Articles | Volume 14, issue 4
https://doi.org/10.5194/os-14-575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hadal water biogeochemistry over the Izu–Ogasawara Trench observed with a full-depth CTD-CMS
Shinsuke Kawagucci
CORRESPONDING AUTHOR
Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC),
2-15 Natsushima-cho, Yokosuka 237-0061, Japan
Research and Development Center for Submarine Resources (SRRP), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15
Natsushima-cho, Yokosuka 237-0061, Japan
Project Team for Development of New-Generation Research Protocol for
submarine resources, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
Akiko Makabe
Research and Development Center for Submarine Resources (SRRP), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15
Natsushima-cho, Yokosuka 237-0061, Japan
Project Team for Development of New-Generation Research Protocol for
submarine resources, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
Taketoshi Kodama
Japan Sea National Fisheries Research Institute, Japan Fisheries
Research and Education Agency, Niigata, 5939-22 Suido-cho, Niigata
951-8121, Japan
Yohei Matsui
Research and Development Center for Submarine Resources (SRRP), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15
Natsushima-cho, Yokosuka 237-0061, Japan
Project Team for Development of New-Generation Research Protocol for
submarine resources, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
Chisato Yoshikawa
Research and Development Center for Submarine Resources (SRRP), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15
Natsushima-cho, Yokosuka 237-0061, Japan
Department of Biogeochemistry, Japan Agency for Marine-Earth Science
and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
Etsuro Ono
Research and Development Center for Global Change (RCGC), Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho,
Yokosuka 237-0061, Japan
Present address: Japan Meteorological Agency, 1-3-4 Otemachi, Tokyo 100-8122, Japan
Masahide Wakita
Mutsu Institute for Oceanography, Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), 690 Kitasekine, Mutsu 035-0022, Japan
Takuro Nunoura
Project Team for Development of New-Generation Research Protocol for
submarine resources, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
Research and Development Center for Marine Biosciences, Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho,
Yokosuka 237-0061, Japan
Hiroshi Uchida
Research and Development Center for Global Change (RCGC), Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho,
Yokosuka 237-0061, Japan
Taichi Yokokawa
CORRESPONDING AUTHOR
Project Team for Development of New-Generation Research Protocol for
submarine resources, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
Research and Development Center for Marine Biosciences, Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho,
Yokosuka 237-0061, Japan
Related authors
Shinsuke Kawagucci, Yohei Matsui, Akiko Makabe, Tatsuhiro Fukuba, Yuji Onishi, Takuro Nunoura, and Taichi Yokokawa
Biogeosciences, 18, 5351–5362, https://doi.org/10.5194/bg-18-5351-2021, https://doi.org/10.5194/bg-18-5351-2021, 2021
Short summary
Short summary
Hydrogen and carbon isotope ratios of methane as well as the relevant biogeochemical parameters and microbial community compositions in hydrothermal plumes in the Okinawa Trough were observed. We succeeded in simultaneously determining hydrogen and carbon isotope fractionation factors associated with aerobic oxidation of methane in seawater (εH = 49.4 ± 5.0 ‰, εC = 5.2 ± 0.4 ‰) – the former being the first of its kind ever reported.
Takuya Sato, Tamaha Yamaguchi, Kiyotaka Hidataka, Sayaka Sogawa, Takashi Setou, Taketoshi Kodama, Takuhei Shiozaki, and Kazutaka Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1294, https://doi.org/10.5194/egusphere-2024-1294, 2024
Short summary
Short summary
Gamma A is a widespread non-cyanobacterial diazotroph and plays a crucial role for marine ecosystems, but its controlling factors are still largely unknown. This study, for the first time, quantified microzooplankton grazing on Gamma A and revealed significance of grazing pressure on Gamma A distribution around the Kuroshio region. It highlights the importance of top-down controls on Gamma A abundance and the associated nitrogen cycle.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Tsuneo Ono, Daisuke Muraoka, Masahiro Hayashi, Makiko Yorifuji, Akihiro Dazai, Shigeyuki Omoto, Takehiro Tanaka, Tomohiro Okamura, Goh Onitsuka, Kenji Sudo, Masahiko Fujii, Ryuji Hamanoue, and Masahide Wakita
Biogeosciences, 21, 177–199, https://doi.org/10.5194/bg-21-177-2024, https://doi.org/10.5194/bg-21-177-2024, 2024
Short summary
Short summary
We carried out parallel year-round observations of pH and related parameters in five stations around the Japan coast. It was found that short-term acidified situations with Omega_ar less than 1.5 occurred at four of five stations. Most of such short-term acidified events were related to the short-term low salinity event, and the extent of short-term pH drawdown at high freshwater input was positively correlated with the nutrient concentration of the main rivers that flow into the coastal area.
