Articles | Volume 14, issue 1
https://doi.org/10.5194/os-14-53-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-53-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
South Atlantic meridional transports from NEMO-based simulations and reanalyses
Davi Mignac
CORRESPONDING AUTHOR
Postgraduate Program in Atmosphere, Oceans and Climate, University of Reading, Reading, UK
Department of Meteorology, University of Reading, Reading, UK
David Ferreira
Department of Meteorology, University of Reading, Reading, UK
Keith Haines
Department of Meteorology, University of Reading, Reading, UK
Related authors
D. Mignac, C. A. S. Tanajura, A. N. Santana, L. N. Lima, and J. Xie
Ocean Sci., 11, 195–213, https://doi.org/10.5194/os-11-195-2015, https://doi.org/10.5194/os-11-195-2015, 2015
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024, https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023, https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary
Short summary
Gravitational measurements of water storage from GRACE (Gravity Recovery and Climate Experiment) can improve understanding of the water budget. We produce flux estimates over large river catchments based on observations that close the monthly water budget and ensure consistency with GRACE on short and long timescales. We use energy data to provide additional constraints and balance the long-term energy budget. These flux estimates are important for evaluating climate models.
Irene Polo, Keith Haines, Jon Robson, and Christopher Thomas
Ocean Sci., 16, 1067–1088, https://doi.org/10.5194/os-16-1067-2020, https://doi.org/10.5194/os-16-1067-2020, 2020
Short summary
Short summary
AMOC variability controls climate and is driven by wind and buoyancy forcing in the Atlantic. Density changes there are expected to connect to tropical regions. We develop methods to identify boundary density profiles at 26° N which relate to the AMOC. We found that density anomalies propagate equatorward along the western boundary, eastward along the Equator and then poleward up the eastern boundary with 2 years lag between boundaries. Record lengths of more than 26 years are required.
Antoine Hochet, Rémi Tailleux, David Ferreira, and Till Kuhlbrodt
Ocean Sci., 15, 21–32, https://doi.org/10.5194/os-15-21-2019, https://doi.org/10.5194/os-15-21-2019, 2019
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
N. Melia, K. Haines, and E. Hawkins
The Cryosphere, 9, 2237–2251, https://doi.org/10.5194/tc-9-2237-2015, https://doi.org/10.5194/tc-9-2237-2015, 2015
Short summary
Short summary
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. We present a new method to constrain global climate model simulations of SIT to narrow projection uncertainty via a statistical bias-correction technique.
G. Forget, D. Ferreira, and X. Liang
Ocean Sci., 11, 839–853, https://doi.org/10.5194/os-11-839-2015, https://doi.org/10.5194/os-11-839-2015, 2015
Short summary
Short summary
Results from the ECCO v4 ocean state estimate identify the constraint of fitting Argo profiles as an effective observational basis for inverse estimation of regional turbulent transport rates. The estimated parameters' geography is physically plausible and exhibits close connections with the observed upper-ocean stratification. They yield a clear reduction in the model drift away from observations over multi-century-long simulations, including for independent biochemistry variables.
D. Mignac, C. A. S. Tanajura, A. N. Santana, L. N. Lima, and J. Xie
Ocean Sci., 11, 195–213, https://doi.org/10.5194/os-11-195-2015, https://doi.org/10.5194/os-11-195-2015, 2015
V. N. Stepanov and K. Haines
Ocean Sci., 10, 645–656, https://doi.org/10.5194/os-10-645-2014, https://doi.org/10.5194/os-10-645-2014, 2014
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: Deep Seas: South Atlantic | Phenomena: Current Field
Cold vs. warm water route – sources for the upper limb of the Atlantic Meridional Overturning Circulation revisited in a high-resolution ocean model
Siren Rühs, Franziska U. Schwarzkopf, Sabrina Speich, and Arne Biastoch
Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, https://doi.org/10.5194/os-15-489-2019, 2019
Short summary
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
Cited articles
Adcroft, A., Hill, C., and Marshall, J.: Representation of topography by
shaved cells in a height coordinate ocean model, Mon. Weather Rev., 125,
2293–2315, 1997.
