Articles | Volume 14, issue 4
https://doi.org/10.5194/os-14-783-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-783-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Acoustic Doppler current profiler observations of migration patternsof zooplankton in the Cretan Sea
Institute of Oceanography, Hellenic Centre for Marine Research,
Heraklion, Crete, 72100, Greece
Department of Marine Sciences, School of the Environment, University
of the Aegean, Mytilene, Lesvos, 81132, Greece
Constantin Frangoulis
Institute of Oceanography, Hellenic Centre for Marine Research,
Heraklion, Crete, 72100, Greece
Alkiviadis Kalampokis
Institute of Oceanography, Hellenic Centre for Marine Research,
Heraklion, Crete, 72100, Greece
Manolis Ntoumas
Institute of Oceanography, Hellenic Centre for Marine Research,
Heraklion, Crete, 72100, Greece
Manos Pettas
Institute of Oceanography, Hellenic Centre for Marine Research,
Heraklion, Crete, 72100, Greece
George Petihakis
Institute of Oceanography, Hellenic Centre for Marine Research,
Heraklion, Crete, 72100, Greece
Vassilis Zervakis
Department of Marine Sciences, School of the Environment, University
of the Aegean, Mytilene, Lesvos, 81132, Greece
Related authors
George Petihakis, Leonidas Perivoliotis, Gerasimos Korres, Dionysios Ballas, Constantin Frangoulis, Paris Pagonis, Manolis Ntoumas, Manos Pettas, Antonis Chalkiopoulos, Maria Sotiropoulou, Margarita Bekiari, Alkiviadis Kalampokis, Michalis Ravdas, Evi Bourma, Sylvia Christodoulaki, Anna Zacharioudaki, Dimitris Kassis, Emmanuel Potiris, George Triantafyllou, Kostas Tsiaras, Evangelia Krasakopoulou, Spyros Velanas, and Nikos Zisis
Ocean Sci., 14, 1223–1245, https://doi.org/10.5194/os-14-1223-2018, https://doi.org/10.5194/os-14-1223-2018, 2018
Short summary
Short summary
Integrated oceanic observations on multiple processes including biogeochemistry are scarce. In the eastern Mediterranean (Cretan Sea) the spatiotemporal coverage of such observations has increased with the expansion of the POSEIDON observatory. The observatory addresses scientific questions, provides services to policy makers and society, and serves as a technological test bed. It plays a key role in European and international observing programs, in harmonization procedures and data handling.
Natalia Stamataki, Yannis Hatzonikolakis, Kostas Tsiaras, Catherine Tsangaris, George Petihakis, Sarantis Sofianos, and George Triantafyllou
Ocean Sci., 16, 927–949, https://doi.org/10.5194/os-16-927-2020, https://doi.org/10.5194/os-16-927-2020, 2020
Short summary
Short summary
This study examines the accumulation of microplastics on wild and cultured mussels through a dynamic energy budget model, resulting in a comparable contamination level but different cleaning time for the mussels. Our main findings highlight that microplastics contamination is strongly dependent on the variability of specific environmental aspects and improve the knowledge of the transport and accumulation of microplastics in the mussels, enlightening future work on a biomagnification scenario.
George Petihakis, Leonidas Perivoliotis, Gerasimos Korres, Dionysios Ballas, Constantin Frangoulis, Paris Pagonis, Manolis Ntoumas, Manos Pettas, Antonis Chalkiopoulos, Maria Sotiropoulou, Margarita Bekiari, Alkiviadis Kalampokis, Michalis Ravdas, Evi Bourma, Sylvia Christodoulaki, Anna Zacharioudaki, Dimitris Kassis, Emmanuel Potiris, George Triantafyllou, Kostas Tsiaras, Evangelia Krasakopoulou, Spyros Velanas, and Nikos Zisis
Ocean Sci., 14, 1223–1245, https://doi.org/10.5194/os-14-1223-2018, https://doi.org/10.5194/os-14-1223-2018, 2018
Short summary
Short summary
Integrated oceanic observations on multiple processes including biogeochemistry are scarce. In the eastern Mediterranean (Cretan Sea) the spatiotemporal coverage of such observations has increased with the expansion of the POSEIDON observatory. The observatory addresses scientific questions, provides services to policy makers and society, and serves as a technological test bed. It plays a key role in European and international observing programs, in harmonization procedures and data handling.
