Articles | Volume 14, issue 4
https://doi.org/10.5194/os-14-849-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-849-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of intraseasonal wind bursts on sea surface temperature variability in the far eastern tropical Atlantic Ocean during boreal spring 2005 and 2006: focus on the mid-May 2005 event
Gaëlle Herbert
CORRESPONDING AUTHOR
Institut de Recherche pour le Développement (IRD), Laboratoire
d'Etudes Géophysiques et Océanographie Spatiale (LEGOS), Brest,
France
Bernard Bourlès
Institut de Recherche pour le Développement (IRD), Laboratoire
d'Etudes Géophysiques et Océanographie Spatiale (LEGOS), Brest,
France
Related authors
No articles found.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Ramilla Vieira Assunção, Anne Lebourges-Dhaussy, Alex Costa da Silva, Bernard Bourlès, Gary Vargas, Gildas Roudaut, and Arnaud Bertrand
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-101, https://doi.org/10.5194/os-2021-101, 2021
Publication in OS not foreseen
Short summary
Short summary
Active acoustics has been used to characterize physical structures and processes in the ocean, typically attributed to biological dispersion or turbulent structures. We take advantage of acoustic data from the Southwest Atlantic to test the feasibility of this approach in an oligotrophic region. The results show that the thermohaline structure impacts the vertical distribution of acoustic scatterers, however the methods tested did not allow a robust estimate of the thermohaline limits.
Marie-Hélène Radenac, Julien Jouanno, Christine Carine Tchamabi, Mesmin Awo, Bernard Bourlès, Sabine Arnault, and Olivier Aumont
Biogeosciences, 17, 529–545, https://doi.org/10.5194/bg-17-529-2020, https://doi.org/10.5194/bg-17-529-2020, 2020
Short summary
Short summary
Satellite data and a remarkable set of in situ measurements show a main bloom of microscopic seaweed, the phytoplankton, in summer and a secondary bloom in December in the central equatorial Atlantic. They are driven by a strong vertical supply of nitrate in May–July and a shorter and moderate supply in November. In between, transport of low-nitrate water from the west explains most nitrate losses in the sunlit layer. Horizontal eddy-induced processes also contribute to seasonal nitrate removal.
Mélodie Trolliet, Jakub P. Walawender, Bernard Bourlès, Alexandre Boilley, Jörg Trentmann, Philippe Blanc, Mireille Lefèvre, and Lucien Wald
Ocean Sci., 14, 1021–1056, https://doi.org/10.5194/os-14-1021-2018, https://doi.org/10.5194/os-14-1021-2018, 2018
Sandrine Djakouré, Moacyr Araujo, Aubains Hounsou-Gbo, Carlos Noriega, and Bernard Bourlès
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-346, https://doi.org/10.5194/bg-2017-346, 2017
Revised manuscript has not been submitted
Related subject area
Approach: Numerical Models | Depth range: Surface | Geographical range: Deep Seas: Equatorial Ocean | Phenomena: Temperature, Salinity and Density Fields
The Pacific–Indian Ocean associated mode in CMIP5 models
Evaluation of the eastern equatorial Pacific SST seasonal cycle in CMIP5 models
Minghao Yang, Xin Li, Weilai Shi, Chao Zhang, and Jianqi Zhang
Ocean Sci., 16, 469–482, https://doi.org/10.5194/os-16-469-2020, https://doi.org/10.5194/os-16-469-2020, 2020
Short summary
Short summary
Based on the close link with the El Niño–Southern Oscillation and Indian Ocean dipole, the Pacific Ocean and the Indian Ocean should be regarded as a unit, named the Pacific–Indian Ocean associated mode (PIOAM), when studying and predicting climate variability in East Asia. Since the PIOAM is so important, the outputs of historical simulation from the Coupled Model Intercomparison Project (CMIP) phase 5 were used to evaluate the reproducibility of PIOAM in current climate models.
Z. Y. Song, H. L. Liu, C. Z. Wang, L. P. Zhang, and F. L. Qiao
Ocean Sci., 10, 837–843, https://doi.org/10.5194/os-10-837-2014, https://doi.org/10.5194/os-10-837-2014, 2014
Cited articles
Adamec, D. and O'Brien, J. J.: The seasonal upwelling in the Gulf of Guinea due to remote forcing, J. Phys. Oceanogr., 8, 1050–1060, 1978.