Ansorge, I. J., Baringer, M. O., Campos, E. J. D., Dong, S., Fine, R. A.,
Garzoli, S. L., Goni, G., Meinen, C. S., Perez, R. C., Piola, A. R.,
Roberts, M. J., Speich, S., Sprintall, J., Terre, T., and Van den Berg, M.
A.: Basin-Wide Oceanographic Array Bridges the South Atlantic, Eos, 95,
53–54, 2014.
Backeberg, B. C., Counillon, F., Johannessen, J. A., and Pujol, M.-I.:
Assimilating along-track SLA data using the EnOI in an eddy resolving model
of the Agulhas system, Ocean. Dynam., 64, 1121–1136, https://doi.org/10.1007/s10236-014-0717-6, 2014.
Baehr, J., Hirschi, J., Beismann, J.-O., and Marotzke, J.: Monitoring the
meridional overturning circulation in the North Atlantic: A model-based
array design study, J. Mar. Res., 62, 283–312, 2004.
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF ocean reanalysis
system ORAS4, Q. J. Roy. Meteror. Soc., 139, 1132–1161, 2013.
Balmaseda, M.A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi,
L., Smith, G. C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D.,
Boyer, T., Chang, Y.-S., Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y.,
Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Kohl, A, Lee,
T., Martin, M. J., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K.,
Parent, L., Peterson, K. A., Tang, Y. M., Yin, Y., Vernieres, G., Wang, X.,
Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J-F.,
Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A.,
Wilmer-Becker, K., and Gaillard, F.: The Ocean Reanalyses Intercomparison
Project (ORA-IP), J. Oper. Oceanogr., 8, 80–97, 2015.
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le
Sommer, J., Beckmann, A., Biastoch, A., Böning, C.,
Dengg, J., Derval, J., Durand, E., Gulev, S., Remy, E., Talandier, C.,
Theetten, S., Maltrud, M., McClean, J., and de Cuevas, B.: Impact of partial
steps and momentum advection schemes in a global ocean circulation model at
eddy-permitting resolution, Ocean Dynam., 56, 6543–567,
https://doi.org/10.1007/s10236-006-0082-1, 2006.
Bingham, R. J. and Hughes, C. W.: Geostrophic dynamics of meridional
transport variability in the subpolar North Atlantic, J. Geophys. Res., 114,
https://doi.org/10.1029/2009JC005492, 2009.
Brodeau, L., Barnier, B., Treguier, A-M., Penduff, T., and Gulev, S: An
ERA40- based atmospheric forcing for global ocean circulation models, Ocean
Model., 31, 88–104, 2010.
Bryden, H. L. and Imawaki, S.: Ocean heat transport, in Ocean Circulation
and Climate, edited by: Siedler, G., Church, J., and Gould, J., chap. 6.2, 455–474, Academic Press, London, 2001.
Copernicus Marine Environmental Monitoring Service (CMEMS): Product user
manual, available at: http://marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-025.pdf, 25 pp.,
2017.
Cunningham, S. A., Kanzow, T., Rayner, D., Baringer, M. O., Johns, W. E.,
Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J.-M., Beal, L.
M., Meinen, C. S., and Bryden H. L.: Temporal Variability of the Atlantic
Meridional Overturning Circulation at 26.5∘ N, Science, 317,
935–937, 2007.
Dong, S., Garzoli, S., Baringer, M., Meinen, C., and Goni, G.: Interannual
variations in the Atlantic meridional overturning circulation and its
relationship with the net northward heat transport in the South Atlantic, Geophys. Res.
Lett., 36, https://doi.org/10.1029/2009GL039356, 2009.
Dong, S., Baringer, M., Goni, G., Meinen, C., and Garzoli, S.: Importance of
the assimilation of Argo float measurements on the Meridional Overturning
Circulation in the South Atlantic, Geophys. Res. Lett., 38, 18
https://doi.org/10.1029/2011GL048982, 2011a.
Dong, S., Garzoli, S., and Baringer, M.: The Role of Interocean Exchanges on
Decadal Variations of the Meridional Heat Transport in the South Atlantic,
J. Phys. Oceanogr., 41, 1498–1511, 2011b.
Dong, S., Baringer, M., Goni, G., Meinen, C., and Garzoli, S.: Seasonal
variations in the South Alantic Meridional Overturning Circulation from
observations and numerical models, Geophys. Res. Lett., 41, https://doi.org/10.1002/2014GL060428, 2014.
