Articles | Volume 14, issue 3
https://doi.org/10.5194/os-14-471-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-471-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond
Rainer Feistel
CORRESPONDING AUTHOR
Leibniz Institute for Baltic Sea Research (IOW), Warnemünde,
18119, Germany
Invited contribution by Rainer Feistel, recipient of the EGU Fridtjof Nansen Medal 2018.
Related authors
Rainer Feistel
Ocean Sci., 20, 1367–1402, https://doi.org/10.5194/os-20-1367-2024, https://doi.org/10.5194/os-20-1367-2024, 2024
Short summary
Short summary
Around 90 % global warming occurs in the ocean but is insufficiently understood at the air–sea interface. Thermodynamics of the standard TEOS-10 is an improved tool for the description of heat exchange processes.
This article is included in the Encyclopedia of Geosciences
Trevor J. McDougall, Paul M. Barker, Rainer Feistel, and Fabien Roquet
Ocean Sci., 19, 1719–1741, https://doi.org/10.5194/os-19-1719-2023, https://doi.org/10.5194/os-19-1719-2023, 2023
Short summary
Short summary
A thermodynamic potential is derived, with the temperature argument being Conservative Temperature. All thermodynamic quantities can be derived from this new thermodynamic potential function, and it enables the accurate (to computer machine precision) calculation of the in situ temperature and entropy of seawater. This new thermodynamic potential function adds fundamental thermodynamic justification to the adoption of Conservative Temperature in oceanography in 2010.
This article is included in the Encyclopedia of Geosciences
Rainer Feistel
Ocean Sci., 20, 1367–1402, https://doi.org/10.5194/os-20-1367-2024, https://doi.org/10.5194/os-20-1367-2024, 2024
Short summary
Short summary
Around 90 % global warming occurs in the ocean but is insufficiently understood at the air–sea interface. Thermodynamics of the standard TEOS-10 is an improved tool for the description of heat exchange processes.
This article is included in the Encyclopedia of Geosciences
Trevor J. McDougall, Paul M. Barker, Rainer Feistel, and Fabien Roquet
Ocean Sci., 19, 1719–1741, https://doi.org/10.5194/os-19-1719-2023, https://doi.org/10.5194/os-19-1719-2023, 2023
Short summary
Short summary
A thermodynamic potential is derived, with the temperature argument being Conservative Temperature. All thermodynamic quantities can be derived from this new thermodynamic potential function, and it enables the accurate (to computer machine precision) calculation of the in situ temperature and entropy of seawater. This new thermodynamic potential function adds fundamental thermodynamic justification to the adoption of Conservative Temperature in oceanography in 2010.
This article is included in the Encyclopedia of Geosciences
Related subject area
Approach: Analytic Theory | Depth range: All Depths | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater
Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations
R. Pawlowicz, D. G. Wright, and F. J. Millero
Ocean Sci., 7, 363–387, https://doi.org/10.5194/os-7-363-2011, https://doi.org/10.5194/os-7-363-2011, 2011
R. Feistel, D. G. Wright, D. R. Jackett, K. Miyagawa, J. H. Reissmann, W. Wagner, U. Overhoff, C. Guder, A. Feistel, and G. M. Marion
Ocean Sci., 6, 633–677, https://doi.org/10.5194/os-6-633-2010, https://doi.org/10.5194/os-6-633-2010, 2010
Cited articles
Abbot, C. G. and Fowle Jr., F. E.: Income and Outgo of Heat from the Earth, and the Dependence of Its Temperature Thereon, Annals of the Astrophysical Observatory (Smithsonian Institution, Washington DC), 2, 159–176, 1908.
Alberty, R. A.: Use of Legendre transforms in chemical thermodynamics, Pure Appl. Chem., 73, 1349–1380, https://doi.org/10.1351/pac200173081349, 2001.
Arrhenius, S.: On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, London, Edinburgh, and Dublin, Philosophical Magazine and Journal of Science (fifth series), 41, 237–275, 1896.
Bielska, K., Havey, D. K., Scace, G. E., Lisak, D., Harvey, A. H., and Hodges, J. T.: High-accuracy measurements of the vapor pressure of ice referenced to the triple point, Geophys. Res. Lett., 40, 6303–6307, https://doi.org/10.1002/2013GL058474, 2013.