AVISO: Mean Sea Level: Aviso, Aviso Altimetry, available at: https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/msla-h.html, last access: July 2017.
Battisti, D. S.: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere ocean model, J. Atmos. Sci. 45, 2889–2919, 1988.
Busalacchi, A. and Picaut, J.: Seasonal variability from a model of the tropical Atlantic Ocean, J. Phys Oceanogr., 13, 1564–1588, 1983.
Bourlès, B., Brandt, P., Caniaux, G., Dengler, M., Gouriou, Y., Key, E., Lumpkin, R., Marin, F., Molinari, R. L., and Schmid, C.: African Monsoon Multidisciplinary Analysis (AMMA): Special measurements in the Tropical Atlantic, CLIVAR Exchange Letters, 41, International CLIVAR Project Office, National Oceanography Centre, Southampton, UK, 7–9, 2007.
Brandt, P., Funk, A., Hormann, V., Dengler, M., Greatbatch, R. J., and Toole, J. M.: Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean, Nature, 473, 497–500, https://doi.org/10.1038/nature10013, 2011.
Caniaux, G., Giordani, H., Redelsperger, J.-L., Guichard, F., Key, E., and Wade, M.: Coupling between the Atlantic cold tongue and the West African monsoon in boreal spring and summer, J. Geophys. Res., 116, C04003, https://doi.org/10.1029/2010JC006570, 2011.
Carton, J. A. and Giese, B. S.: A reanalysis of ocean climate using simple ocean data assimilation (SODA), Mon. Weather Rev., 136, 2999–3017, https://doi.org/10.1175/2007MWR1978.1, 2008.
Carton, J. A., Chepurin, G., Cao, X., and Giese, B. S.: A simple ocean data assimilation analysis of the global upper ocean 1950–1995, part 1: Methodology, J. Phys. Oceanogr., 30, 294–309, https://doi.org/10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2, 2000a.
Carton, J. A., Chepurin, G., and Cao, X.: A simple ocean data assimilation analysis of the global upper ocean 1950–1995, part 2: Results, J. Phys. Oceanogr., 30, 311–326, https://doi.org/10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO;2, 2000b.
Chang, C.-Y., Carton, J. A., Grodsky, S. A., and Nigam, S.: Seasonal climate of the tropical Atlantic sector in the NCAR Community Climate System Model 3: Error structure and probable causes of errors, J. Climate, 20, 1053–1070, 2007.
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., Naggar, K. E., and Siwertz, N.: Geographical variability of the first-baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433–460, 1998.
Colin, C.: Sur la variabilité dans le Golfe de Guinée: Nouvelles considérations sur les mécanismes d'upwelling, PhD thesis, Mus. Natl. d'Hist. Nat., Paris, 1989.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations, J. Hydrometeorol., 3, 660–687, 2002.
Davey, M., Huddleston, M., Sperber, K. R., Braconnot, P., Bryan, F., Chen, D., Colman, R., Cooper, C., Cubasch, U., Delecluse, P., DeWitt, D., Fairhead, L., Flato, G., Gordon, C., Hogan, T., Ji, M., Kimoto, M., Kitoh, A., Knutson, T. R., Latif, M., Le Treut, H., Li, T., Manabe, S., Mechoso, C. R., Meehl, G. A., Power, S. B., Roeckner, E., Terray, L., Vintzileos, A., Voss, R., Wang, B., Washington, W. M., Yoshikawa, I., Yu, J.-Y., Yukimoto, S., and Zebiak, S. E.: STOIC: A study of coupled model climatology and variability in tropical ocean regions, Clim. Dynam., 18, 403–420, 2002.
Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation, Ocean Model., 49–50, 1–21, 2012.
de Coëtlogon, G., Janicot, S., and Lazar, A.: Intraseasonal variability of the ocean-atmosphere coupling in the Gulf of Guinea during boreal spring and summer, Q. J. Roy. Meteor. Soc., 136, 426–441, https://doi.org/10.1002/qj.554, 2010.