Dong, S., Goni, G., and Bringas, F.: Temporal variability of the South
Atlantic Meridional Overturning Circulation between 20∘ S and
35∘ S, Geophys. Res. Lett., https://doi.org/10.1002/2015GL065603, 2015.
Donners, J., Drijfhout, S. S., and Hazeleger, W.: Water Mass Transformation
and Subduction in the South Atlantic, J. Phys. Oceanogr., 35, 1841–1860,
2005.
Drijfhout, S. S., Weber, S. L., and van der Swaluw, E.: The stability of the
MOC as diagnosed from model projections for pre-industrial, present and
future climates, Clim. Dynam., 37, 1575–1586, https://doi.org/10.1007/s00382-010-0930-z, 2011.
Ganachaud, A. and Wunsch, C.: Large scale ocean heat and freshwater
transports during the World Ocean Circulation Experiment, J. Climate, 16,
695–705, 2003.
Garric, G. and Verbprugge, N.: Large scale ECMWF radiative surface fluxes
assessment, correction and application to 3-D global ocean simulations,
Geophysical Research Abstracts, vol. 12 EUGU2010-12044, EGU General
Assembly, 2010.
Garzoli, S. L. and Baringer, M. O.: Meridional heat transport determined
with expandable bathythermographs – Part II: South Atlantic transport,
Deep-Sea Res. Pt. I, 54, 1402–1420, 2007.
Garzoli, S. L. and Matano, R.: The South Atlantic and the Atlantic
Meridional Overturning Circulation, Deep-Sea Res. Pt. II, 58, 1837–1847, 2011.
Garzoli, S. L., Baringer, M. O., Dong, S., and Perez, R., and Yao, Q.: South
Atlantic Meridional Fluxes, Deep-Sea Res. Pt. I, 71, 21–32, 2013.
Garzoli, S. L., Dong, S., Fine, R., Meinen, C., Perez, R. C., Schmid, C.,
Sebille, E., and Yao, Q.: The fate of the Deep Western Boundary Current in
the South Atlantic, Deep-Sea Res. Pt. I, 103, 125–136,
https://doi.org/10.1016/j.dsr.2015.05.008, 2015.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res., 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013.
Haines, K., Valdivieso, M., Zuo, H., and Stepanov, V. N.: Transports and budgets in a 1∕4∘
global ocean reanalysis 1989–2010, Ocean Sci., 8, 333–344, https://doi.org/10.5194/os-8-333-2012, 2012.
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woolings, T. J.,
Pohlmann, H., and de Cuevas, B.: Bistability of the Atlantic overturning
circulation in a global climate model and links to ocean freshwater
transport, Geophys. Res. Lett., 38, 3L10605, https://doi.org/10.1029/2011GL047208, 2011.
Hirschi, J., Baehr, J., Marotzke, J., Stark, J., Cunningham, S., and
Beismann J.-O.: A monitoring design for the Atlantic meridional overturning
circulation, Geophys. Res. Lett., 30, 7, https://doi.org/10.1029/2002GL016776, 2003.
Hummels, R., Brandt, P., Dengler, M., Fischer, J., Araujo, M., Veleda, D.,
and Durgadoo, J. V.: Interannual to decadal changes in the western boundary
circulation in the Atlantic at 11∘ S, Geophys. Res. Lett., 42,
https://doi.org/10.1002/2015GL065254, 2015.
Janssen, P., Breivik, O., Mogensen, K., Vitart, F., Balmaseda, M., Bidlot,
J.-R., Keeley, S., Leutbecher, M., Magnusson, L., and Molteni, F.: Air-sea
interaction and surface waves, Technical Report 712 (internal), ECMWF, 2013.
Karspeck, A. R., Stammer, D., Kohl, A., Danabasoglu, G., Balmaseda, M.,
Smith, D. M., Fujii, Y., Zhang, S., Giese, B., Tsujino, H., and Rosati, A.:
Comparison of the Atlantic meridional overturning circulation between 1960
and 2007 in six ocean reanalysis products, Clim. Dynam., 49, 957–982, https://doi.org/10.1007/s00382-015-2787-7, 2015.