Related subject area
Approach: In situ Observations | Depth range: All Depths | Geographical range: Mediterranean Sea | Phenomena: Biological Processes
Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler
Marine mammal tracks from two-hydrophone acoustic recordings made with a glider
Observations of a phytoplankton spring bloom onset triggered by a density front in NW Mediterranean
Davide Guerra, Katrin Schroeder, Mireno Borghini, Elisa Camatti, Marco Pansera, Anna Schroeder, Stefania Sparnocchia, and Jacopo Chiggiato
Ocean Sci., 15, 631–649, https://doi.org/10.5194/os-15-631-2019, https://doi.org/10.5194/os-15-631-2019, 2019
Short summary
Short summary
Diel vertical migration (DVM) is a survival strategy adopted by zooplankton that was investigated in the Corsica Channel using acoustic data from April 2014 to November 2016. The principal aim of the study is to characterize migratory patterns and biomass temporal evolution along the water column. In addition, net samples were taken during summer 2015 at the same location. During the investigated period, zooplankton had a well-defined daily and seasonal cycle, with peaks in late winter.
Elizabeth T. Küsel, Tessa Munoz, Martin Siderius, David K. Mellinger, and Sara Heimlich
Ocean Sci., 13, 273–288, https://doi.org/10.5194/os-13-273-2017, https://doi.org/10.5194/os-13-273-2017, 2017
Short summary
Short summary
An ocean glider was tested during the REP14-MED experiment off the western coast of the island of Sardinia as a platform for recording sounds produced by whales and dolphins using two sensors. Sperm whale clicks as well as dolphin clicks and whistles were identified in the recordings. Automatically detected sperm whale clicks were used to estimate animal tracks. Such information is useful for marine mammal density estimation studies that use passive acoustics.
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
Cited articles
Ainslie, M. A. and McColm, J. G.: A simplified formula for viscous and
chemical absorption in sea water, J. Acoust. Soc. Am., 103, 1671–1672,
https://doi.org/10.1121/1.421258, 1998.
Al-Mutairi, H. and Landry, M. R.: Active export of carbon and nitrogen at
Station ALOHA by diel migrant zooplankton, Deep-Sea Res. Pt. II, 48,
2083–2103, https://doi.org/10.1016/S0967-0645(00)00174-0, 2001.
Andersen, V. and Nival, P.: A model of the diel vertical migration of
zooplankton based on euphausiids, J. Mar. Res., 49, 153–175,
https://doi.org/10.1357/002224091784968594, 1991.
Andersen, V. and Sardou, J.: The diel migrations and vertical distributions
of zooplankton and micronekton in the Northwestern Mediterranean Sea. 1.
Euphausiids, mysids, decapods and fishes, J. Plankton Res., 14,
1129–1154, https://doi.org/10.1093/plankt/14.8.1129, 1992.
Andersen, V., Sardou, J., and Nival, P.: The diel migrations and vertical
distributions of zooplankton and micronekton in the Northwestern
Mediterranean Sea. 2. Siphonophores, hydromedusae and pyrosomids, J.
Plankton Res., 14, 1155–1169, https://doi.org/10.1093/plankt/14.8.1155, 1992.
Andersen, V., Nival, P., Caparroy, P., and Gubanova, A.: Zooplankton
community during the transition from spring bloom to oligotrophy in the open
NW Mediterranean and effects of wind events. 1. Abundance and specific
composition, J. Plankton Res., 23, 227–242, https://doi.org/10.1093/plankt/23.3.227,
2001.
Ashjian, C. J., Smith, S. L., Flagg, C. N., and Idrisi, N.: Distribution,
annual cycle, and vertical migration of acoustically derived biomass in the
Arabian Sea during 1994–1995, Deep-Sea Res. Pt. II, 49, 2377–2402,
https://doi.org/10.1016/S0967-0645(02)00041-3, 2002.
Bozzano, R., Fanelli, E., Pensieri, S., Picco, P., and Schiano, M. E.:
Temporal variations of zooplankton biomass in the Ligurian Sea inferred from
long time series of ADCP data, Ocean Sci., 10, 93–105,
https://doi.org/10.5194/os-10-93-2014, 2014.
