Articles | Volume 14, issue 3
https://doi.org/10.5194/os-14-543-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-543-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characteristics of chromophoric and fluorescent dissolved organic matter in the Nordic Seas
Institute of Oceanology, Polish Academy of Sciences, ul.
Powstańców Warszawy 55, 81–712 Sopot, Poland
Piotr Kowalczuk
Institute of Oceanology, Polish Academy of Sciences, ul.
Powstańców Warszawy 55, 81–712 Sopot, Poland
Sławomir Sagan
Institute of Oceanology, Polish Academy of Sciences, ul.
Powstańców Warszawy 55, 81–712 Sopot, Poland
Mats A. Granskog
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Alexey K. Pavlov
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Agnieszka Zdun
Institute of Oceanology, Polish Academy of Sciences, ul.
Powstańców Warszawy 55, 81–712 Sopot, Poland
Karolina Borzycka
Institute of Oceanology, Polish Academy of Sciences, ul.
Powstańców Warszawy 55, 81–712 Sopot, Poland
Monika Zabłocka
Institute of Oceanology, Polish Academy of Sciences, ul.
Powstańców Warszawy 55, 81–712 Sopot, Poland
Related authors
Violetta Drozdowska, Iwona Wrobel, Piotr Markuszewski, Przemysław Makuch, Anna Raczkowska, and Piotr Kowalczuk
Ocean Sci., 13, 633–647, https://doi.org/10.5194/os-13-633-2017, https://doi.org/10.5194/os-13-633-2017, 2017
Short summary
Short summary
The studies on the absorption and fluorescence properties of the organic molecules included in surface microlayer (SML) and subsurface (SS) waters confirm that (i) the process of the structural changes in molecules of HMW to LMW, due to effects of photo- and biodegradation, occurs faster in the SML than in the SS; (ii) the organic molecules contained in the SML have a smaller molecular mass than in the SS. Hence, SML can specifically modify the physical processes associated with the sea surface.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
EGUsphere, https://doi.org/10.5194/egusphere-2024-1977, https://doi.org/10.5194/egusphere-2024-1977, 2024
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snow melt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a Central Arctic field campaign in 2020 to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Aleksandra Cherkasheva, Rustam Manurov, Piotr Kowalczuk, Alexandra N. Loginova, Monika Zabłocka, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2495, https://doi.org/10.5194/egusphere-2023-2495, 2023
Preprint archived
Short summary
Short summary
We aimed to improve the quality of regional Greenland Sea primary production estimates. Seventy two versions of primary production model setups were tested against field data. Best performing models had local biomass and light absorption profiles. Thus by using local parametrizations for these parameters we can improve Arctic primary production model performance. Annual Greenland Sea basin estimates are larger than previously reported.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Tristan Petit, Børge Hamre, Håkon Sandven, Rüdiger Röttgers, Piotr Kowalczuk, Monika Zablocka, and Mats A. Granskog
Ocean Sci., 18, 455–468, https://doi.org/10.5194/os-18-455-2022, https://doi.org/10.5194/os-18-455-2022, 2022
Short summary
Short summary
We provide the first insights on bio-optical processes in Storfjorden (Svalbard). Information on factors controlling light propagation in the water column in this arctic fjord becomes crucial in times of rapid sea ice decline. We find a significant contribution of dissolved matter to light absorption and a subsurface absorption maximum linked to phytoplankton production. Dense bottom waters from sea ice formation carry elevated levels of dissolved and particulate matter.
Włodzimierz Freda, Kamila Haule, and Sławomir Sagan
Ocean Sci., 15, 745–759, https://doi.org/10.5194/os-15-745-2019, https://doi.org/10.5194/os-15-745-2019, 2019
Short summary
Short summary
The paper presents a correlation that can potentially improve the signal obtained from ocean color remote sensing. Results come from a modeling applied to the atmosphere–ocean system in different regions of the southern Baltic, two seasons and two wind speeds, each for nine visible spectral bands. The results show that the variability of the maximum of DoP depends more on seasonal than regional changes and can be explained to a large degree by the seawater absorption-to-attenuation ratio.
Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A. Granskog
The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, https://doi.org/10.5194/tc-13-1661-2019, 2019
Short summary
Short summary
A warm bias and higher total precipitation and snowfall were found in ERA5 compared with ERA-Interim (ERA-I) over Arctic sea ice. The warm bias in ERA5 was larger in the cold season when 2 m air temperature was < −25 °C and smaller in the warm season than in ERA-I. Substantial anomalous Arctic rainfall in ERA-I was reduced in ERA5, particularly in summer and autumn. When using ERA5 and ERA-I to force a 1-D sea ice model, the effects on ice growth are very small (cm) during the freezing period.
Kirstin Werner, Yulia Zaika, Alexey K. Pavlov, Sven Lidström, Allen Pope, Renuka Badhe, Marlen Brückner, and Luisa Cristini
Adv. Geosci., 46, 25–43, https://doi.org/10.5194/adgeo-46-25-2019, https://doi.org/10.5194/adgeo-46-25-2019, 2019
Short summary
Short summary
Authors describe basic challenges of project and community management in polar sciences, identified through survey responses in addition to the authors’ own variou professional experiences. Four overarching themes were identified: international cooperation, interdisciplinarity, infrastructure, and community management. Case studies and survey results are discussed with the conclusive goal to provide recommendations on how reach the full potential in polar science project and community management
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018, https://doi.org/10.5194/bg-15-3331-2018, 2018
Torbjørn Taskjelle, Stephen R. Hudson, Mats A. Granskog, and Børge Hamre
The Cryosphere, 11, 2137–2148, https://doi.org/10.5194/tc-11-2137-2017, https://doi.org/10.5194/tc-11-2137-2017, 2017
Violetta Drozdowska, Iwona Wrobel, Piotr Markuszewski, Przemysław Makuch, Anna Raczkowska, and Piotr Kowalczuk
Ocean Sci., 13, 633–647, https://doi.org/10.5194/os-13-633-2017, https://doi.org/10.5194/os-13-633-2017, 2017
Short summary
Short summary
The studies on the absorption and fluorescence properties of the organic molecules included in surface microlayer (SML) and subsurface (SS) waters confirm that (i) the process of the structural changes in molecules of HMW to LMW, due to effects of photo- and biodegradation, occurs faster in the SML than in the SS; (ii) the organic molecules contained in the SML have a smaller molecular mass than in the SS. Hence, SML can specifically modify the physical processes associated with the sea surface.
Justyna Meler, Piotr Kowalczuk, Mirosława Ostrowska, Dariusz Ficek, Monika Zabłocka, and Agnieszka Zdun
Ocean Sci., 12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, https://doi.org/10.5194/os-12-1013-2016, 2016
Short summary
Short summary
Three alternative models for estimation of absorption of chromophoric dissolved organic matter (CDOM) have been formulated. The models were based on empirical database containing measurements from different regions of the Baltic Sea and three Pomeranian lakes in Poland. An assumption regarding continuum of inherent optical properties in marine and estuarine waters and freshwater has been proved and enabled the accurate estimation of CDOM absorption in various environments.
Cited articles
Aas, E. and Høkedal, J.: Penetration of ultraviolet B, blue and quanta
irradiance into Svalbard waters, Polar Res., 15, 127–138,
https://doi.org/10.1111/j.1751-8369.1996.tb00464.x, 1996.
Aiken, C. R. M., Petersen, W., Schroeder, F., Gehrung, M., and Ramirez von
Holle, P. A.: Ship-of-Opportunity Monitoring of the Chilean Fjords Using the
Pocket FerryBox, J. Atmos. Ocean. Tech., 28, 1338–1350, 2011.
Amon, R. M. W.: The Role of Dissolved Organic Matter for the Organic Carbon
Cycle. The Arctic Ocean, in: The organic carbon cycle in the Arctic Ocean,
edited by: Stein, R. and Macdonald, R. W., chap. 4, 82–99, Springer, Berlin,
Heidelberg, 2004.
Amon, R. M. W., Budéus, G., and Meon, B.: Dissolved organic carbon
distribution and origin in the Nordic Seas: Exchanges with the Arctic Ocean
and the North Atlantic, J. Geophys. Res., 108, 3221,
https://doi.org/10.1029/2002JC001594, 2003.
Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A.,
Guggenberger, G., Bauch, D., Stedmon, C. A., Raymond, P. A., Holmes, R. M.,
McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.:
Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim.
Ac., 94, 217–237, https://doi.org/10.1016/j.gca.2012.07.015, 2012.