Masahiko Fujii, Ryuji Hamanoue, Lawrence Patrick Cases Bernardo, Tsuneo Ono, Akihiro Dazai, Shigeyuki Oomoto, Masahide Wakita, and Takehiro Tanaka
Biogeosciences, 20, 4527–4549, https://doi.org/10.5194/bg-20-4527-2023, https://doi.org/10.5194/bg-20-4527-2023, 2023
Short summary
Short summary
This is the first study of the current and future impacts of climate change on Pacific oyster farming in Japan. Future coastal warming and acidification may affect oyster larvae as a result of longer exposure to lower-pH waters. A prolonged spawning period may harm oyster processing by shortening the shipping period and reducing oyster quality. To minimize impacts on Pacific oyster farming, in addition to mitigation measures, local adaptation measures may be required.
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023, https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Short summary
Carbon and nitrogen are essential elements for organisms; their stable isotope ratios (13C : 12C, 15N : 14N) are useful tools for understanding turnover and movement in the ocean. In the Sea of Japan, the environment is rapidly being altered by human activities. The 13C : 12C of small organic particles is increased by active carbon fixation, and phytoplankton growth increases the values. The 15N : 14N variations suggest that nitrates from many sources contribute to organic production.
Ken-ichi Nakamura, Atsushi Nishimoto, Saori Yasui-Tamura, Yoichi Kogure, Misato Nakae, Naoki Iguchi, Haruyuki Morimoto, and Taketoshi Kodama
Ocean Sci., 18, 295–305, https://doi.org/10.5194/os-18-295-2022, https://doi.org/10.5194/os-18-295-2022, 2022
Short summary
Short summary
The Sea of Japan, surrounding Russia, the Korean Peninsula, and the Japanese Archipelago, is one of the most rapidly changing seas in the world. We measured carbon and nitrogen isotope ratios of zooplankton. We determined that the carbon stable isotope ratio has been decreasing over 15 years, and this trend was comparable to or slightly more rapid than the Suess effect, which is a signal of anthropogenic disturbance. Therefore, carbon dynamics are changing in the shallow coastal waters.
Shinsuke Kawagucci, Yohei Matsui, Akiko Makabe, Tatsuhiro Fukuba, Yuji Onishi, Takuro Nunoura, and Taichi Yokokawa
Biogeosciences, 18, 5351–5362, https://doi.org/10.5194/bg-18-5351-2021, https://doi.org/10.5194/bg-18-5351-2021, 2021
Short summary
Short summary
Hydrogen and carbon isotope ratios of methane as well as the relevant biogeochemical parameters and microbial community compositions in hydrothermal plumes in the Okinawa Trough were observed. We succeeded in simultaneously determining hydrogen and carbon isotope fractionation factors associated with aerobic oxidation of methane in seawater (εH = 49.4 ± 5.0 ‰, εC = 5.2 ± 0.4 ‰) – the former being the first of its kind ever reported.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Taketoshi Kodama, Taku Wagawa, Naoki Iguchi, Yoshitake Takada, Takashi Takahashi, Ken-Ichi Fukudome, Haruyuki Morimoto, and Tsuneo Goto
Ocean Sci., 14, 355–369, https://doi.org/10.5194/os-14-355-2018, https://doi.org/10.5194/os-14-355-2018, 2018
Short summary
Short summary
We examined zooplankton community structure along the Japanese coast of the Japan Sea. Zooplankton were collected during 15 cruises in May from 1999 to 2013 by a plankton net. Species were identified under a microscope and were counted. The zooplankton community changed with water temperature and the coastal current, and the submarine canyon structure in this sea makes a difference in the zooplankton community.