Bigg, P. H.: Density of water in S.I. units over the range 0-40 C, Brit. J. Appl. Phys., 18, 521–537, 1967.
Bjerrum, N.: On the activity-coefficient for ions, Meddelanden från Kungliga Vetenskapsakademiens Nobelinstitut, 5, 1–21, German translation: Der Aktivitätskoeffizient der lonen, Zeitschrift für anorganische und allgemeine Chemie, 109, 275–292, 1920, https://doi.org/10.1002/zaac.19201090119, 1919.
Bjerrum, N.: Ionic association. I. Influence of ionic association on the activity of ion at moderate degree of association, Det Kongelige Danske videnskabernes selskabs skrifter 7, 1–48, 1926.
Brewer, P. G.: A short history of ocean acidification science in the 20th century: a chemist's view, Biogeosciences, 10, 7411–7422, https://doi.org/10.5194/bg-10-7411-2013, 2013.
Bronstein, I. N. and Semendjajew, K. A.: Taschenbuch der Mathematik, Nauka, Moscow, and Teubner, Leipzig, 1979.
Budéus, G. Th.: Potential bias in TEOS10 density of sea water samples, Deep-Sea Res. Pt. I, 134, 41–47, https://doi.org/10.1016/j.dsr.2018.02.005, 2018.
Burchard, H., Bolding, K., Feistel, R., Gräwe, U., Klingbeil, K., MacCready, P., Mohrholz, V., Umlauf, L., and van der Lee, E. M.: The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea, Prog. Oceanogr., https://doi.org/10.1016/j.pocean.2018.04.004, in press, 2018.
Caldwell, D. R.: The maximum density points of pure and saline water, Deep-Sea Res., 25, 175–181, https://doi.org/10.1016/0146-6291(78)90005-X, 1978.
Camões, F., Anes, B., Martins, H., Oliveira, C., Fisicaro, P., Stoica, D., and Spitzer, P.: Assessment of H+ in complex aqueous solutions approaching seawater, J. Electroanal. Chem., 764, 88–92, https://doi.org/10.1016/j.jelechem.2016.01.014, 2016.
Carritt, D. E.: Chemical instrumentation, The Sea, Volume 2, The Composition of Sea-Water, Comparative and Descriptive Oceanography, edited by: Hill, M. N., Wiley, New York, 109–123, 1963.
CCT: Recommendation T 1 for a new definition of the kelvin in 2018, Consultative Committee for Thermometry (CCT), Report of the 28th meeting (1–2 June 2017) to the International Committee for Weights and Measures, Bureau International des Poids et Mesures, Sèvres, available at: https://www.bipm.org/utils/common/pdf/CC/CCT/CCT28.pdf (last access: 9 June 2018), 2017.
Chen, C. T. and Millero, F. J.: Sound speed of seawater at high pressures, J. Acoust. Soc. Am., 62, 1129–1135, https://doi.org/10.1121/1.381646, 1977.
Chen, C. T. and Millero, F. J.: Precise thermodynamical properties for natural waters covering only the limnological range, Limnol. Oceanogr., 31, 657–662, https://doi.org/10.4319/lo.1986.31.3.0657, 1986.
Cheng, L., Trenberth, K. E., Palmer, M. D., Zhu, J., and Abraham, J. P.: Observed and simulated full-depth ocean heat-content changes for 1970–2005, Ocean Sci., 12, 925–935, https://doi.org/10.5194/os-12-925-2016, 2016.
CGPM: On the revision of the International System of Units (SI). Draft Resolution A – 26th meeting of the CGPM (13–16 November 2018), The General Conference on Weights and Measures (CGPM), available at: https://www.bipm.org/utils/en/pdf/CGPM/Draft-Resolution-A-EN.pdf (last access: 9 June 2018), 2018.
Culkin, F. and Smed, J.: History of standard seawater, Oceanol. Acta, 2, 355–364, available at: http://archimer.ifremer.fr/doc/00122/23351/, (last access: 9 June 2018), 1979.
De Bievre, P. and Günzler, H. (Eds.): Traceability in Chemical Measurement, Springer-Verlag, Berlin, Heidelberg, 2005.