Anderson, L. G. and Amon, R. M. W.: DOM in the Arctic Ocean, in:
Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. A.
and Carlson, C. A., 609–633, Academic Press, Amsterdam, Boston, 2015.
Arrigo, K. and Brown, C.: Impact of chromophoric dissolved organic matter on
UV inhibition of primary productivity in the sea, Mar. Ecol.-Prog. Ser., 140,
207–2016, 1996.
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice
cover on marine primary production, Geophys. Res. Lett., 35, L19603,
https://doi.org/10.1029/2008GL035028, 2008.
Belzile, C., Roesler, C. S., Christensen, J. P., Shakhova, N., and Semiletov,
I.: Fluorescence measured using the WETStar DOM fluorometer as a proxy for
dissolved matter absorption, Estuar. Coast. Shelf S., 67, 441–449, 2006.
Bélanger, S., Cizmeli, S. A., Ehn, J., Matsuoka, A., Doxaran, D., Hooker,
S., and Babin, M.: Light absorption and partitioning in Arctic Ocean surface
waters: impact of multiyear ice melting, Biogeosciences, 10, 6433–6452,
https://doi.org/10.5194/bg-10-6433-2013, 2013.
Brym, A., Paerl, H. W., Montgomery, M. T., Handsel, L. T., Ziervogel, K., and
Osburn, C. L.: Optical and chemical characterization of base-extracted
particulate organic matter in coastal marine environments, Mar. Chem., 162,
96–113, https://doi.org/10.1016/j.marchem.2014.03.006, 2014.
Catalá, T. S., Álvarez-Salgado, X. A., Otero, J., Iuculano, F.,
Companys, B., Horstkotte, B., Romera-Castillo, C., Nieto-Cid, M., Latasa, M.,
Morán, X. A. G., Gasol, J. M., Marrasé, C., Stedmon, C. A., and
Reche, I.: Drivers of fluorescent dissolved organic matter in the global
epipelagic ocean, Limnol. Oceanogr., 61, 1101–1119, https://doi.org/10.1002/lno.10281,
2016.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater
using excitation–emission matrix spectroscopy, Mar. Chem., 51, 325–346,
1996.
Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Dalpadado, P., Arrigo, K. R., Hjøllo, S. S., Rey, F., Ingvaldsen, R. B.,
Sperfeld, E., van Dijken, G. L., Stige, L. C., Olsen, A., and Ottersen, G.:
Productivity in the Barents Sea-response to recent climate variability, PloS
one, 9, e95273, https://doi.org/10.1371/journal.pone.0095273, 2014.
Erickson III, D. J., Sulzberger, B., Zepp, R. G., and Austin, A. T.: Effects
of stratospheric ozone depletion, solar UV radiation, and climate change on
biogeochemical cycling: interactions and feedbacks, Photochemical and
Photobiological Sciences, 14, 127–148, 2015.
Fichot, C. G. and Benner, R.: A novel method to estimate DOC concentrations
from CDOM absorption coefficients in coastal waters, Geophys. Res. Lett., 38,
L03610, https://doi.org/10.1029/2010GL046152, 2011.
Fichot C. G. and Benner, R.: The spectral slope coefficient of chromophoric
dissolved organic matter (S275–295) as a tracer of terrigenous dissolved
organic carbon in river-influenced ocean margins, Limnol. Oceanogr., 57,
1453–1466, https://doi.org/10.4319/lo.2012.57.5.1453, 2012.
Fichot, C. G., Kaiser, K., Hooker, S. B., Amon, R. M. W., Babi, M.,
Bélanger, S., Walker, S. A., and Benner, R.: Pan-Arctic distributions of
continental runoff in the Arctic Ocean, Scientific Reports, 3, 1053,
https://doi.org/10.1038/srep01053, 2013.
Findlay, H. S., Gibson, G., Kędra, M., Morata, N., Orchowska, M., Pavlov,
A. K., Reigstad, M., Silyakova, A., Tremblay, J. É., Walczowski, W., and
Weydmann, A.: Responses in Arctic marine carbon cycle processes: conceptual
scenarios and implications for ecosystem function, Polar Res., 34, 24252,
https://doi.org/10.3402/polar.v34.24252, 2015.
Gonçalves-Araujo, R., Stedmon, C. A., Heim, B., Dubinenkov, I., Kraberg,
A., Moiseev, D., and Bracher, A.: From Fresh to Marine Waters:
Characterization and Fate of Dissolved Organic Matter in the Lena River Delta
Region, Siberia, Front. Mar. Sci., 2, 108, https://doi.org/10.3389/fmars.2015.00108,
2015.