Denamiel, C., Budgell, W. P., and Toumi, R.: The Congo River plume: Impact of the forcing on the far-field and near-field dynamics, J. Geophys. Res.-Oceans, 118, 964–989, https://doi.org/10.1002/jgrc.20062, 2013.
Deser, C., Capotondi, A., Saravanan, R., and Phillips, A.: Tropical Pacific and Atlantic climate variability in CCSM3, J. Climate, 19, 2451–2481, 2006.
Djakouré, S., Penven, P., Bourlès, B., Veitch, J., and Koné, V.: Coastally trapped eddies in the north of the Gulf of Guinea, J. Geophys. Res.-Oceans, 119, 6805–6819, https://doi.org/10.1002/2014JC010243, 2014.
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688, 2005.
Erfanian, A., Wang, G., and Fomenko, L.: Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST, Sci. Rep., 7, 5811, https://doi.org/10.1038/s41598-017_05373-2, 2017.
European Centre for Medium-Range Weather Forecasts: ERA-20C Project (ECMWF Atmospheric Reanalysis of the 20th Century), Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, https://doi.org/10.5065/D6VQ30QG, 2014.
Foltz, G. R., Grodsky, S. A., Carton, J. A., and McPhaden, M. J.: Seasonal mixed layer heat budget of the tropical Atlantic Ocean, J. Geophys. Res., 108, 3146, https://doi.org/10.1029/2002JC001584, 2003.
Foltz, G. R. and McPhaden, M. J.: Unusually warm sea surface temperatures in the tropical North Atlantic during 2005, Geophys. Res. Lett., 33, L19703, https://doi.org/10.1029/2006GL027394, 2006.
Fritts, D. C.: Wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys., 22, 275–308, 1984.
Gentemann, C. L., Wentz, F. J., Brewer, M., Hilburn, K., and Smith, D.: Passive Microwave Remote Sensing of the Ocean: an Overview, Oceanography from Space, Revisited, edited by: Barale, V., Gower, J., and Alberotanza, L., 13–33, Springer, Heidelberg, 2010.
Giese, B. J. and Harrison, D. E.: Aspects of the Kelvin wave response to episodic wind forcing, J. Geophys. Res., 95, 7289–7312, 1990.
Giordani, H., Caniaux, G., and Voldoire, A.: Intraseasonal mixed-layer heat budget in the equatorial Atlantic during the cold tongue development in 2006, J. Geophys. Res.-Oceans, 118, 650–671, https://doi.org/10.1029/2012JC008280, 2013.
Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., and Gray, W. M.: The Recent Increase in Atlantic Hurricane Activity: Causes and Implications, Science, 293, 474–479, https://doi.org/10.1126/science.1060040, 2001.
Grodsky, S. A. and Carton, J. A.: The Intertropical Convergence Zone in the South Atlantic and the Equatorial Cold Tongue, J. Climate, 16, 723–733, 2003.
Haidvogel, D. B. and Beckmann, A.: Numerical Ocean Circulation Modeling, Imperial College Press, London, 320 pp., 1999.
Herbert, G., Bourlès, B., Penven, P., and Grelet, J.: New insights on the upper layer circulation north of the Gulf of Guinea, J. Geophys. Res.-Oceans, 121, 6793–6815, https://doi.org/10.1002/2016JC011959, 2016.
Hormann, V. and Brandt, P.: Upper equatorial Atlantic variability during 2002 and 2005 associated with equatorial Kelvin waves, J. Geophys. Res., 114, C03007, https://doi.org/10.1029/2008JC005101, 2009.
Illig, S., Dewitte, B., Ayoub, N., du Penhoat, Y., Reverdin, G., Mey, P. D., Bonjean, F., and Lagerloef, G. S. E.: Interannual long equatorial waves in the tropical Atlantic from a high-resolution ocean general circulation model experiment in 1981–2000, J. Geophys. Res.-Oceans, 109, C02022, https://doi.org/10.1029/2003JC001771, 2004.
Jouanno, J., Marin, F., duPenhoat, Y., Sheinbaum, J., and Molines, J. M.: Seasonal heat balance in the upper 100 m of the Equatorial Atlantic Ocean, J. Geophys. Res.-Oceans, 116, C09003, https://doi.org/10.1029/2010JC006912, 2011.