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean
and sea-ice models: The data sets and flux climatologies, Technical Report
TN-460+STR, NCAR, 105 pp., 2004.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Levitus, S., Boyer, T. P., Conkright, M. E., O'Brien, T., Antonov, J.,
Stephens, C., Stathoplos, L., Johnson, D., and Gelfeld, R.: NOAA Atlas
NESDIS 18, World Ocean Database 1998, Vol. 1, Introduction, U.S. Gov.
Printing Office, Washington D.C., 346 pp., 1998.
Liu, C., Allan, R. P., Berrisford, P., Mayer, M., Hyder, P., Loeb, N.,
Smith, D., and Edwards, J. M.: Combining satellite observations and
reanalysis energy transports to estimate global net surface energy fluxes
1985–2012, J. Geophys. Res.-Atmos., 120, 9374–9389, https://doi.org/10.1002/2015JD023264,
2015.
Locarnini, R., Mishonov, A., Antonov, J., Boyer, T., Garcia, H., Baranova,
O., Zweng, M., and Johnson, D.: World Ocean Atlas 2009, Vol. 1,
Temperature, edited by: Levitus, S., NOAA Atlas NESDIS 68, 184 pp., 2010.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Vol. 1, Temperature, edited by: Levitus, S., NOAA Atlas NESDIS 73, 40 pp., 2013.
Lopez, H., Dong, S., Lee, S., and Goni, G.: Decadal Modulations of
Interhemispheric Global Atmospheric Circulations and Monsoons by the South
Atlantic Meridional Overturning Circulation, J. Climate, 29, 1831–1851,
2016.
Lumpkin, R. and Speer, K.: Global Ocean Meridional Overturning, J. Phys.
Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1, 2007.
Macdonald, A. M., and Baringer M. O.: Ocean heat transport, in Ocean
Circulation and Climate, edited by Siedler, G., Griffies, S. M., Gould, J.,
and Church, J. A., chap. 29, 759–786, Academic Press, London, 2013.
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole
singularity, Clim. Dynam., 12, 381–388, 1996.
Madec, G.: NEMO ocean engine, Note du Pole de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, 27, 1288–1619, 2008.
Majumder, S., Schmid, C., and Halliwell, G.: An observations and model-based
analysis of meridional transports in the South Atlantic, J. Geophys.
Res.-Oceans, 121, https://doi.org/10.1002/2016JC011693, 2016.
Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C., and Lee, T.:
Construction of the adjoint MIT ocean general circulation model and
application to Atlantic heat transport sensitivity, J. Geophys. Res., 104,
529–547, 1999.
Marshall, J., Donohoe, A., Ferreira, D., and McGee, D.: The ocean's role in
setting the mean position of the Inter-Tropical Convergence Zone, Clim.
Dynam., 42, 1967–1979, 2013.
Marzocchi, A., Hirschi, J. J.-M., Holliday, N. P., Cunningham, S. A.,
Blaker, A. T., and Coward, A. C.: The North Atlantic subpolar circulation in
an eddy-resolving global ocean model, J. Marine Syst., 142, 126–143, 2015.
Masina, S., Storto, A., Ferry, N., Valdivieso, M., Haines, K., Balmaseda,
M., Zuo, H., Drevillon, M., and Parent, L.: An ensemble of eddy-permitting
global ocean reanalyses from the MyOcean project, Clim. Dynam., 49, 813–841, https://doi.org/10.1007/s00382-015-2728-5,
2015.
Mémery, L., Arhan, M., Alvarez-Salgado, X. A., Messias, M-J., Mercier,
H., Castro, C. G., and Rios, A. F.: The water masses along the western
boundary of the south and equatorial Atlantic, Prog. Oceanogr., 47, 69–98,
2000.
Mogensen, K., Balmaseda, M. A., and Weaver, A.: The NEMOVAR ocean data
assimilation system as implemented in the ECMWF ocean analysis for system 4,
Technical Report 668 (internal), ECMWF, 2012.
