Articles | Volume 14, issue 4
https://doi.org/10.5194/os-14-563-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-563-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mixed layer depth variability in the Red Sea
Department of Marine Physics, Faculty of Marine Sciences, King
Abdulaziz University, Jeddah, Saudi Arabia
Mohammed A. Alsaafani
Department of Marine Physics, Faculty of Marine Sciences, King
Abdulaziz University, Jeddah, Saudi Arabia
Department of Earth & Environmental Sciences, Faculty of Science,
Sana'a University, Yemen
Turki M. Alraddadi
Department of Marine Physics, Faculty of Marine Sciences, King
Abdulaziz University, Jeddah, Saudi Arabia
Alaa M. Albarakati
Department of Marine Physics, Faculty of Marine Sciences, King
Abdulaziz University, Jeddah, Saudi Arabia
Related authors
Ahmed Mohammed Taqi, Abdullah Mohammed Al-Subhi, Mohammed Ali Alsaafani, and Cheriyeri Poyil Abdulla
Ocean Sci., 15, 477–488, https://doi.org/10.5194/os-15-477-2019, https://doi.org/10.5194/os-15-477-2019, 2019
Short summary
Short summary
The SLA data from Jason-2 have been reprocessed and extended towards the coast of the Red Sea. The new extended data at the coast are more consistent with the CTD-derived geostrophic currents (GCs). The GCs in summer flow southward over the Red Sea except along the east coast. In winter, the flow is northward for the entire Red Sea except for a small southward flow near the central coast. This flow is modified by the presence of cyclonic and anticyclonic eddies.
Ahmed Mohammed Taqi, Abdullah Mohammed Al-Subhi, Mohammed Ali Alsaafani, and Cheriyeri Poyil Abdulla
Ocean Sci., 15, 477–488, https://doi.org/10.5194/os-15-477-2019, https://doi.org/10.5194/os-15-477-2019, 2019
Short summary
Short summary
The SLA data from Jason-2 have been reprocessed and extended towards the coast of the Red Sea. The new extended data at the coast are more consistent with the CTD-derived geostrophic currents (GCs). The GCs in summer flow southward over the Red Sea except along the east coast. In winter, the flow is northward for the entire Red Sea except for a small southward flow near the central coast. This flow is modified by the presence of cyclonic and anticyclonic eddies.
Cited articles
Abdulla, C. P., Alsaafani, M. A., Alraddadi, T. M., and Albarakati, A. M.: Estimation of Mixed Layer Depth in the Gulf of Aden: A New Approach, PLoS One, 11, e0165136, https://doi.org/10.1371/journal.pone.0165136, 2016.
Aboobacker, V. M., Shanas, P. R., Alsaafani, M. A., and Albarakati, A. M.: Wave energy resource assessment for Red Sea, Renew. Energy, 114, 46–58, https://doi.org/10.1016/j.renene.2016.09.073, 2016.
Albarakati, A. M. and Ahmad, F.: Variation of the surface buoyancy flux in the Red Sea, Indian J. Mar. Sci., 42, 717–721, 2013.
Alsaafani, M. A. and Shenoi, S. S. C.: Seasonal cycle of hydrography in the Bab el Mandab region, southern Red Sea, J. Earth Syst. Sci., 113, 269–280, https://doi.org/10.1007/BF02716725, 2004.
Alsaafani, M. A. and Shenoi, S. S. C.: Water masses in the Gulf of Aden, J. Oceanogr., 63, 1–14, https://doi.org/10.1007/s10872-007-0001-1, 2007.
Beal, L. M., Ffield, A., and Gordon, A. L.: Spreading of Red Sea overflow waters in the Indian Ocean, J. Geophys. Res., 105, 8549–8564, https://doi.org/10.1029/1999JC900306, 2000.
Bower, A. S. and Farrar, J. T.: Air-sea interaction and horizontal circulation in the Red Sea, in The Red Sea, 329–342, Springer, New York, 2015.
Boyer, T. P. and Levitus, S.: Quality control and processing of historical temperature, salinity, and oxygen data, NOAA Tech. Rep., NESDIS 81, 65, 1994.
de Boyer Montegut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res.-Oceans, 109, 1–20, https://doi.org/10.1029/2004JC002378, 2004.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I.: The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field, J. Clim., 12, 1990–2009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2, 1999.
Carlson, D. F., Fredj, E., and Gildor, H.: The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations, Deep. Res. Part I, 84, 1–17, https://doi.org/10.1016/j.dsr.2013.10.004, 2014.
Chelton, D. B., Schlax, M. G., Freilich, M. H., and Milliff, R. F.: Satellite measurements reveal persistent small-scale features in ocean winds, Science, 303, 978–983, 2004.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chen, D., Busalacchi, A. J., and Rothstein, L. M.: The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean, J. Geophys. Res., 99, 20345, https://doi.org/10.1029/94JC01621, 1994.