Naohiro Kosugi, Daisuke Sasano, Masao Ishii, Shigeto Nishino, Hiroshi Uchida, and Hisayuki Yoshikawa-Inoue
Biogeosciences, 14, 5727–5739, https://doi.org/10.5194/bg-14-5727-2017, https://doi.org/10.5194/bg-14-5727-2017, 2017
Short summary
Short summary
Recent variation in air–sea CO2 flux in the Arctic Ocean is focused. In order to understand the relation between sea ice retreat and CO2 chemistry, we conducted hydrographic observations in the Arctic Ocean in 2013. There were relatively high pCO2 surface layer and low pCO2 subsurface layer in the Canada Basin. The former was due to near-equilibration with the atmosphere and the latter primary production. Both were unlikely mixed by disturbance as large sea-ice melt formed strong stratification.
Mizuo Kajino, Masahide Ishizuka, Yasuhito Igarashi, Kazuyuki Kita, Chisato Yoshikawa, and Masaru Inatsu
Atmos. Chem. Phys., 16, 13149–13172, https://doi.org/10.5194/acp-16-13149-2016, https://doi.org/10.5194/acp-16-13149-2016, 2016
Short summary
Short summary
The current study provides the first quantitative budget analysis of radiocesium re-suspended from ground surface contaminated by the Fukushima nuclear accident. It provides useful information to society since our simulation can be used for the long-term assessment of internal exposure to residents in Japan. It also discussed that the re-suspension from forest ecosystems could be a dominant source of suspended radiocesium in the warm season in Japan.
T. Shiozaki, S. Takeda, S. Itoh, T. Kodama, X. Liu, F. Hashihama, and K. Furuya
Biogeosciences, 12, 6931–6943, https://doi.org/10.5194/bg-12-6931-2015, https://doi.org/10.5194/bg-12-6931-2015, 2015
Short summary
Short summary
The high abundance of Trichodesmium and active nitrogen fixation in the Kuroshio were not explained by the nutrient (nitrate, phosphate, and iron) distribution. We observed a Trichodesmium bloom and high nitrogen fixation near islands situated along the Kuroshio. Numerical particle-tracking experiments simulated the transportation of water around the Ryukyu Islands to the Kuroshio. Our results indicate that Trichodesmium growing around the Ryukyu Islands could be advected into the Kuroshio.
M. Wakita, S. Watanabe, M. Honda, A. Nagano, K. Kimoto, K. Matsumoto, M. Kitamura, K. Sasaki, H. Kawakami, T. Fujiki, K. Sasaoka, Y. Nakano, and A. Murata
Biogeosciences, 10, 7817–7827, https://doi.org/10.5194/bg-10-7817-2013, https://doi.org/10.5194/bg-10-7817-2013, 2013
Cited articles
Aoyama, M., Ota, H., Kimura, M., Kitao, T., Mitsuda, H., Murata, A., and
Sato, K.: Current Status of Homogeneity and Stability of the Reference
Materials for Nutrients in Seawater, Anal. Sci., 28, 911–916, 2012.
Aoyama, M., Abad, M., Anstey, C., Ashraf, P. M., Bakir, A., Becker, S., Bell,
S., Berdalet, E., Blum, M., Briggs, R., Caradec, F., Cariou, T., Church, M.,
Coppola, L., Crump, M., Curless, S., Dai, M., Daniel, A., Davis, C. E., De
Santis Braga, E., Solis, M. E., Ekern, L., Faber, D., Fraser, T., Gundersen,
K., Jacobsen, S., Knockaert, M., Komada, T., Kralj, M., Kramer, R., Kress,
N., Lainela, S., Ledesma, J., Li, X., Lim, J.-H., Lohmann, M., Lonborg, C.,
Ludwichowski, K.-U., Mahaffey, C., Malien, F., Margiotta, F., Mccormack, T.,
Murillo, I., Naik, H., Nausch, G., Olafsdottir, S. R., Van Ooijen, J.,
Paranhos, R., Payne, C., Pierre-Duplessix, O., Prove, G., Rabiller, E.,
Raimbault, P., Reed, L., Rees, C., Rho, T., Roman, R., Woodward, E. M. S.,
Sun, J., Szymczycha, B., Takatani, S., Taylor, A., Thamer, P.,
Torres-Valdes, S., Trahanovsky, K., Waldron, H., Walsham, P., Wang, L.,
Wang, T., White, L., Yoshimura, T. and Zhang, J.-Z. (Eds.): IOCCP-JAMSTEC
2015 Inter-laboratory Calibration Exercise of a Certified Reference Material
for Nutrients in Seawater, JAMSTEC, Yokosuka, Japan, 2016.