Palmer, M. D., Roberts, C. D., Balmaseda, M., Chang, Y.-S., Chepurin, G.,
Ferry, N., Fujii, Y., Good, S. A., Guinehut, S., Haines, K., Hernandez, F.,
Köhl, A., Lee, T., Martin, M. J., Masina, S., Masuda, S., Peterson, K.
A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Wang, O., and
Xue, Y.: Ocean heat content variability and change in an ensemble of ocean
reanalyses, Clim. Dynam., 49, 909–930, https://doi.org/10.1007/s00382-015-2801-0, 2015.
Penduff, T., Le Sommer, J., Barnier, B., Treguier, A.-M., Molines, J.-M.,
and Madec, G.: Influence of numerical schemes on current-topography
interactions in 1∕4∘ global ocean simulations, Ocean Sci., 3,
509–524, https://doi.org/10.5194/os-3-509-2007, 2007.
Penduff, T., Juza, M., Brodeau, L., Smith, G. C., Barnier, B., Molines, J.-M., Treguier, A.-M.,
and Madec, G.: Impact of global ocean model resolution on sea-level variability
with emphasis on interannual time scales, Ocean Sci., 6, 269–284, https://doi.org/10.5194/os-6-269-2010, 2010.
Perez, R. C., Garzoli, S. L., Meinen, C. S., and Matano R. P.: Geostrophic
Velocity Measurement Techniques for the Meridional Overturning Circulation
and Meridional Heat Transport in the South Atlantic, J. Atmos. Ocean. Tech.,
28, 1504–1520, 2011.
Pham, D. T., Verron, J., and Roubaud, M. C.: A singular evolutive
extended Kalman filter for data assimilation in oceanography, J. Mar. Syst., 16, 323–340, 1998.
Rabe, B., Schott, F. A., and Köhl, A.: Mean circulation and variability
of the tropical Atlantic during 1952–2001 in the GECCO assimilation fields,
J. Phys. Oceanogr., 38, 177–192, 2008.
Rühs, S., Getzlaff, K., Durgadoo, J. V., Biastoch, A., and Böning, C. W.: On the suitability of North
Brazil Current transport estimates for monitoring basin-scale AMOC changes,
Geophys. Res. Lett., 42, 8072–8080, https://doi.org/10.1002/2015GL065695, 2015.
Rühs, S., Getzlaff, K., Durgadoo, J. V., Biastoch, A., and Böning,
C. W.: On the suitability of North Brazil Current transport estimates for
monitoring basin-scale AMOC changes, Geophys. Res. Lett., 42, 8072–8080,
https://doi.org/10.1002/2015GL065695, 2015.
Schott, F. A., Dengler, M., Zantopp, R., Stramma, L., Fischer, J., and
Brandt, P.: The shallow and deep western boundary circulation of the South
Atlantic at 5∘–11∘ S, J. Phys. Oceanogr., 35,
2031–2053, 2005.
Sebille, E. V., Beal, L. M., and Johns, W. E.: Advective Time Scales of
Agulhas Leakage to the North Atlantic in Surface Drifter Observations and
the 3D OFES Model, J. Phys. Oceanogr., 41, 1026–1034, 2011.
Simmons, A., Uppala S., Dee, D., and Kobayashi, S.: ERA-Interim: New ECMWF
reanalysis products from 1989 onwards, ECMWF Newsletter, 110, 25–35, 2007.
Sitz, L. E., Farneti, R., and Griffies, S. M.: Simulated South Atlantic
transports and their variability during 1958–2007, Ocean Model., 91, 70–90,
2015.
Smith, G. C., and Haines, K.: Evaluation of the S(T) assimilation method
with the Argo dataset, Q. J. Roy. Meteorol. Soc., 135, 739–756,
2009.
Soutelino, R. G., Gangopadhyay, A., and da Silveira, I. C. A.: The
roles of vertical shear and topography on the eddy formation near the site
of origin of the Brazil Current, Cont. Shelf Res., 70, 46–60, 2013.
Stepanov, V. N. and Haines, K.: Mechanisms of Atlantic Meridional Overturning
Circulation variability simulated by the NEMO model, Ocean Sci., 10, 645–656,
https://doi.org/10.5194/os-10-645-2014, 2014.