Gonçalves-Araujo, R., Granskog, M. A., Bracher, A., Azetsu-Scott, K.,
Dodd, P. A., and Stedmon, C. A.: Using fluorescent dissolved organic matter
to trace and distinguish the origin of Arctic surface waters, Scientific
Reports, 6, 1–12, https://doi.org/10.1038/srep33978, 2016.
Gonçalves-Araujo, R., Rabe, B., Peeken, I.,
and Bracher, A.: High colored dissolved organic matter (CDOM) absorption in surface waters of the
central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms, PLoS
One, 13, e0190838, https://doi.org/10.1371/journal.pone.0190838, 2018.
Granskog, M. A., Macdonald, R. W., Mundy, C. J., and Barber, D. G.:
Distribution, characteristics and potential impacts of chromophoric dissolved
organic matter (CDOM) in the Hudson Strait and the Hudson Bay, Canada, Cont.
Shelf Res., 27, 2032–2050, https://doi.org/10.1016/j.csr.2007.05.001, 2007.
Granskog, M. A., Stedmon, C. A., Dodd, P. A., Amon, R. M., Pavlov, A. K.,
Steur, L., and Hansen, E.: Characteristics of colored dissolved organic
matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes
and fate of terrigenous CDOM in the Arctic Ocean, J. Geophys. Res., 117,
C12021, https://doi.org/10.1029/2012JC008075, 2012.
Granskog, M. A., Nomura, D., Müller, S., Krell, A., Toyota, T., and
Hattori, H.: Evidence for significant protein-like dissolved organic matter
accumulation in Sea of Okhotsk sea ice, Ann. Glaciol., 56, 1–8,
https://doi.org/10.3189/2015AoG69A002, 2015a.
Granskog, M. A., Pavlov, A. K.,Sagan, S., Kowalczuk, P., Raczkowska, A., and
Stedmon, C. A.: Effect of sea-ice melt on inherent optical properties and
vertical distribution of solar radiant heating in Arctic surface waters, J.
Geophys. Res.-Oceans, 120, 7028–7039, https://doi.org/10.1002/2015JC011087, 2015b.
Hancke, K., Hovland, E. K., Volent, Z., Pettersen, R., Johnsen, G., Moline,
M., and Sakshaug, E.: Optical properties of CDOM across the Polar Front in
the Barents Sea: Origin, distribution and significance, J. Marine Syst., 130,
219–227, 2014.
Harvey, G. R., Boran, D. A., Chesal, L. A., and Tokar, J. M.: The structure
of marine fulvic and humic acids, Mar. Chem., 12, 119–132, 1983.
Hill, V.: Impacts of chromophoric dissolved organic material on surface ocean
heating in the Chukchi Sea, J. Geophys. Res.-Oceans, 113, C07024,
https://doi.org/10.1029/2007JC004119, 2008.
Jørgensen, L., Stedmon, C. A., Kragh, T., Markager, S., Middelboe, M., and
Søndergaard, M.: Global trends in the fluorescence characteristics and
distribution of marine dissolved organic matter, Mar. Chem., 126, 139–148,
2011.
Jørgensen, L., Stedmon, C. A., Granskog, M. A., and Middelboe, M.: Tracing
the long-term microbial production of recalcitrant fluorescent dissolved
organic matter in seawater, Geophys. Res. Lett., 41, 2481–2488, 2014.
Kitidis, V., Stubbins, A. P., Uher, G., Goddard, R. C. U., Law, C. S., and
Woodward, E. M. S.: Variability of chromophoric organic matter in surface
waters of the Atlantic Ocean, Deep-Sea Res. Pt. II, 53, 1666–1684, 2006.
Kieber, D. J., Peake, B. M., and Scully, N. M.: Reactive oxygen species in
aquatic ecosystems, in: UV Effects in Aquatic Organisms, edited by: Helbling,
E. W. and Zagarese, H., Royal Society of Chemistry, Cambridge, 251–288,
2003.
Kowalczuk, P., Stedmon, C. A., and Markager, S.: Modelling absorption by CDOM
in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101,
1–11, 2006.