Cheng, L., Zhu, J., Cowley, R., Boyer, T. P., and Wijffels, S.: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations, J. Atmos. Ocean. Technol., 31, 1793–1825, https://doi.org/10.1175/JTECH-D-13-00197.1, 2014.
Clifford, M., Horton, C., Schmitz, J., and Kantha, L. H.: An oceanographic nowcast/forecast system for the Red Sea, J. Geophys. Res.-Oceans, 102, 25101–25122, https://doi.org/10.1029/97JC01919, 1997.
D'Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D., Marullo, S., Santoleri, R., and Madec, G.: Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles, Geophys. Res. Lett., 32, L12605, https://doi.org/10.1029/2005GL022463, 2005.
Dewar, W. K.: Mixed layers in Gulf Stream rings, Dyn. Atmos. Ocean., 10, 1–29, 1986.
Ducet, N., LaTraon, P. Y., and Reverdin, G.: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res.-Oceans, 105, 19477–19498, https://doi.org/10.1029/2000JC900063, 2000.
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of Mixed Layer Eddies, Part I: Theory and Diagnosis, J. Phys. Oceanogr., 38, 1145–1165, https://doi.org/10.1175/2007JPO3792.1, 2008.
Gonzalez-Silvera, A., Santamaria-del-Angel, E., Millán-Nuñez, R., and Manzo-Monroy, H.: Satellite observations of mesoscale eddies in the Gulfs of Tehuantepec and Papagayo (Eastern Tropical Pacific), Deep Sea Res. Pt. II, 51, 587–600, https://doi.org/10.1016/j.dsr2.2004.05.019, 2004.
Grisogono, B. and Belusic, D.: A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind, Tellus A, 61, 1–16, https://doi.org/10.1111/j.1600-0870.2008.00369.x, 2009.
Hausmann, U., McGillicuddy, D. J., and Marshall, J.: Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth, J. Geophys. Res.-Oceans, 122, 617–635, https://doi.org/10.1002/2016JC012225, 2017.
Jiang, H., Farrar, J. T., Beardsley, R. C., Chen, R., and Chen, C.: Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea, Geophys. Res. Lett., 36, 1–6, https://doi.org/10.1029/2009GL040008, 2009.
Johns, W. E., Jacobs, G. A., Kindle, J. C., Murray, S. P., and Carron, M.: Arabian marginal seas and gulfs, University of Miami RSMAS Technical Report, University of Miami, Floria, USA, 1999.
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.: Mixed layer depth variability over the global ocean, J. Geophys. Res., 108, 3079, https://doi.org/10.1029/2000JC000736, 2003.
Keerthi, M. G., Dyn, C., Monte, C. D. B., Lengaigne, M., Vialard, J., Boyer Montégut, C., Muraleedharan, P. M., Dyn, C., Monte, C. D. B., Keerthi, M. G., Lengaigne, M., Vialard, J., Boyer Montégut, C., Muraleedharan, P. M., de Boyer Montégut, C., and Muraleedharan, P. M.: Interannual variability of the Tropical Indian Ocean mixed layer depth, Clim. Dynam., 40, 743–759, https://doi.org/10.1007/s00382-012-1295-2, 2012.
Keerthi, M. G., Lengaigne, M., Drushka, K., Vialard, J., Montegut, C. D. B., Pous, S., Levy, M., and Muraleedharan, P. M.: Intraseasonal variability of mixed layer depth in the tropical Indian Ocean, Clim. Dynam., 46, 2633–2655, https://doi.org/10.1007/s00382-015-2721-z, 2016.
LaTraon, P. Y. and Dibarboure, G.: Mesoscale Mapping Capabilities of Multiple-Satellite Altimeter Missions, J. Atmos. Ocean. Technol., 16, 1208–1223, https://doi.org/10.1175/1520-0426(1999)016<1208:MMCOMS>2.0.CO;2, 1999.
Lorbacher, K., Dommenget, D., Niiler, P. P., and Köhl, A.: Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability, J. Geophys. Res.-Oceans, 111, 1–22, https://doi.org/10.1029/2003JC002157, 2006.
Papadopoulos, V. P., Zhan, P., Sofianos, S. S., Raitsos, D. E., Qurban, M., Abualnaja, Y., Bower, A. S., Kontoyiannis, H., Pavlidou, A., Asharaf, T. T. M., Zarokanellos, N., and Hoteit, I.: Factors governing the deep ventilation of the Red Sea, J. Geophys. Res.-Oceans, 120, 7493–7505, https://doi.org/10.1002/2015JC010996, 2015.
Polovina, J., Mitchum, G. T., and Evans, T.: Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960–1988, Deep Sea Res., 42, 1701–1716, 1995.
Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., and McPhaden, M. J.: TropFlux: air-sea fluxes for the global tropical oceans – description and evaluation, Clim. Dynam., 38, 1521–1543, https://doi.org/10.1007/s00382-011-1115-0, 2012.
Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., McPhaden, M. J., Cronin, M. F., Pinsard, F., and Gopala Reddy, K.: TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products, Clim. Dynam., 40, 2049–2071, https://doi.org/10.1007/s00382-012-1455-4, 2013.
Quadfasel, D. and Baudner, H.: Gyre-scale circulation cells in the red-sea, Oceanol. Acta, 16, 221–229, 1993.
Ralston, D. K., Jiang, H., and Farrar, J. T.: Waves in the Red Sea: Response to monsoonal and mountain gap winds, Cont. Shelf Res., 65, 1–13, https://doi.org/10.1016/j.csr.2013.05.017, 2013.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H. Y., Juang, H. M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J. K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C. Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast system reanalysis, Bull. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Shanas, P. R., Aboobacker, V. M., Albarakati, A. M. A., and Zubier, K. M.: Climate driven variability of wind-waves in the Red Sea, Ocean Model., 119, 105–117, https://doi.org/10.1016/j.ocemod.2017.10.001, 2017.
Smith, K. S. and Marshall, J.: Evidence for Enhanced Eddy Mixing at Middepth in the Southern Ocean, J. Phys. Oceanogr., 39, 50–69, https://doi.org/10.1175/2008JPO3880.1, 2009.
Sofianos, S. S. and Johns, W. E.: An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean, J. Geophys. Res., 107, 3196, https://doi.org/10.1029/2001JC001184, 2002.
Sofianos, S. S. and Johns, W. E.: Observations of the summer Red Sea circulation, J. Geophys. Res.-Oceans, 112, 1–20, https://doi.org/10.1029/2006JC003886, 2007.
Sofianos, S. S., Johns, W. E., and Murray, S. P.: Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb, Deep. Res. Part II, 49, 1323–1340, https://doi.org/10.1016/S0967-0645(01)00164-3, 2002.
Stumpf, H. G.: Satellite Detection of Upwelling in the Gulf of Tehuantepec, Mexico, J. Phys. Oceanogr., 5, 383–388, https://doi.org/10.1175/1520-0485(1975)005<0383:SDOUIT>2.0.CO;2, 1975.
Sutton, P. J., Worcester, P. F., Masters, G., Cornuelle, B. D., and Lynch, J. F.: Ocean mixed layers and acoustic pulse propagation in the Greenland Sea, J. Acoust. Soc. Am., 94, 1517–1526, https://doi.org/10.1121/1.408130, 2014.
Tragou, E., Garrett, C., Outerbridge, R., and Gilman, C.: The Heat and Freshwater Budgets of the Red Sea, J. Phys. Oceanogr., 29, 2504–2522, https://doi.org/10.1175/1520-0485(1999)029<2504:THAFBO>2.0.CO;2, 1999.
Turner, J. S.: Buoyancy Effects in Fluids, Cambridge University Press, Cambridge, 1973.
Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Zhai, P., Köhl, A., and Gopalakrishnan, G.: Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation, J. Geophys. Res.-Oceans, 119, 2238–2262, https://doi.org/10.1002/2013JC009004, 2014a.
Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Köhl, A., Gopalakrishnan, G., and Rivas, D.: Seasonal overturning circulation in the Red Sea: 2. Winter circulation, J. Geophys. Res.-Oceans, 119, 2263–2289, https://doi.org/10.1002/2013JC009331, 2014b.
Zeng, L. and Wang, D.: Seasonal variations in the barrier layer in the South China Sea: characteristics, mechanisms and impact of warming, Clim. Dynam., 48, 1911–1930, https://doi.org/10.1007/s00382-016-3182-8, 2017.
Zhai, P. and Bower, A. S.: The response of the Red Sea to a strong wind jet near the Tokar Gap in summer, J. Geophys. Res.-Oceans, 118, 422–434, https://doi.org/10.1029/2012JC008444, 2013.
Zhan, P., Subramanian, A. C., Yao, F., and Hoteit, I.: Eddies in the Red Sea: A statistical and dynamical study, J. Geophys. Res.-Oceans, 119, 3909–3925, https://doi.org/10.1002/2013JC009563, 2014.
Short summary
For the first time in the Red Sea, a monthly climatology of mixed layer depth (MLD) has been derived based on in situ temperature profiles. The Red Sea MLD pattern displays significant spatial and temporal variability with exceptional features. The MLD variability is dominantly driven by wind stress in the southern part, while heat exchange plays a major role in the remaining parts. The eddies and the Tokar Gap summer jet winds are significantly changing the MLD of the localized regions.
For the first time in the Red Sea, a monthly climatology of mixed layer depth (MLD) has been...