Stepanov, V., Haines, K., and Smith, G. C.: Assimilation of Rapid Array data
into an ocean model, Q. J. Roy. Meteror. Soc., 138, 2105–2117, 2012.
Stepanov, V. N., Iovino, D., Masina, S., Storto, A., and Cipollone, A.: The
impact of horizontal resolution of density field on the calculation of the
Atlantic meridional overturning circulation at 34∘ S, J. Geophys.
Res.-Oceans, 121, 6, 4323–4340, https://doi.org/10.1002/2015JC011505, 2016.
Storkey, D., Blockley, E. W., Furner, R., Guiavarch, C., Lea, D., Martin,
M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.:
Forecasting the ocean state using NEMO: The new FOAM system, J. Oper.
Oceanogr., 3, 3–15, 2010.
Storto, A. and Masina, S.: C-GLORSv5: an improved multipurpose global ocean eddy-permitting
physical reanalysis, Earth Syst. Sci. Data, 8, 679–696, https://doi.org/10.5194/essd-8-679-2016, 2016.
Storto, A., Dobricic, S., Masina, S., and Di Pietro, P.: Assimilating
along-track altimetric observations through local hydro static adjustments
in a global ocean reanalysis system, Mon. Weather Rev., 139, 738–754, 2011.
Stramma, L. and Schott, F.: The mean flow field of the tropical Atlantic
Ocean, Deep-Sea Res. Pt. II, 46, 279–303, 1999.
Talley, L. D.: Shallow, intermediate and deep overturning components of the
global heat budget, J. Phys. Oceanogr., 33, 530–560, 2003.
Talley, L. D.: Freshwater transport estimates and the global overturning
circulation: Shallow, deep and throughflow components, Prog. Oceanogr., 78,
257–303, 2008.
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Descriptive
Physical Oceanography: An Introduction (Sixth Edition), Elsevier, Boston,
560 pp., 2011.
Timmermann, R., Goosse, H., Madec, G., Fichefet, T., Ethe, C., and Duliere,
V.: On the representation of high latitude processes in the ORCA-LIM global
coupled sea ice-ocean model, Ocean Model., 8, 175–201, 2005.
Treguier, A. M., Deshayes, J., Le Sommer, J., Lique, C., Madec, G., Penduff, T.,
Molines, J.-M., Barnier, B., Bourdalle-Badie, R., and Talandier, C.: Meridional
transport of salt in the global ocean from an eddy-resolving model, Ocean Sci.,
10, 243–255, https://doi.org/10.5194/os-10-243-2014, 2014.
Trenberth, K. E. and Caron, J. M.: Estimates of meridional atmosphere and
ocean heat transports, J. Climate, 14, 3433–3443, 2001.
Valdivieso, M., Haines , K., Zuo, H., and Lea, D.: Freshwater and heat
transports from global ocean synthesis, J. Geophys. Res-Ocean., 119,
394–409, https://doi.org/10.1002/2013JC009357, 2014.
Weijer, W., de Ruijter, W. P. M., Sterl, A., and Drijfhout, S. S.: Response
of the Atlantic overturning circulation to South Atlantic sources of
buoyancy, Glob. Planet. Change, 34, 293–311, 2002.
Zuo, H., Mugford, R. I., Haines, K., and Smith, G. C.: Assimilation impacts
on Arctic Ocean circulation, heat and freshwater, Ocean Model., 40,
147–163, https://doi.org/10.1016/j.ocemod.2011.08.008, 2011.
Zuo, H., Balmaseda, M. A., and Mogensen, K.: The new eddy-permitting ORAP5
ocean reanalysis: description, evaluation and uncertainties in climate
signals, Clim. Dynam., 49, 791–811, https://doi.org/10.1007/s00382-015-2675-1, 2015.
Short summary
Four ocean reanalyses and two free-running models are compared to study the meridional transports in the South Atlantic. We analyse the underlying causes of the product differences in an attempt to understand the potential impact (and limitations) of the data assimilation (DA) in improving the simulated ocean states. The DA schemes can consistently constrain the basin interior transports, but not the overturning circulation dominated by the narrow South Atlantic western boundary currents.
Four ocean reanalyses and two free-running models are compared to study the meridional...