Beman, J. M., Cheryl-Emiliane, C., King, A. L., Feng, Y., Fuhrman, J. A.,
Andersson, A., Bates, N. R., Popp, B. N., and Hutchins, D. A.: Global
declines in oceanic nitrification rates as a consequence of ocean
acidification, P. Natl. Acad. Sci. USA, 108, 208–213, https://doi.org/10.1073/pnas.1011053108, 2011.
Böhlke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in
nitrate: new reference materials for 18O: 17O: 16O
measurements and observations on nitrate-water equilibration, Rapid
Commun. Mass Sp., 17, 1835–1846,
https://doi.org/10.1080/10256019808234072, 2003.
Casciotti, K. L.: Nitrogen and Oxygen Isotopic Studies of the Marine
Nitrogen Cycle, Annu. Rev. Mar. Sci., 8, 379–407,
https://doi.org/10.1146/annurev-marine-010213-135052, 2016.
Casciotti, K. L. and McIlvin, M. R.: Isotopic analyses of nitrate and nitrite
from reference mixtures and application to Eastern Tropical North Pacific
waters, Mar. Chem., 107, 184–201, 2007.
Casciotti, K. L., Sigman, D. M., Galanter Hastings, M., Böhlke, J. K.
and Hilkert, A.: Measurement of the Oxygen Isotopic Composition of Nitrate
in Seawater and Freshwater Using the Denitrifier Method, Anal. Chem., 74,
4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Cutter, G. A.: Intercalibration in chemical oceanography-Getting the right
number, Limnol. Oceanogr.-Meth., 11, 418–424,
https://doi.org/10.4319/lom.2013.11.418, 2013.
de Madron, D. X., Ramondenc, S., Berline, L., Houpert, L., Bosse, A.,
Martini, S., Guidi, L., Conan, P., Curtil, C., Delsaut, N., Kunesch, S.,
Ghiglione, J. F., Marsaleix, P., Pujo-Pay, M., Séverin, T., Testor, P.,
Tamburini, C., and the ANTARES collaboration: Deep sediment resuspension and thick
nepheloid layer generation by open-ocean convection, J. Geophys. Res.-Oceans,
122, 2291–2318, https://doi.org/10.1016/j.margeo.2006.10.034, 2017.
Dickson, A.: Determination of dissolved oxygen in sea water by Winkler
titration, WOCE Operations Manual, WHPO 91-1, rev. 1, November 1994, Woods
Hole Mass., USA, 1996.
Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M.,
Siegert, M., and Richnow, H.-H.: Different types of methane monooxygenases
produce similar carbon and hydrogen isotope fractionation patterns during
methane oxidation, Geochim. Cosmochim. Acta, 75, 1173–1184,
https://doi.org/10.1016/j.gca.2010.12.006, 2011.
Fryer, P.: Serpentinite Mud Volcanism: Observations, Processes, and
Implications, Annu. Rev. Mar. Sci., 4, 345–373,
https://doi.org/10.1146/annurev-marine-120710-100922, 2012.
Fujio, S., Yanagimoto, D., and Taira, K.: Deep current structure above the
Izu-Ogasawara Trench, J. Geophys. Res., 105, 6377–6386, 2000.
Gamo, T. and Shitashima, K.: Chemical characteristics of hadal waters in the
Izu-Ogasawara Trench of the western Pacific Ocean, Proc. Jpn. Acad., Ser. B,
94, 45–55, https://doi.org/10.2183/pjab.94.004, 2018.
Gamo, T., Okamura, K., Mitsuzawa, K., and Asakawa, K.: Tectonic pumping:
earthquake-induced chemical flux detected in situ by a submarine cable
experiment in Sagami Bay, Japan, Proc. Jpn. Acad., Ser. B, 83, 199–204,
https://doi.org/10.2183/pjab/83.199, 2007.
Glud, R. N., Wenzhöfer, F., Middelboe, M., Oguri, K., Turnewitsch, R.,
Canfield, D. E., and Kitazato, H.: High rates of microbial carbon turnover in
sediments in the deepest oceanic trench on Earth, Nat. Geosci., 6,
284–288, https://doi.org/10.1038/ngeo1773, 2013.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for
nitrate N and O isotope analysis with the denitrifier method, Rapid Commun.
Mass Sp., 23, 3753–3762, 2009.