Kowalczuk, P., Zabłocka, M., Sagan, S., and Kuliński, K.: Fluorescence
measured in situ as a proxy of CDOM absorption and DOC concentration in the
Baltic Sea, Oceanologia, 52, 431–471, 2010.
Kowalczuk, P., Tilstone, G. H., Zabłocka, M., Röttgers, R., and
Thomas, R.: Composition of Dissolved Organic Matter along an Atlantic
Meridional Transect from fluorescence spectroscopy and Parallel Factor
Analysis, Mar. Chem., 157, 170–184, 2013.
Kowalczuk, P., Meler, J., Kauko, H., Pavlov, A. K., Zabłocka, M., Peeken,
I., Dybwad, C., Castellani, G., and Granskog, M. A.: Bio-optical properties
of Arctic drift ice and surface waters north of Svalbard from winter to
spring, J. Geophys. Res.-Oceans, 122, 4634–466, 2017.
Loeng, H.: Features of the physical oceanographic conditions of the Barents
Sea, Polar Res., 10, 5–18, 1991.
Loginova, A. N., Thomsen, S., and Engel, A.: Chromophoric and fluorescent
dissolved organic matter in and above the oxygen minimum zone off Peru, J.
Geophys. Res.-Oceans, 121, 7973–7990, https://doi.org/10.1002/2016JC011906, 2016.
Lund-Hansen, L. C., Markager, S., Hancke, K., Stratmann, T., Rysgaard, S.,
Ramløv, H., and Sorrell, B. K.: Effects of sea-ice light attenuation and
CDOM absorption in the water below the Eurasian sector of central Arctic
Ocean (> 88∘ N), Polar Res., 34, 23978,
https://doi.org/10.3402/polar.v34.23978, 2015.
Mann, P. J., Spencer, R. G. M., Hernes, P. J., Six, J., Aiken, G. R., Tank,
S. E., McClelland, J. W., Butler, K. D., Dyda, R. Y., and Holmes, R. M.:
Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical
Measurements, Front. Earth Sci., 4, 25, https://doi.org/10.3389/feart.2016.00025, 2016.
Matsuoka, A., Hill, V., Huot, Y., Babin, M., and Bricaud, A.: Seasonal
variability in the light absorption properties of western Arctic waters:
Parameterization of the individual components of absorption for ocean color
applications, J. Geophys. Res.-Oceans, 116, C02007, https://doi.org/10.1029/2009JC005594,
2011.
Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempéré, R., Prieur,
L., Bélanger, S., and Babin, M.: Tracing the transport of colored
dissolved organic matter in water masses of the Southern Beaufort Sea:
relationship with hydrographic characteristics, Biogeosciences, 9, 925–940,
https://doi.org/10.5194/bg-9-925-2012, 2012.
Matsuoka, A., Hooker, S. B., Bricaud, A., Gentili, B., and Babin, M.:
Estimating absorption coefficients of colored dissolved organic matter (CDOM)
using a semi-analytical algorithm for southern Beaufort Sea waters:
application to deriving concentrations of dissolved organic carbon from
space, Biogeosciences, 10, 917–927, https://doi.org/10.5194/bg-10-917-2013,
2013.
Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafezd, M., Chekalyuk, A.,
Proctore, C. W., Werdell, P. J., and Bricaud, A.: Pan-Arctic optical
characteristics of colored dissolved organic matter: Tracing dissolved
organic carbon in changing Arctic waters using satellite ocean color data,
Remote Sens. Environ., 200, 89–101, 2017.
Massicotte, P., Asmala, E., Stedmon C. A., and Markager, S.: Global
distribution of dissolved organic matter along the aquatic continuum: Across
rivers, lakes and oceans, Sci. Total Environ., 609, 180–191,
https://doi.org/10.1016/j.scitotenv.2017.07.076, 2017.
Meier, W. M., Hovelsrud, G. K., van Oort, B. E. H., Key, J. R., Kovacs, K.
M., Michel, C., Haas, C., Granskog, M. A., Gerland, S., Perovich, D. K.,
Makshtas, A., and Reist, J. D.: Arctic sea ice in transformation: A review of
recent observed changes and impacts on biology and human activity, Rev.
Geophys., 52, 185–217, https://doi.org/10.1002/2013RG000431, 2014.
Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zablocka, M., and Zdun,
A.: Parameterization of the light absorption properties of chromophoric
dissolved organic matter in the Baltic Sea and Pomeranian lakes, Ocean Sci.,
12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, 2016.