De Groot, S. R. and Mazur, P.: Non-equilibrium Thermodynamics, Dover Publications, New York, 1984.
Del Grosso, V. A.: New equation for the speed of sound in natural waters (with comparison to other equations), J. Acoust. Soc. Am., 56, 1084–1091, https://doi.org/10.1121/1.1903388, 1974.
Dickson, A. G.: pH scales and proton-transfer reactions in saline media such as sea water, Geochim. Cosmochim. Ac., 48, 2299–2308, https://doi.org/10.1016/0016-7037(84)90225-4, 1984.
Dickson, A. G., Camões, M. F., Spitzer, P., Fisicaro, P., Stoica, D., Pawlowicz, R., and Feistel, R.: Metrological challenges for measurements of key climatological observables. Part 3: Seawater pH, Metrologia, 53, R26–R39, https://doi.org/10.1088/0026-1394/53/1/R26, 2016.
Dorsey, N. E.: Properties of Ordinary Water-Substance, Hafner Publishing Company, New York, 1968.
Dushaw, B. D., Worcester, P. F., Cornuelle, B. D., and Howe, B. M.: On equations for the speed of sound in seawater, J. Acoust. Soc. Am., 94, 255–275, https://doi.org/10.1121/1.405660, 1993.
Ebeling, W. and Grigo, M.: Mean spherical approximation-mass action law theory of equilibrium and conductance in ionic solutions, J. Solution Chem., 11, 151–167, https://doi.org/10.1007/BF00667599, 1982.
Ebeling, W. and Scherwinski, K.: On the estimation of theoretical individual activity coefficients of electrolyte, Z. Phys. Chem., Leipzig, 264, 1–14, 1983.
Emden, R.: Über Strahlungsgleichgewicht und atmosphärische Strahlung, Ein Beitrag zur Theorie der oberen Inversion, Sitzungsberichte der mathematisch-physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften zu München, Jahrgang 1913, 55–142, 1913.
Emery, W. J., Talley, L. D., and Pickard, G. L.: Descriptive Physical Oceanography, Elsevier, Amsterdam, 2006.
Falkenhagen, H., Ebeling, W., and Hertz, H. G.: Theorie der Elektrolyte, S. Hirzel Verlag, Leipzig, 1971.
Fasullo, J. T. and Trenberth, K. E.: A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity, Science, 338, 792–794, https://doi.org/10.1126/science.1227465, 2012.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J.: Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans, Science, 305, 362–366, https://doi.org/10.1126/science.1097329, 2004.
Feistel, R.: Thermodynamics of Seawater, in: German Democratic Republic National Report for the period 1.1.1987–2.10.1990 (Final Report), edited by: Striggow, K. and Schröder, A., IAPSO, presented at the XX. General Assembly of the IUGG, Wien 1991, Institut für Meereskunde, Warnemünde, https://doi.org/10.13140/RG.2.1.3973.3282, 1991.
Feistel, R.: Equilibrium thermodynamics of seawater revisited, Prog. Oceanogr., 31, 101–179, https://doi.org/10.1016/0079-6611(93)90024-8, 1993.
Feistel, R.: A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr., 58, 43–114, https://doi.org/10.1016/S0079-6611(03)00088-0, 2003.
Feistel, R.: A Gibbs function for seawater thermodynamics for –6 to 80 °C and salinity up to 120 g kg−1, Deep-Sea Res. Pt. I, 55, 1639–1671, https://doi.org/10.1016/j.dsr.2008.07.004, 2008.
Feistel, R.: Extended equation of state for seawater at elevated temperature and salinity, Desalination, 250, 14–18, https://doi.org/10.1016/j.desal.2009.03.020, 2010.
Feistel, R.: TEOS-10: A New International Oceanographic Standard for Seawater, Ice, Fluid Water, and Humid Air, Int. J. Thermophys., 33, 1335–1351, https://doi.org/10.1007/s10765-010-0901-y, 2012.
Feistel, R.: Water, Steam and Climate, Proc. 16th Int. Conf. on the Properties of Water and Steam (Greenwich, UK, 1–5 September 2013), https://doi.org/10.13140/2.1.3855.9043, 2013.