Jouanno, J., Marin, F., duPenhoat, Y., and Molines, J. M.: Intraseasonal Modulation of the Surface Cooling in the Gulf of Guinea, J. Phys. Oceanogr., 43, 382–401, https://doi.org/10.1175/JPO-D-12-053.1, 2013.
Krishnamurti, T. N., Pasch, R. J., and Ardanuy, P.: Prediction of African waves and specification of squall lines, Tellus, 32, 215–231, 1980.
Large, W. G. and Danabasoglu, G.: Attribution and impacts of upper-ocean biases in CCSM3, J. Climate, 19, 2325–2346, 2006.
Leduc-Leballeur, M., Eymard, L., and de Coëtlogon, G.: Observation of the marine atmospheric boundary layer in the Gulf of Guinea during the 2006 boreal spring, Q. J. Roy. Meteorol. Soc., 137, 992–1003, 2011.
Leduc-Leballeur, M., de Coëtlogon, G., and Eymard, L.: Air – sea interaction in the Gulf of Guinea at intraseasonal time-scales: Wind bursts and coastal precipitation in boreal spring, Q. J. Roy. Meteorol. Soc., 139, 387–400, https://doi.org/10.1002/qj.1981, 2013.
Lübbecke, J. F., Burls, N. J., Reason, C. J. C., and McPhaden, M. J.: Variability in the South Atlantic Anticyclone and the Atlantic Nino Mode, J. Climate, 27, https://doi.org/10.1175/JCLI-D-14-00202.1, 2014.
Mann, M. E. and Emanuel, K. A.: Atlantic hurricane trends linked to climate change, Eos, Trans. Am. Geophys. Union, 87, 233–244, 2006.
Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., De Oliveira, G. S., De Oliveira, R., Camargo, H., Alves, L. M., and Brown, I. F.: The drought of Amazonia in 2005, J. Climate, 21, 495–516, 2008a.
Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F., and Oyama, M. D.: Hydro-climatic and ecological behaviour of the drought of amazonia in 2005, Philosophical transactions of the Royal society of London, Biol. Sci., 21, 1–6, 2008b.
Marin, F., Caniaux, G., Bourlès, B., Giordani, H., Gouriou, Y., and Key, E.: Why were sea surface temperatures so different in the Eastern Equatorial Atlantic in June 2005 and 2006, J. Phys. Oceanogr., 39, 1416–1431, https://doi.org/10.1175/2008JPO4030.1, 2009.
Materia, S., Gualdi, S., Navarra, A., and Terray, L.: The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability, Clim. Dynam., 39, 2109–2125, https://doi.org/10.1007/s00382-012-1514-x, 2012.
McCreary, J.: Eastern tropical ocean response to changing wind systems with application to El Nino, J. Phys. Oceanogr., 6, 632–645, 1976.
McCreary, J., Picaut, J., and Moore, D.: Effects of the remote annual forcing in the eastern tropical Atlantic Ocean, J. Mar. Res., 42, 45–81, 1984.
Merle, J., Guillerm, J. M., and Pianet, R.: Conditions hydrologiques saisonniéres de la marge continentale du Gabon et du Congo (de 1° N a 6° S), étude descriptive, Centre O.R.S.T.O.M, Doc., sci., Pointe-Noire, 27, l–20, 1972.
Merle, J., Fieux, M., and Hisard, P.: Annual signal and interannual anomalies of sea surface temperature in the eastern equatorial Atlantic Ocean, Deep Sea Res., 26, 77–101, 1980.
Mitchell, T. P. and Wallace, J. M.: The annual cycle in equatorial convection and sea surface temperature, J. Climate, 5, 1140–1156, 1992.
Moore, D. W.: Planetary-gravity waves in an equatorial ocean, PhD thesis, Harvard University, 201 pp., 1968.
Moore, D. W. and Philander, S. G. H.: Modeling of the tropical ocean circulation, The Sea, Vol. 6, Wiley Interscience, New York, NY, 316–361, 1977.
Moore, D. W., Hisard, P., McCreary, J. P., Merle, J., O'Brien, J. J., Picaut, J., Verstraete, J. M., and Wunsch, C.: Equatorial adjustment in the eastern Atlantic, Geophys. Res. Lett., 5, 637–640, 1978.