Mopper, K. and Kieber, D. J.: Photochemistry and the cycling of carbon,
sulfur, nitrogen and phosphorus, in: Biogeochemistry of Marine Dissolved
Organic Matter, editd by: Hansell, D. A. and Carlson, C. A., Academic Press,
New York, 455–507, 2002.
Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M.: Distinguishing
between terrestrial and autochthonous organic matter sources in marine
environments using fluorescence spectroscopy, Mar. Chem., 108, 40–58, 2008.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques, PARAFAC, Anal. Methods-UK, 5, 6557,
https://doi.org/10.1039/c3ay41160e, 2013.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online
spectral library of auto-fluorescence by organic compounds in the
environment, Anal. Methods-UK, 6, 658–661, https://doi.org/10.1039/C3AY41935E, 2014.
Nelson, N. B. and Siegel, D. A.: The Global Distribution and Dynamics of
Chromophoric Dissolved Organic Matter, Annu. Rev. Mar. Sci., 5, 447–476,
https://doi.org/10.1146/annurev-marine-120710-100751, 2013.
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M.: A Simple Shelf
Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf,
J. Phys. Oceanogr., 46, 1209–1230, https://doi.org/10.1175/JPO-D-15-0058.1, 2015.
Nima, C., Frette, Ø., Hamre, B., Erga, S. R., Chen, Y.-C., Zhao, L.,
Sørensen, K., Norli, M., Stamnes, K., and Stamnes, J. J.: Absorption
properties of high-latitude Norwegian coastal water: the impact of CDOM and
particulate matter, Estuar. Coast. Shelf S., 178, 158–167,
https://doi.org/10.1016/j.ecss.2016.05.012, 2016.
Obernosterer, I. and Benner, R.: Competition between biological and
photochemical processes in the mineralization of dissolved organic carbon,
Limnol. Oceanogr., 49, 117–124, 2004.
Olsen, E., Aanes, S., Mehl, S., Holst, J. C., Aglen, A., and Gjøsæter,
H.: Cod, haddock, saithe, herring, and capelin in the Barents Sea and
adjacent waters: a review of the biological value of the area, ICES J. Mar.
Sci., 67, 87–101, 2009.
Osburn, C. L., Retamal, L., and Vincent, W. F.: Photoreactivity of
chromophoric dissolved organic matter transported by the Mackenzie River to
the Beaufort Sea, Mar. Chem., 115, 10–20, 2009.
Para, J., Charrière, B., Matsuoka, A., Miller, W. L., Rontani, J. F., and
Sempéré, R.: UV/PAR radiation and DOM properties in surface coastal
waters of the Canadian shelf of the Beaufort Sea during summer 2009,
Biogeosciences, 10, 2761–2774, https://doi.org/10.5194/bg-10-2761-2013,
2013.
Pavlov, A. K., Silyakova, A., Granskog, M. A., Bellerby, R. G., Engel, A.,
Schulz, K. G., and Brussaard, C. P.: Marine CDOM accumulation during a
coastal Arctic mesocosm experiment: No response to elevated pCO2 levels,
J. Geophys. Res.-Biogeo., 119, 1216–1230, https://doi.org/10.1002/2013JG002587, 2014.
Pavlov, A. K., Granskog, M. A., Stedmon, C. A., Ivanov, B. V., Hudson, S. R.,
and Falk-Petersen, S.: Contrasting optical properties of surface waters
across the Fram Strait and its potential biological implications, J. Marine
Syst., 143, 62–72, https://doi.org/10.1016/j.jmarsys.2014.11.001, 2015.
Pavlov, A. K., Stedmon, C. A., Semushin, A. V., Martma, T., Ivanov, B. V.,
Kowalczuk, P., and Granskog, M. A.: Linkages between the circulation and
distribution of dissolved organic matter in the White Sea, Arctic Ocean,
Cont. Shelf Res., 119, 1–13, https://doi.org/10.1016/j.csr.2016.03.004, 2016.
Pavlov, A. K., Taskjelle, T., Kauko, H. M., Hamre, B., Hudson, S. R., Assmy,
P., Duarte, P., Fernández-Méndez, M., Mundy, C. J., and Granskog, M.
A.: Altered inherent optical properties and estimates of the underwater light
field during an Arctic under ice bloom of Phaeocystis pouchetii, J. Geophys.