Brierley, A. S., Brandon, M. A., and Watkins, J. L.: An assessment of the
utility of an acoustic Doppler current profiler for biomass estimation,
Deep-Sea Res. Pt. I, 45, 1555–1573, https://doi.org/10.1016/S0967-0637(98)00012-0, 1998.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Cardin, V., Gacic, M., Nittis, K., Kovacevic, V., and Perini, L.:
Sub-inertial variability in the Cretan Sea from the M3A buoy, Ann. Geophys.,
21, 89–102, https://doi.org/10.5194/angeo-21-89-2003, 2003.
CDO: Climate Data Operators, available at:
http://www.mpimet.mpg.de/cdo, last access: 25 July 2018.
CMEMS In Situ Thematic Assembly Centre: INSITU_MED_NRT_OBSERVATIONS_013_035, available at: http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=INSITU_MED NRT OBSERVATIONS_013_035,
last access: 25 July 2018.
Cohen, J. H. and Forward, R. B.: Zooplankton diel vertical migration – A
review of proximate control, Oceanogr. Mar. Biol., 47, 77–110,
https://doi.org/10.1201/9781420094220.ch2, 2009.
Costello, J. H., Pieper, R. E., and Holliday, D. V.: Comparison of acoustic
and pump sampling techniques for the analysis of zooplankton distributions,
J. Plankton Res., 11, 703–709, https://doi.org/10.1093/plankt/11.4.703, 1989.
Crise, A., Allen, J. I., Baretta, J., Crispi, G., Mosetti, R., and Solidoro,
C.: The Mediterranean pelagic ecosystem response to physical forcing, Prog.
Oceanogr., 44, 219–243, https://doi.org/10.1016/S0079-6611(99)00027-0, 1999.
Deines, K. L.: Backscatter estimation using Broadband acoustic Doppler
current profilers, in: Proceedings of the IEEE 6th Working Conference on
Current Measurement, San Diego, USA, 11–13 March 1999, 249–253, 1999.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the
Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148,
https://doi.org/10.5194/bg-6-139-2009, 2009.
Flagg, C. N. and Smith, S. L.: On the use of the acoustic Doppler current
profiler to measure zooplankton abundance, Deep-Sea Res., 36, 455–474,
https://doi.org/10.1016/0198-0149(89)90047-2, 1989.
Forward R. B.: Diel vertical migration: Zooplankton photobiology and
behaviour, Oceanogr. Mar. Biol., 26, 361–393, 1988.
Fragopoulu, N. and Lykakis, J. J.: Vertical distribution and nocturnal
migration of zooplankton in relation to the development of the seasonal
thermocline in Patraikos Gulf, Mar. Biol., 104, 381–387,
https://doi.org/10.1007/BF01314340, 1990.
Frangoulis, C., Christou, E. D., and Hecq, J. H.: Comparison of Marine
Copepod Outfluxes: Nature, Rate, Fate and Role in the Carbon and Nitrogen
Cycles, Adv. Mar. Biol., 47, 253–309, https://doi.org/10.1016/S0065-2881(04)47004-7,
2004.
Georgopoulos, D., Chronis, G., Zervakis, V., Lykousis, V., Poulos, S., and
Iona, A.: Hydrology and circulation in the Southern Cretan Sea during the
CINCS experiment (May 1994–September 1995), Prog. Oceanogr., 46, 89–112,
https://doi.org/10.1016/S0079-6611(00)00014-8, 2000.
Gertman, I., Pinardi, N., Popov, Y., and Hecht, A.: Aegean Sea Water Masses
during the Early Stages of the Eastern Mediterranean Climatic Transient
(1988–90), J. Phys. Oceanogr., 36, 1841–1859, https://doi.org/10.1175/JPO2940.1, 2006.
Gordon, R.: Acoustic Doppler Currrent Profiler: Principles of operation, a
practical primer, 2nd Edn., Teledyne RD Instruments Inc., San Diego,
California, USA, available at:
http://misclab.umeoce.maine.edu/boss/classes/SMS_598_2012/RDI_Broadband Primer_ADCP.pdf (last access: 25 July 2018), 1996.
Gotsis-Skretas, O., Pagou, K., Moraitou-Apostolopoulou, M., and Ignatiades,
L.: Seasonal horizontal and vertical variability in primary production and
standing stocks of phytoplankton and zooplankton in the Cretan Sea and the
Straits of the Cretan Arc (March 1994–January 1995), Prog. Oceanogr., 44,
625–649, https://doi.org/10.1016/S0079-6611(99)00048-8, 1999.