Nguyen, H., Thorncroft, C. D., and Zhang, C.: Guinean coastal rainfall of the West African Monsoon, Q. J. Roy. Meteorol. Soc., 137, 1828–1840, https://doi.org/10.1002/qj.867, 2011.
Nicholson, S. E. and Dezfuli, A. K.: The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation, Part I: The boreal spring, J. Climate, 26, 45–65, 2013.
Nobre, P. and Shukla, J.: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America, J. Climate, 9, 2464–2479, 1996.
Okumura, Y. and Xie, S. P.: Interaction of the Atlantic equatorial cold tongue and the African monsoon, J. Climate, 17, 3589–3602, 2004.
Okumura, Y. and Xie, S. P.: Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon, J. Climate, 19, 5859–5874, https://doi.org/10.1175/JCLI3928.1, 2006.
Ostrowski, M., Da Silva, J. C. B., and Bazik-Sangolay, B.: The response of sound scatterers to El-Niño and La Niña-like oceanographic regimes in the southeastern Atlantic, ICES J. Mar. Sci., 66, 1063–1072, https://doi.org/10.1093/icesjms/fsp102, 2009.
Penven, P., Marchesiello, P., Debreu, L., and Lefevre, J.: Software tools for pre- and post-processing of oceanic regional simulations, Environ. Model. Softw., 23, 660–662, 2008.
Peter, A.-C., Le Hénaff, M., du Penhoat, Y., Menkès, C., Marin, F., Vialard, J., Caniaux, G., and Lazar, A.: A model study of the seasonal mixed layer heat budget in the equatorial Atlantic, J. Geophys. Res., 111, C06014, https://doi.org/10.1029/2005JC003157, 2006.
Philander, S. and Pacanowski, R.: A model of the seasonal cycle in the Tropical Atlantic Ocean, J. Geophys. Res., 91, 14192–14206, 1986.
Philander, S. G.: El Nino, La Nina and the Southern Oscillation, Academic Press, 293 pp., 1990.
Picaut, J.: Propagation of the seasonal upwelling in the eastern equatorial Atlantic, J. Phys. Oceanogr., 13, 18–37, https://doi.org/10.1175/1520-0485(1983)013<0018:POTSUI>2.0.CO;2, 1983.
Picaut, J.: On the dynamics of the thermal variations in the Gulf of Guinea, Oceanogr. Trop., 19, 127–153, 1984.
Piton, B.: Les courants sur le plateau continental devant Pointe-Noire (Congo), Documents scientifiques, ORSTOM, Brest, no. 47, 37 pp., 1988.
Polo, I., Lazar, A., Rodriguez-Fonseca, B., and Arnault, S.: Oceanic Kelvin waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave characterization, J. Geophys. Res., 113, C07009, https://doi.org/10.1029/2007JC004495, 2008.
Redelsperger, J. L., Diedhiou, A., Flamant, C., Janicot, S., Lafore, J. P., Lebel, T., Polcher, J., Bourlés, B., Caniaux, C., De Rosnay, P., Desbois, M., Eymard, L., Fontaine, B., Geneau, I., Ginoux, K., Hoepffner, M., Kane, C. C. S., Law, K., Mari, C., Marticoréna, B., Mougin, E., Pelon, J., Peugeot, C., Protat, A., Roux, F., Sultan, B., and Van den Akker, E.: AMMA: Une étude multidisciplinaire de la mousson Ouest-Africaine, Meteorologie, 54, 22–32, https://doi.org/10.4267/2042/20098, 2006
Richter, I. and Xie, S.-P.: On the origin of equatorial Atlantic biases in coupled general circulation models, Clim. Dynam., 1, 587–598, https://doi.org/10.1007/s00382-008-0364-z, 2008.
Rouault, M., Servain, J., Reason, C. J. R., Bourlès, B., Rouault, M. J., and Fauchereau, N.: Extension of PIRATA in the tropical south-east Atlantic: An initial one-year experiment, Afr. J. Mar. Sci., 31, 63–71, https://doi.org/10.2989/AJMS.2009.31.1.5.776, 2009.