Feistel, R.: Salinity and relative humidity: climatological relevance and metrological needs, Acta IMEKO, 4, 57–61, https://doi.org/10.21014/acta_imeko.v4i4.216, 2015.
Feistel, R.: Salzgehalt des Meeres und relative Feuchte der Luft: Rolle im Klimasystem und Probleme ihrer Definition [Salinity of the sea and relative humidity of the air: role in the climate system and problems of their definition], Leibniz Online, 25, 1–20, available at: https://leibnizsozietaet.de/wp-content/uploads/2017/01/Feistel.pdf (last access: 9 June 2018), 2017.
Feistel, R. and Ebeling, W.: Physics of Self-Organization and Evolution, Wiley-VCH, Weinheim, 2011.
Feistel, R. and Feistel, S.: Die Ostsee als thermodynamisches System [The Baltic Sea as a thermodynamic system], in: Irreversible Prozesse und Selbstorganisation, edited by: Schimansky-Geier, L., Malchow, H. and Pöschel, T., Logos-Verlag, Berlin, 247–264, available at: http://www.mss.cbi.fau.de/content/uploads/EbBook.pdf (last access: 9 June 2018), 2006.
Feistel, R. and Hagen, E.: Thermodynamic Quantities in Oceanography, in: The Oceans: Physical-Chemical Dynamics and Human Impact, edited by: Majumdar, S. K., Miller, G. S., Schmalz, R. F., and Panah, A. A., The Pennsylvania Academy of Science, Easton, PA, 1–16, https://doi.org/10.1016/0079-6611(96)00001-8, 1994.
Feistel, R. and Hagen, E.: On the GIBBS thermodynamic potential of seawater, Prog. Oceanogr., 36, 249–327, https://doi.org/10.1016/S0165-232X(98)00014-7, 1995.
Feistel, R. and Hagen, E.: A Gibbs thermodynamic potential of sea ice, Cold Reg. Sci. Technol., 28, 83–142, https://doi.org/10.1088/1681-7575/aa7083, 1998.
Feistel, R. and Lovell-Smith, J. W.: Defining relative humidity in terms of water activity. Part 1: definition, Metrologia, 54, 566–576, https://doi.org/10.1016/j.pocean.2007.04.020, 2017.
Feistel, R. and Marion, G. M.: A Gibbs–Pitzer function for high-salinity seawater thermodynamics, Prog. Oceanogr., 74, 515–539, 2007.
Feistel, R. and Wagner, W.: A Comprehensive Gibbs Thermodynamic Potential of Ice, Proceedings of the 14th International Conference on the Properties of Water and Steam, Kyoto, Japan, 30 August–3 September 2004, 10.13140/2.1.1619.4880, 2004.
Feistel, R. and Wagner, W.: High-pressure thermodynamic Gibbs functions of ice and sea ice, J. Mar. Res., 63, 95–139, https://doi.org/10.1357/0022240053693789, 2005.
Feistel, R. and Wagner, W.: A new equation of state for H2O ice Ih, J. Phys. Chem. Ref. Data, 35, 1021–1047, https://doi.org/10.1063/1.2183324, 2006.
Feistel, R. and Wagner, W.: Sublimation pressure and sublimation enthalpy of H2O ice Ih between 0 and 273.16 K, Geochim. Cosmochim. Ac., 71, 36–45, https://doi.org/10.1063/1.3657937, 2007.
Feistel, R., Lovell-Smith, J., and Hellmuth, O.: Virial Approximation of the TEOS-10 Equation for the Fugacity of Water in Humid Air, Int. J. Thermophys., 36, 44–68, https://doi.org/10.1007/s10765-014-1784-0, 2015.
Feistel, R., Wright, D. G., Miyagawa, K., Harvey, A. H., Hruby, J., Jackett, D. R., McDougall, T. J., and Wagner, W.: Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography, Ocean Sci., 4, 275–291, https://doi.org/10.5194/os-4-275-2008, 2008a.
Feistel, R., Tailleux, R., and McDougall, T.: Thermophysical properties of seawater, Ocean Sci., https://www.ocean-sci.net/special_issue14.html (last access: 9 June 2018), 2008b.