Harigane, Y., Michibayashi, K., Morishita, T., Tani, K., Dick, H. J. B., and
Ishizuka, O.: The earliest mantle fabrics formed during subduction zone
infancy, Earth Planet. Sci. Lett., 377, 106–113,
https://doi.org/10.1016/j.epsl.2013.06.031, 2013.
Heuer, V. B., Pohlman, J. W., Torres, M. E., Elvert, M., and Hinrichs, K.-U.:
The stable carbon isotope biogeochemistry of acetateand other dissolved
carbon species in deep subseafloor sediments at the northern Cascadia
Margin, Geochim. Cosmochim. Ac., 73, 3323–3336,
https://doi.org/10.1016/j.gca.2009.03.001, 2009.
Hirota, A., Tsunogai, U., Komatsu, D. D., and Nakagawa, F.: Simultaneous
determination of δ15N and δ18O of N2O and
δ13C of CH4 in nanomolar quantities from a single water
sample, Rapid Commun. Mass Sp., 24, 1085–1092,
https://doi.org/10.1002/rcm.4483, 2010.
Hoehler, T. M.: Biological energy requirements as quantitative boundary
conditions for life in the subsurface, Geobiology, 2, 205–215, 2004.
Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A., and Peterson, B. J.: A
simple and precise method for measuring ammonium in marine and freshwater
ecosystems, Can. J. Fish. Aquat. Sci., 56,
1801–1808, 1999.
Hydes, D., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S.,
Daniel, A., Dickson, A., Grosso, O., Kerouel, R., Van Ooijen, J., Sato, K.,
Tanhua, T., Woodward, M., and Zhang, J.: Determination of dissolved nutrients
(N, P, Si) in seawater with high precision and inter-comparability using
gas-segmented continuous flow analysers, in: The GO-SHIP Repeat Hydrography
Manual: A Collection of Expert Reports and guidelines Version 1, IOCCP
Report 14, ICPO Publication Series 134, available at:
http://archimer.ifremer.fr/doc/00020/13141/ (last access: June 2018), 2010.
Ichino, M. C., Clark, M. R., Drazen, J. C., Jamieson, A., Jones, D. O. B.,
Martin, A. P., Rowden, A. A., Shank, T. M., Yancey, P. H., and Ruhl, H. A.:
Deep-Sea Res. Pt. I, 100, 21–33, https://doi.org/10.1016/j.dsr.2015.01.010,
2015.
Ishibashi, J., Wakita, H., Okamura, K., Nakayama, E., Feely, R. A., Lebon,
G. T., Baker, E. T., and Marumo, K.: Hydrothermal methane and manganese variation
in the plume over the superfast-spreading southern East Pacific Rise,
Geochim. Cosmochim. Ac., 61, 485–500, 1997.
Jamieson, A. (Ed.): The Hadal Zone – Life in the Deepest Ocean, Cambridge
University Press, Cambridge, UK, 2015.
Jamieson, A., Fujii, T., Mayor, D. J., Solan, M., and Priede, I. G.: Hadal
trenches: the ecology of the deepest places on Earth, Trends Ecol.
Evol., 25, 190–197, 2010.
Kadko, D. C., Rosenberg, N. D., Lupton, J. E., Collier, R. W., and Lilley, M.
D.: Chemical reaction rates and entrainment within the Endeavour Ridge
hydrothermal plume, Earth Planet. Sc. Lett., 99, 315–335, 1990.
Kawagucci, S., Yoshida, Y. T., Noguchi, T., Honda, M. C., Uchida, H.,
Ishibashi, H., Nakagawa, F., Tsunogai, U., Okamura, K., Takaki, Y., Nunoura,
T., Miyazaki, J., Hirai, M., Lin, W., Kitazato, H.. and Takai, K.:
Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake,
Sci. Rep., 2, 1135, https://doi.org/10.1111/j.1574-6941.2008.00636.x, 2012.
Kawano, T. and Uchida, H. (Eds.): WHP P03 Revisit Data Book, JAMSTEC,
Yokosuka, Japan, available at: http://www.jamstec.go.jp/iorgc/ocorp/data/p03rev_2005/ (last access: June 2018), 2007a.
Kawano, T. and Uchida, H. (Eds.): WHP P10 Revisit Data Book, JAMSTEC,
Yokosuka, Japan, available at: http://www.jamstec.go.jp/iorgc/ocorp/data/p10rev_2005/ (last access: June 2018), 2007b.
