. Model Dev., 4,
919–941, https://doi.org/10.5194/gmd-4-919-2011, 2011.
Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E.,
Copsey, D., Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson,
S., Masato, G., Milton, S. F., Roberts, M. J., Rowell, D. P., Sanchez, C.,
Shelly, A., Sinha, B., Walters, D. N., West, A., Woollings, T., and Xavier,
P. K.: The Met Office Global Coupled model 2.0 (GC2) configuration, Geosci.
Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, 2015.
Wiltshire, K. H. and Manly, B. F. J.: The warming trend at Helgoland Roads,
North Sea: phytoplankton response, Helgol. Mar. Res. 58, 269–273, 2004.
Wiltshire, K. H., Boersma, M., Carstens, K., Kraberg, A. C., Peters, S., and
Scharfe, M.: Control of phytoplankton in a shelf sea: Determination of the
main drivers based on the Helgoland Roads Time Series, J. Sea Res., 105,
42–52, https://doi.org/10.1016/j.seares.2015.06.022, 2015.
Winther, N. G. and Johannessen, J. A.: North Sea circulation: Atlantic inflow
and its destination, J. Geophys. Res., 111, C12018, https://doi.org/10.1029/2005JC003310,
2006.
Short summary
We consider the prospects for seasonal forecasts for the North-west European Shelf (NWS) seas. The recent maturation of global seasonal forecast systems and NWS marine reanalyses provide a basis for such forecasts. We assess the potential of three possible approaches: direct use of global forecast fields and empirical and dynamical downscaling. We conclude that there is potential for NWS seasonal forecasts and as an example show a skillful prototype SST forecast for the English Channel.
We consider the prospects for seasonal forecasts for the North-west European Shelf (NWS) seas....