Hellenic Center for Marine Research – Poseidon Team: PoseidonDataBase, available at: http://poseidon.hcmr.gr, last access:
25 July 2018.
Henson, S. A., Beaulieu, C., and Lampitt, R.: Observing climate change trends
in ocean biogeochemistry: when and where, Glob. Chang. Biol., 22, 1561–1571,
https://doi.org/10.1111/gcb.13152, 2016.
Heywood, K. J.: Diel vertical migration of zooplankton in the Northeast
Atlantic, J. Plankton Res., 18, 163–184, https://doi.org/10.1093/plankt/18.2.163, 1996.
Holliday, D. V.: Extracting bio-physical information from the acoustic
signatures of marine organisms, in: Oceanic Sound Scattering Prediction,
vol. 5, Plenum Press, New York, USA, 619–624, 1977.
Holliday, D. V. and Pieper, R. E.: Volume scattering strengths and
zooplankton distributions at acoustic frequencies between 0.5 and 3 MHz, J.
Acoust. Soc. Am., 67, 135–146, https://doi.org/10.1121/1.384472, 1980.
Holliday, D. V., Pieper, R. E., and Kleppel, G. S.: Determination of
zooplankton size and distribution with multifrequency acoustic technology,
ICES J. Mar. Sci., 46, 52–61, https://doi.org/10.1093/icesjms/46.1.52, 1989.
Isla, A., Scharek, R., and Latasa, M.: Zooplankton diel vertical migration
and contribution to deep active carbon flux in the NW Mediterranean, J.
Marine Syst., 143, 86–97, https://doi.org/10.1016/j.jmarsys.2014.10.017, 2015.
Jiang, S., Dickey, T. D., Steinberg, D. K., and Madin, L. P.: Temporal
variability of zooplankton biomass from ADCP backscatter time series data at
the Bermuda Testbed Mooring site, Deep-Sea Res. Pt. I, 54, 608–636,
https://doi.org/10.1016/j.dsr.2006.12.011, 2007.
Kassis, D., Korres, G., Petihakis, G., and Perivoliotis, L.: Hydrodynamic
variability of the Cretan Sea derived from Argo float profiles and
multi-parametric buoy measurements during 2010–2012, Ocean Dynam., 65,
1585–1601, https://doi.org/10.1007/s10236-015-0892-0, 2015.
Koppelmann, R., Weikert, H., Halsband-Lenk, C., and Jennerjahn, T.:
Mesozooplankton community respiration and its relation to particle flux in
the oligotrophic eastern Mediterranean, Global Biogeochem. Cy., 18, 1–10,
https://doi.org/10.1029/2003GB002121, 2004.
Korres, G., Ntoumas, M., Potiris, M., and Petihakis, G.: Assimilating Ferry
Box data into the Aegean Sea model, J. Marine Syst., 140, 59–72,
https://doi.org/10.1016/j.jmarsys.2014.03.013, 2014.
Koulouri, P., Dounas, C., Radin, F., and Eleftheriou, A.: Near-bottom
zooplankton in the continental shelf and upper slope of Heraklion Bay (Crete,
Greece, Eastern Mediterranean): observations on vertical distribution
patterns, J. Plankton Res., 31, 753–762, https://doi.org/10.1093/plankt/fbp023, 2009.
Lavigne, H., D'Ortenzio, F., Ribera D'Alcalà, M., Claustre, H., Sauzède,
R., and Gacic, M.: On the vertical distribution of the chlorophyll a
concentration in the Mediterranean Sea: a basin-scale and seasonal approach,
Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bg-12-5021-2015,
2015.
Madin, L. P., Horgan, E. F., and Steinberg, D. K.: Zooplankton at the
Bermuda Atlantic Time-series Study (BATS) station: diel, seasonal and
interannual variation in biomass, 1994–1998, Deep Sea Res. Pt II, 48,
2063–2082, https://doi.org/10.1016/S0967-0645(00)00171-5, 2001.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S.,
Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M.,
Sofianos, S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y.,
Bergamasco, A., Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F.,
Font, J., Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire, M.,
Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E., Kroskos,
G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Ozsoy, E., Pascual, A.,
Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou, J.,
Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou, G.:
Physical forcing and physical/biochemical variability of the Mediterranean
Sea: a review of unresolved issues and directions for future research, Ocean
Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, 2014.
Mann, K. H. and Lazier, J. R. N.: Dynamics of Marine Ecosystems, Blackwell
Scientific Publications Inc., USA, 2006.