Kawano, T., Uchida, H., and Doi, T. (Eds.): WHP P01, P14 Revisit Data Book,
JAMSTEC, Yokosuka, Japan, available at:
http://www.jamstec.go.jp/iorgc/ocorp/data/p01_p14rev_2007/ (last access: June 2018), 2009.
Kelley, D. S., Karson, J. A., Früh-Green, G. L., Yoerger, D. R., Shank,
T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J.,
Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glickson,
D., Buckman, K., Bradley, A. S., Brazelton, W. J., Roe, K., Elend, M. J.,
Delacour, A., Bernasconi, S. M., Lilley, M. D., Baross, J. A., Summons, R.
E., and Sylva, S. P.: A Serpentinite-Hosted Ecosystem: The Lost City
Hydrothermal Field, Science, 307, 1428–1434, 2005.
Kemeny, P. C., Weigand, M. A., Zhang, R., Carter, B. R., Karsh, K. L., Fawcett,
S. E., and Sigman, D. M.: Enzyme-level interconversion of nitrate and nitrite
in the fall mixed layer of the Antarctic Ocean, Global Biogeochem.
Cy., 30, 1069–1085, https://doi.org/10.1002/2015GB005350, 2016.
Kodama, T., Morimoto, H., Igeta, Y., and Ichikawa, T.: Macroscale-wide
nutrient inversions in the subsurface layer of Japan Sea during summer, J.
Geophys. Res., 120, 7476–7492, 2015.
Komada, T. and Reimers, C. E.: Resuspension-induced partitioning of organic
carbon between solid and solution phases from a river–ocean transition,
Mar. Chem., 76, 155–174, 2001.
Konn, C., Charlou, J. L., Holm, N. G., and Mousis, O.: The Production of
Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal
Vents of the Mid-Atlantic Ridge, Astrobiology, 15, 381–399,
https://doi.org/10.1089/ast.2014.1198, 2015.
Kumamoto, Y., Murata, A., Kawano, T., Watanabe, S., and Fukasawa, M.: Decadal
changes in bomb-produced radiocarbon in the Pacific ocean from the 1990s to
2000s, Radiocarbon, 55, 1641–1650, 2013.
Luo, M., Glud, N. R., Pan, B., Wenzhöfer, F., Xu, Y., Lin, G., and Chen, D.:
Benthic carbon mineralization in hadal trenches: Insights from in-situ
determination of benthic oxygen consumption, Geophys. Res. Lett.,
45, 2752–2760, 2018.
Mantyla, A. W. and Reid, J. L.: Measurements of water characteristics at
depths greater than 10 km in the Marianas Trench, Deep-Sea Res., 25,
169–173, 1978.
McIlvin, M. R. and Casciotti, K. L.: Technical updates to the bacterial method for nitrate isotopic analyses, Anal. Chem., 83, 1850–1856, https://doi.org/10.1021/ac1028984, 2011.
Morishita, T., Tani, K., Shukuno, H., Harigane, Y., Tamura, A., Kumagai, H.,
and Hellebrand, E.: Diversity of melt conduits in the Izu-Bonin-Mariana
forearc mantle: Implications for the earliest stage of arc magmatism,
Geology, 39, 411–414, https://doi.org/10.1130/G31706.1, 2011.
Nozaki, Y. and Ohta, Y.: Rapid and frequent turbidite accumulation in the
bottom of Izu-Ogasawara Trench: Chemical and radiochemical evidence, Earth
Planet. Sc. Lett., 120, 345–360, 1993.
Nozaki, Y., Yamada, M., Takashi, N., Yutaka, N., Nakamura, K., Shitashima,
K., and Tsubota, H.: The distribution of radionuclides and some trace metals
in the water columns of the Japan and Bonin trenches, Oceanol. Acta,
21, 469–484, 1998.
Nunoura, T., Nishizawa, M., Kikuchi, T., Tsubouchi, T., Hirai, M., Koide,
O., Miyazaki, J., Hirayama, H., Koba, K., and Takai, K.: Molecular biological
and isotopic biogeochemical prognoses of the nitrification-driven dynamic
microbial nitrogen cycle in hadopelagic sediments, Environ. Microbiol.,
15, 3087–3107, https://doi.org/10.1111/1462-2920.12152, 2013.