R.-Oceans, 122, 4939–4961, https://doi.org/10.1002/2016JC012471, 2017.
Pegau, W. S.: Inherent optical properties of the central Arctic surface
waters, J. Geophys. Res., 107, 8035, https://doi.org/10.1029/2000JC000382, 2002.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T.
M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., and
Krishfield, R.: Greater role for Atlantic inflows on sea-ice loss in the
Eurasian Basin of the Arctic Ocean, Science, 356, 285–291, 2017.
Prowse, T., Bring, A., Mård, J., Carmack, E., Holland, M., Instanes, A.,
Vihma, T., and Wrona, F. J.: Arctic Freshwater Synthesis: Summary of key
emerging issues, J. Geophys. Res.-Biogeo., 120, 1887–1893,
https://doi.org/10.1002/2015JG003128, 2015.
Retelletti-Brogi, S., Ha, S.-Y., Kim, K., Derrien, M., Lee, Y. K., and Hur,
J.: Optical and molecular characterization of dissolved organic matter (DOM)
in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada):
Implication for increased autochthonous DOM during ice melting, Sci. Total
Environ., 627, 802–811, 2018.
Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M.,
and Marrasé, C.: Production of chromophoric dissolved organic matter by
marine phytoplankton, Limnol. Oceanogr., 55, 446–454, 2010.
Rudels, B., Friedrich, H. J., and Quadfasel, D.: The arctic circumpolar
boundary current, Deep-Sea Res. Pt. II, 46, 1023–1062, 1999.
Rudels, B., Fahrbach, E., Meincke, J., Budéus, G., and Eriksson, P.: The
East Greenland Current and its contribution to the Denmark Strait Overflow,
ICES J. Mar. Sci., 59, 1133–1154, 2002.
Rudels, B., Björk, G., Nilsson, J., Winsor, P., Lake, I., and Nohr, C.:
The interaction between waters from the Arctic Ocean and the Nordic Seas
north of Fram Strait and along the East Greenland Current: results from the
Arctic Ocean–02 Oden expedition, J. Marine Syst., 55, 1–30,
https://doi.org/10.1016/j.jmarsys.2004.06.008, 2005.
Schlichtholz, P. and Houssais, M.-N.: An investigation of the dynamics of the
East Greenland Current in Fram Strait based on a simple analytical model, J.
Phys. Oceanogr., 29, 2240–2265, 1999a.
Schlichtholz, P. and Houssais, M.-N.: An inverse modeling study in Fram
Strait. Part II: Water mass distribution and transports, Deep-Sea Res. Pt.
II, 46, 11367–1168, 1999b.
Schlichtholz, P. and Houssais, M.-N.: An overview of the q-S correlations in
Fram Strait based n the MIZEX 84 data, Oceanologia, 44, 243–272, 2002.
Schlitzer, R.: Ocean Data View, available at: http://odv.awi.de (last
access: 6 May 2018), 2016.
Sharp, J. H.: Analytical methods for total DOM pools, in: Biogeochemistry of
marine dissolved organic matter, edited by: Hansell, D. A. and Carlson, C.
A., 35–58, Biogeochemistry of marine dissolved organic matter, Academic
Press, San Diego, XXII, 774, 2002.
Skogen, M. D., Budgell, W. P., and Rey, F.: Interannual variability in Nordic
seas primary production, ICES J. Mar. Sci., 64, 889–898, 2007.
Spencer, R. G. M., Butler, K. D., and Aiken, G. R.: Dissolved organic carbon
and chromophoric dissolved organic matter properties of rivers in the USA, J.
Geophys. Res., 117, G03001, https://doi.org/10.1029/2011JG001928, 2012.
Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C.,
Holmes, R. M., Zimov, N., and Stubbins, A.: Detecting the signature of
permafrost thaw in Arctic rivers. Geophys. Res. Lett., 42, 2830–2835,
https://doi.org/10.1002/2015GL063498, 2015.
Stedmon, C. and Markager, S.: The optics of chromophoric dissolved organic
matter (CDOM) in the Greenland Sea: An algorithm for differentiation between
marine and terrestrially derived organic matter, Limnol. Oceanogr., 46,
2087–2092, 2001.