Mazzocchi, G. M., Christou, E. D., Fragopoulu, N., and Siokou-Frangou, I.:
Mesozooplankton distribution from Sicily to Cyprus (eastern Mediterranean):
1. General aspects, Oceanol. Acta, 20, 521–535, 1997.
Moriarty, R. and O'Brien, T. D.: Distribution of mesozooplankton biomass in
the global ocean, Earth Syst. Sci. Data, 5, 45–55,
https://doi.org/10.5194/essd-5-45-2013, 2013.
Nowaczyk, A., Carlotti, F., Thibault-Botha, D., and Pagano, M.: Distribution
of epipelagic metazooplankton across the Mediterranean Sea during the summer
BOUM cruise, Biogeosciences, 8, 2159–2177,
https://doi.org/10.5194/bg-8-2159-2011, 2011.
Petihakis, G., Triantafyllou, G., Allen, I. J., Hoteit, I., and Dounas, C.:
Modelling the spatial and temporal variability of the Cretan Sea ecosystem,
J. Marine Syst., 36, 173–196, https://doi.org/10.1016/S0924-7963(02)00186-0, 2002.
Petihakis, G., Ntoumas, M., Pettas, M., Frangoulis, C., Kalampokis, A., and
Potiris, E.: ADCP data from Poseidon E1-M3A observatory, Zenodo,
https://doi.org/10.5281/zenodo.1311695, 2018.
Pinot, J. M. and Jansá, J.: Time variability of acoustic backscatter
from zooplankton in the Ibiza Channel (western Mediterranean), Deep-Sea Res.
Pt. I, 48, 1651–1670, https://doi.org/10.1016/S0967-0637(00)00095-9, 2001.
Platnick, S., King, M., and Hubanks, P.: MODIS Atmosphere L3 Daily Product.
NASA MODIS Adaptive Processing System, Goddard Space Flight Center,
https://doi.org/10.5067/MODIS/MOD08_D3.006, 2015.
Postel, L., da Silva, A. J., Mohrholz, V., and Lass, H.-U.: Zooplankton
biomass variability off Angola and Namibia investigated by a lowered ADCP and
net sampling, J. Marine Syst., 68, 143–166,
https://doi.org/10.1016/j.jmarsys.2006.11.005, 2007.
Razouls, C., de Bovée, F., Kouwenberg, J., and Desreumaux, N.: Diversity
and Geographic Distribution of Marine Planktonic Copepods, available at:
http://copepodes.obs-banyuls.fr/en/index.php, last access:
25 July 2018.
Ringelberg, J.: Diel vertical migration of zooplankton in lakes and oceans:
causal explanations and adaptive significances, Springer Netherlands,
Dordrecht, 2010.
Robinson, C., Steinberg, D. K., Anderson, T. R., Arístegui, J.,
Carlson, C. A., Frost, J. R., Ghiglione, J.-F., Hernández-León, S.,
Jackson, G. A., Koppelmann, R., Quéguiner, B., Ragueneau, O.,
Rassoulzadegan, F., Robison, B. H., Tamburini, C., Tanaka, T., Wishner, K.
F., and Zhang, J.: Mesopelagic zone ecology and biogeochemistry – a
synthesis, Deep-Sea Res. Pt. II, 57, 1504–1518,
https://doi.org/10.1016/j.dsr2.2010.02.018, 2010.
Saiz, E., Sabatés, A., and Gili, J.-M.: The Zooplankton, in: The
Mediterranean Sea: Its history and present challenges, Springer Netherlands,
Dordrecht, Netherlands, 183–211, 2014.
Sardou, J., Etienne, M., and Andersen, V.: Seasonal abundance and vertical
distributions of macroplankton and micronekton in the Northwestern
Mediterranean Sea, Oceanol. Acta, 19, 645–656, 1996.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access:
25 July 2018),
2016.
SeaDataNet: Mediterranean Sea – Temperature and Salinity Climatology V1.1, available at: http://dx.doi.org/10.12770/90ae7a06-8b08-4afe-83dd-ca92bc99f5c0, last access:
25 July 2018.
Siokou, I., Zervoudaki, S., and Christou, E. D.: Mesozooplankton community
distribution down to 1000 m along a gradient of oligotrophy in the Eastern
Mediterranean Sea (Aegean Sea), J. Plankton Res., 35, 1313–1330,
https://doi.org/10.1093/plankt/fbt089, 2013.