Nunoura, T., Takaki, Y., Hirai, M., Shimamura, S., Makabe, A., Koide, O.,
Kikuchi, T., Miyazaki, J., Koba, K., Yoshida, N., Michinari, S., and Takai,
K.: Hadal biosphere: Insight into the microbial ecosystem in the deepest
ocean on Earth, P. Natl. Acad. Sci. USA, 112, E1230–E1236,
https://doi.org/10.1073/pnas.1421816112, 2015.
Oguri, K., Kawamura, K., Sakaguchi, A., Toyofuku, T., Kasaya, T., Murayama,
M., Fujikura, K., Glud, R. N., and Kitazato, H.: Hadal disturbance in the
Japan Trench induced by the 2011 Tohoku–Oki Earthquake, Sci. Rep., 3, 1915,
https://doi.org/10.1038/srep01915, 2013.
Okumura, T., Kawagucci, S., Saito, Y., Matsui, Y., Takai, K., and Imachi, H.:
Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis
under H2-limited and H2-enriched conditions: implications for the
origin of methane and its isotopic diagnosis, Progress in Earth and Planetary Science,
3, 14, https://doi.org/10.1186/s40645-016-0088-3, 2016a.
Okumura, T., Ohara, Y., Stern, R. J., Yamanaka, T., Onishi, Y., Watanabe, H.
K., Chen, C., Bloomer, S. H., Pujana, I., Sakai, S., Ishii, T., and Takai,
K.: Brucite chimney formation and carbonate alteration at the Shinkai Seep
Field, a serpentinite-hosted vent system in the southern Mariana forearc,
Geochem. Geophy. Geosy., 17, https://doi.org/10.1002/2016GC006449, 2016b.
Popp, B. N., Westley, M. B., Toyoda, S., Miwa, T., Dore, J. E., Yoshida, N.,
Rust, T. M., Sansone, F. J., Russ, M. E., Ostrom, N. E., and Ostrom, P. H.:
Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air
flux of N2O in the oligotrophic subtropical North Pacific gyre, Global
Biogeochem. Cy., 16, 1064, https://doi.org/10.1029/2001GB001806, 2002.
Reeburgh, W. S.: Oceanic methane biogeochemistry, Chem. Rev., 107, 486–513,
2007.
Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J.
W., Sohst, B. M., and Tagliabue, A.: Basin-scale transport of hydrothermal
dissolved metals across the South Pacific Ocean, Nature, 523,
200–203, https://doi.org/10.1016/S0016-7037(96)00304-3, 2015.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, 2006.
Shiozaki, T., Ijichi, M., Isobe, K., Hashihama, F., Nakamura, K.-I., Ehama,
M., Hayashizaki, K.-I., Takahashi, K., Hamasaki, K., and Furuya, K.:
Nitrification and its influence on biogeochemical cycles from the equatorial
Pacific to the Arctic Ocean, ISME J., 10, 2184–2197,
https://doi.org/10.1038/ismej.2016.18, 2016.
Siedler, G., Church, J., and Gould, J. (Eds.): Ocean Circulation and
Climate: Observing and Modelling the Global Ocean, Academic Press, London,
UK, 2001.
Son, J., Pak, S.-J., Kim, J., Baker, E. T., You, O.-R., Son, S.-K., and Moon,
J.-W.: Tectonic and magmatic control of hydrothermal activity along the
slow-spreading Central Indian Ridge, 8∘ S–17∘ S,
Geochem. Geophy. Geosy., 15, 2011–2020, https://doi.org/10.1002/ggge.20243, 2014.
Taira, K.: Super-deep CTD Measurements in the Izu-Ogasawara Trench and a
Comparison of Geostrophic Shears with Direct Measurements, J.
Oceanogr., 62, 753–758, 2006.
Taira, K., Yanagimoto, D., and Kitagawa, S.: Deep CTD Casts in the
Challenger Deep, Mariana Trench, J. Oceanogr., 61, 447–454,
2005.
Toki, T., Tsunogai, U., Gamo, T., Kuramoto, S., and Ashi, J.: Detection of low-chloride fluids beneath a cold seep field on the
Nankai accretionary wedge off Kumano, south of Japan, Earth Planet. Sci. Lett., 228, 37–47, https://doi.org/10.1016/j.epsl.2004.09.007, 2004.