Stedmon, C. A. and Nelson, N. B.: The Optical Properties of DOM in the Ocean,
in: Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell,
D. A. and Carlson, C. A., 480–508, Academic Press, Amsterdam, Boston, 2015.
Stedmon, C. A., Markager, S., and Kaas, H.: Optical properties and signatures
of chromophoric dissolved organic matter (CDOM) in Danish coastal waters,
Estuar. Coast. Shelf S., 51, 267–278, 2000.
Stedmon C. A., Markager S., and Bro, R.: Tracing dissolved organic matter in
aquatic environments using a new approach to fluorescence spectroscopy, Mar.
Chem., 82, 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0, 2003.
Stedmon, C. A., Amon, R. M. W., Rinehart, A. J., and Walker, S. A.: The
supply and characteristics of colored dissolved organic matter (CDOM) in the
Arctic Ocean: Pan Arctic trends and differences, Mar. Chem., 124, 108–118,
2011.
Stedmon, C. A., Granskog, M. A., and Dodd, P. A.: An approach to estimate the
freshwater contribution from glacial melt and precipitation in East Greenland
shelf waters using colored dissolved organic matter (CDOM), J. Geophys.
Res.-Oceans, 120, 1107–1117, https://doi.org/10.1002/2014JC010501, 2015.
Stein, R. and Macdonald, R. W.: Organic carbon budget: Arctic Ocean vs.
global ocean, in: The organic carbon cycle in the Arctic Ocean, 315–322,
Springer, Berlin Heidelberg, 2004.
Sternal, B., Szczucinski, W., Forwick, M., Zajączkowski, M., Lorenc, S.,
and Przytarska, J.: Postglacial variability in near-bottom current speed on
the Continental shelf off south-west Spitsbergen, J. Quaternary Sci., 29,
767–777, 2014.
Stramska, M., Stramski, D., Hapter, R., Kaczmarek, S., and Stoń, J.:
Bio-optical relationships and ocean color algorithms for the north polar
region of the Atlantic, J. Geophys. Res., 108, 3143,
https://doi.org/10.1029/2001JC001195, 2003.
Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater
analysis, 2nd Edn., Bulletin 167, Fisheries Research Board of Canada, Ottawa,
1972.
Swift, J. H. and Aagaard, K.: Seasonal transitions and water mass formation
in the Iceland and Greenland seas, Deep-Sea Res. Pt. A, 28, 1107–1129, 1981.
Walczowski, W.: Atlantic Water in the Nordic Seas, Springer, Heidelberg, New
York, London, 174 pp., 2014.
Walczowski, W., Beszczynska-Möller, A., Wieczorek, P., Merchel, M., and
Grynczel, A.: Oceanographic observations in the Nordic Sea and Fram Strait in
2016 under the IOPAN long-term monitoring program AREX, Oceanologia, 59,
187–194, https://doi.org/10.1016/j.oceano.2016.12.003, 2017.
Walker, S. A., Amon, R. M. W., and Stedmon, C. A.: Variations in
high-latitude riverine fluorescent dissolved organic matter: A comparison of
large Arctic rivers, J. Geophys. Res.-Biogeo., 118, 1689–1702,
https://doi.org/10.1002/2013JG002320, 2013.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator
of the chemical composition and reactivity of dissolved organic matter,
Environ. Sci. Technol., 37, 4702–4708, 2003.
Whitehead, K. and Vernet, M.: Influence of mycosporine-like amino acids
(MAAs) on UV absorption by particulate and dissolved organic matter in La
Jolla Bay, Limnol. Oceanogr., 45, 1788–1796, 2000.
Yamashita, Y., Hashihama, F., Saito, H., Fukuda, H., and Ogawa, H.: Factors
controlling the geographical distribution of fluorescent dissolved organic
matter in the surface waters of the Pacific Ocean, Limnol. Oceanogr., 62,
2360–2374, https://doi.org/10.1002/lno.10570, 2017.
Zaneveld, J. R. V., Kitchen, J. C., and Moore, C.: The scattering error
correction of reflecting-tube absorption meters, Proc. SPIE Soc. Opt. Eng.,
2258, 44–55, 1994.
Zepp, R. G.: Solar ultraviolet radiation and aquatic biogeochemical cycles,
in: UV Effects in Aquatic Organisms and Ecosystems, edited by: Helbling, E.
W. and Zagarese, H., Vol. 1, The Royal Society of Chemistry, Cambridge UK,
137–184, 2003.