Siokou-Frangou, I., Christou, E. D., Fragopoulu, N., and Mazzocchi, M. G.:
Mesozooplankton distribution from Sicily to Cyprus (eastern Mediterranean):
II. Copepod assemblages, Oceanol. Acta, 20, 537–548, 1997.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera
d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open
Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586,
https://doi.org/10.5194/bg-7-1543-2010, 2010.
Skliris, N.: Past, Present and Future Patterns of the Thermohaline
Circulation and Characteristic Water Masses of the Mediterranean Sea, in:
The Mediterranean Sea, edited by: Goffredo, S. and Dubinsky, Z., Springer,
Dordrecht, https://doi.org/10.1007/978-94-007-6704-1_3, 2014.
Tedetti, M. and Sempéré, R.: Penetration of ultraviolet radiation in
the marine environment, A review, Photochem. Photobiol., 82, 389–397,
https://doi.org/10.1562/2005-11-09-IR-733, 2006.
Theocharis, A., Balopoulos, E., Kioroglou, S., Kontoyiannis, H., and Iona,
A.: A synthesis of the circulation and hydrography of the South Aegean Sea
and the Straits of the Cretan Arc (March 1994–January 1995), Prog.
Oceanogr., 44, 469–509, https://doi.org/10.1016/S0079-6611(99)00041-5, 1999.
Thomson, R. E. and Emery, W. J.: Data Analysis Methods in Physical
Oceanography, 2nd Edn., Elsevier, USA, 2001.
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
van Haren, H.: Internal wave–zooplankton interactions in the Alboran Sea
(W-Mediterranean), J. Plankton Res., 36, 1124–1134,
https://doi.org/10.1093/plankt/fbu031, 2014.
Varela, R. A., Cruzado, A., and Tintoré, J.: A simulation analysis of
various biological and physical factors influencing the deep-chlorophyll
maximum structure in oligotrophic areas, J. Marine Syst., 5, 143–157,
https://doi.org/10.1016/0924-7963(94)90028-0, 1994.
Velaoras, D., Krokos, G., and Theocharis, A.: An internal mechanism
alternatively drives the preconditioning of both the Adriatic and Aegean Seas
as dense water formation sites in the Eastern Mediterranean, Rapp. Comm. Int.
Mer Medit., 40, p. 178, 2013.
Velaoras, D., Krokos, G., and Theocharis, A.: Recurrent intrusions of
transitional waters of Eastern Mediterranean origin in the Cretan Sea as a
tracer of Aegean Sea dense water formation events, Prog. Oceanogr., 135,
113–124, https://doi.org/10.1016/j.pocean.2015.04.010, 2015.
Wiebe, P. H. and D'Abramo, L.: Distribution of euphausiid assemblages in the
Mediterranean Sea, Mar. Biol., 15, 139–149, https://doi.org/10.1007/BF00353642, 1972.
Williamson, C. E., Fischer J. M., Bollens S. M., Overholt E. P., and
Breckenridge J. K.: Toward a more comprehensive theory of zooplankton diel
vertical migration: Integrating ultraviolet radiation and water transparency
into the biotic paradigm, Limnol. Oceanogr., 56, 1603–1623,
https://doi.org/10.4319/lo.2011.56.5.1603, 2011.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic
Mapping Tools: Improved Version Released, Eos, Trans. Am. Geophys. Union, 94,
409–410, https://doi.org/10.1002/2013EO450001, 2013.
Zervakis, V., Georgopoulos, D., and Drakopoulos, P. G.: The role of the
North Aegean in triggering the recent Eastern Mediterranean climatic changes,
J. Geophys. Res.-Oceans, 105, 26103–26116, https://doi.org/10.1029/2000JC900131, 2000.
Zhou, M. and Dorland, R. D.: Aggregation and vertical migration behavior of
Euphausia superba, Deep-Sea Res. Pt. II, 51, 2119–2137,
https://doi.org/10.1016/j.dsr2.2004.07.009, 2004.
Short summary
Zooplankton and fishes found below a depth of 200 m may perform a vertical migration to the surface waters. The migration patterns (from 400 m to the surface) of four groups of organisms were studied in the deep (1500 m) eastern Mediterranean (Cretan Sea) for 2.5 years. The lunar cycle, daylight duration, cloudiness and presence of predators and prey explain their migration variability. This phenomenon is important as it constitutes an active transport of organic matter over large distances.
Zooplankton and fishes found below a depth of 200 m may perform a vertical migration to the...