Toyoda, S., Yoshida, N., Miwa, T., Matsui, Y., Yamagishi, H., Tsunogai, U.,
Nojiri, Y., and Tsurushima, N.: Production mechanism and global budget of
N2O inferred from its isotopomers in the western North Pacific,
Geophys. Res. Lett., 29, 1037, https://doi.org/10.1029/2001GL014311, 2002.
Toyoda, S., Yoshida, N., and Koba, K.: Isotopocule analysis of biologically
produced nitrous oxide in various environments, Mass Spec. Rev., 36,
135–160, https://doi.org/10.1016/j.jinorgbio.2004.09.024, 2017.
Tsunogai, U., Ishibashi, J.-I., Wakita, H., Gamo, T., Watanabe, K.,
Kajimura, T., Kanayama, S., and Sakai, H.: Peculiar features of Suiyo
Seamount hydrothermal fluids, Izu-Bonin Arc: Differences from subaerial
volcanism, Earth Planet. Sc. Lett., 126, 289–301, 1994.
Tsunogai, U., Ishibashi, J.-I., Wakita, H., and Gamo, T.: Methane-rich plumes
in the Suruga Trough (Japan) and their carbon isotopic characterization,
Earth Planet. Sc. Lett., 160, 97–105, 1998.
Tsunogai, U., Yoshida, N., Ishibashi, J.-I., and Gamo, T.: Carbon isotopic
distribution of methane in deep-sea hydrothermal plume, Myojin Knoll
Caldera, Izu-Bonin arc: Implications for microbial methane oxidation in the
oceans and applications to heat flux estimation, Geochim. Cosmochim.
Ac., 64, 2439–2452, 2000.
Uchida, H., Nakano, T., Tamba, J., Widiatmo, J. V., Yamazawa, K., Ozawa, S.,
and Kawano, T.: Deep ocean temperature measurement with an uncertainty of
0.7 mK, J. Atmos. Ocean. Tech., 32, 2199–2210, 2015.
Uchida, H., Ono, E., Yokokawa, T., and Yanagimoto, D.: Hadal hydrography over the Izu-Ogasawara and Mariana Trenches, in preparation, 2018.
Wakita, M., Honda, M. C., Matsumoto, K., Fujiki, T., Kawakami, H., Yasunaka,
S., Sasai, Y., Sukigara, C., Uchimiya, M., Kitamura, M., Kobari, T., Mino,
Y., Nagano, A., Watanabe, S., and Saino, T.: Biological organic carbon export
estimated from the annual carbon budget observed in the surface waters of
the western subarctic and subtropical North Pacific Ocean from 2004 to 2013,
J. Oceanogr., 72, 665–685, https://doi.org/10.1007/s10872-016-0379-8,
2016.
Walting, L., Guinotte, J., Clark, M. R., and Smith, C. R.: A proposed biogeography
of the deep ocean floor, Prog. Oceanogr., 111, 91–112, 2013.
Wenzhöfer, F., Oguri, K., Middelboe, M., Turnewitsch, R., Toyofuku, T.,
Kitazato, H., and Glud, R. N.: Benthic carbon mineralization in hadal
trenches: Assessment by in situ O2 microprofile measurements, Deep-Sea
Res. Pt. I, 116, 276–286, https://doi.org/10.1016/j.dsr.2016.08.013, 2016.
Wijffels, S. E., Hall, M. M., Joyce, T., Torres, D. J., Hacker, P., and Firing,
E.: Multiple deep gyres of the western North Pacific: A WOCE section along
149∘ E, J. Geophys. Res., 103, 12985–13009, 1998.
Zhang, J.-Z. and Ortner, P. B.: Effect of thawing condition on the recovery
of reactive silicic acid from frozen natural water samples, Water Res., 32,
2553–2555, 1998.
Short summary
A full-depth-rated conductivity–temperature–depth profiler with
carousel~multiple sampling (CTD-CMS) system on the research vessel R/V Kaimei can illuminate the last frontier, i.e., the hadal zone, an oceanographic province deeper than 7000 m. A series of biogeochemical observations of hadal seawater at the Izu–Ogasawara and Mariana trenches revealed basically well-mixed hydrographic properties and a heterogeneous distribution of likely sediment-derived compounds.
A full-depth-rated conductivity–temperature–depth profiler with
carousel~multiple sampling...