Saha, S., Moorthi, S., Pan, H.-L., Wu, W., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z. Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast system reanalysis, Am. Meteor. Soc., 91, 1015–1057, 2010.
Schouten, M. W., Matano, R. P., and Strub, T. P.: A description of the seasonal cycle of the equatorial Atlantic from altimeter data, Deep-Sea Res., 52, 477–493, https://doi.org/10.1016/j.dsr.2004.10.007, 2005.
Servain, J., Picaut, J., and Merle, J.: Evidence of remote forcing in the equatorial Atlantic Ocean, J. Phys. Oceanogr., 12, 457–463, 1982.
Shein, K. A.: State of the climate in 2005, B. Am. Meteor. Soc., 87, s1–s102, https://doi.org/10.1175/BAMS-87-6-shein, 2006.
Shchepetkin, A. and McWilliams, J. C.: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model, Ocean Model. 9, 347–404, 2005.
Thorncroft, C. D., Nguyen, H., Zhang, C., and Peyrillé, P.: Annual cycle of the West African monsoon: regional circulations and associated water vapour transport, Q. J. Roy. Meteorol. Soc., 137, 129–147, https://doi.org/10.1002/qj.728, 2011.
Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural variability in 2005, Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894, 2006.
Virmani, J. I. and Weisberg, R. H.: The 2005 hurricane season: An echo of the past or a harbinger of the future?, Geophys. Res. Lett., 33, L05707, https://doi.org/10.1029/2005GL025517, 2006.
Wade, M., Caniaux, G., and du Penhoat, Y.: Variability of the mixed layer heat budget in the eastern equatorial Atlantic during 2005–2007 as inferred using Argo floats, J. Geophys. Res., 116, C08006, https://doi.org/10.1029/2010JC006683, 2011.
Waliser, D. E. and Gautier, C.: A satellite-derived climatology of the ITCZ, J. Climate, 6, 2162–2174, 1993.
Wauthy, B.: Introduction à la climatologie du Golfe de Guinée, Oceanogr. Trop., 18, 103–138, 1983.
Webster, P. J., Holland, G. J., Curry, A., and Chang, H. R.: Changes in tropical cyclone number, duration, and intensity, in warming environment, Science, 309, 1844–1846, 2005.
Wentz, F. J. and Meissner, T.: Algorithm Theoretical Basis Document (ATBD), version 2, AMSR-E Ocean Algorithm, Remote Sensing Systems Tech. Rep., RSS 121599A-1, 55 pp., 2000.
Wentz, F. J., Gentemann, C., and Hilburn, K. A.: Remote Sensing Systems TRMM TMI - 3-days data. Environmental Suite on 0.25 deg grid, Version 7.1, subset: Gulf of Guinea. Remote Sensing Systems, Santa Rosa, CA. Available online at http://www.remss.com/missions/tmi (last access: June 2016), 2015.
White, R. H. and Toumi, R.: River Flow and Ocean Temperatures: The Congo River, J. Geophys. Res.-Oceans, 119, 25016–2517, https://doi.org/10.1002/2014JC009836, 2014.
Yu, L., Jin, X., and Weller, R. A.: Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic ocean, J. Climate, 19, 6153–6169, 2006.
Zebiak, S.: Air-sea interaction in the equatorial Atlantic region, J. Climate, 6, 1567–1586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2, 1993.
Zeng, N., Dickinson, R. E., and Zeng, X.: Climatic impact of Amazon deforestation-A mechanistic model study, J. Climate, 9, 859–883, 1996.
Zeng, N., Dickinson, R. E., and Zeng, X.: Causes and impacts of the 2005 Amazon drought, Environ. Res. Lett., 3, 014002, https://doi.org/10.1088/1748-9326/3/1/014002, 2008.
Short summary
The impact of boreal spring intraseasonal wind bursts on sea surface temperature variability in the eastern tropical Atlantic in 2005 and 2006 is investigated. The cooling events induced by southerly wind bursts are modulated by local and remote forcing. A particularly strong wind event and a strong cooling occurred in mid-May 2005. It appears as a decisive event in the West African monsoon onset. This study emphasizes the need to further document and monitor the South Atlantic region.
The impact of boreal spring intraseasonal wind bursts on sea surface temperature variability in...