Feistel, R., Wright, D. G., Jackett, D. R., Miyagawa, K., Reissmann, J. H., Wagner, W., Overhoff, U., Guder, C., Feistel, A., and Marion, G. M.: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations, Ocean Sci., 6, 633–677, https://doi.org/10.5194/os-6-633-2010, 2010a.
Feistel, R., Wright, D. G., Kretzschmar, H.-J., Hagen, E., Herrmann, S., and Span, R.: Thermodynamic properties of sea air, Ocean Sci., 6, 91–141, https://doi.org/10.5194/os-6-91-2010, 2010b.
Feistel, R., Weinreben, S., Wolf, H., Seitz, S., Spitzer, P., Adel, B., Nausch, G., Schneider, B., and Wright, D. G.: Density and Absolute Salinity of the Baltic Sea 2006–2009, Ocean Sci., 6, 3–24, https://doi.org/10.5194/os-6-3-2010, 2010c.
Feistel, R., Marion, G. M., Pawlowicz, R., and Wright, D. G.: Thermophysical property anomalies of Baltic seawater, Ocean Sci., 6, 949–981, https://doi.org/10.5194/os-6-949-2010, 2010d.
Feistel, R., Wielgosz, R., Bell, S. A., Camões, M. F., Cooper, J. R., Dexter, P., Dickson, A. G., Fisicaro, P., Harvey, A. H., Heinonen, M., Hellmuth, O., Kretzschmar, H.-J., Lovell-Smith, J. W., McDougall, T. J., Pawlowicz, R., Ridout, R., Seitz, S., Spitzer, P., Stoica, D., and Wolf, H.: Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: overview, Metrologia, 53, R1–R11, https://doi.org/10.1088/0026-1394/53/1/R1, 2016.
Fellmuth, B., Fischer, J., Machin, G., Picard, S., Steur, P. P. M., Tamura, O., White, D. R., and Yoon, H.: The kelvin redefinition and its mise en pratique, Philos. T. R. Soc. A, 374, 20150037, https://doi.org/10.1098/rsta.2015.0037, 2016.
Fernicola, V., Rosso, L., and Giovannini, M.: Investigation of the Ice–Water Vapor Equilibrium Along the Sublimation Line, Int. J. Thermophys., 33, 1363–1373, https://doi.org/10.1007/s10765-011-1128-2, 2012.
Fischer, J.: Low uncertainty Boltzmann constant determinations and the kelvin redefinition, Philos. T. R. Soc. A, 374, 20150038, https://doi.org/10.1098/rsta.2015.0038, 2016.
Fischer, M.: Carbonate chemistry and CaCO3 precipitation as ikaite in Antarctic sea ice: Analysis in the Southern Ocean and off Adélie Land, Antarctica, University of Leipzig, Diploma thesis, http://hdl.handle.net/10013/epic.33808.d001 (last access: 9 June 2018), 2009.
Fofonoff, N. P.: Physical properties of sea-water, in: The Sea, edited by: Hill, M. N., Wiley, New York, 3–30, 1962.
Forch, C., Knudsen, M., and Sørensen, S. P. L.: Berichte über die Konstantenbestimmungen zur Aufstellung der hydrographischen Tabellen, D. Kgl. Danske Vidensk. Selsk. Skrifter 6. Raekke, naturvidensk. og mathem. Afd. XII, 1, 151 pp., 1902.
Gagnon, R. E., Kiefte, H., Clouter, M. J., and Whalley, E.: Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy, J. Chem. Phys., 89, 4522–4528, https://doi.org/10.1063/1.454792, 1988.
Gammon, P. H., Kiefte, H., Clouter, M. J., and Denner, W.W.: Elastic constants of artificial and natural ice samples by Brillouin spectroscopy, J. Glaciol., 29, 433–460, https://doi.org/10.1021/j100244a004, 1983.
Gammon, P. H., Kiefte, H., Clouter, M. J., and Denner, W. W.: Elastic constants of ice samples by brillouin spectroscopy, J. Glaciol., 29, 433–459, https://doi.org/10.3189/S0022143000030355, 1983.
Gatley, D. P.: Understanding Psychrometrics, 2nd Edn., American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA, USA, 2005.
Gibbs, J. W.: Graphical methods in the thermodynamics of fluids, Transactions of the Connecticut Academy of Arts and Science, 2, 309–342, 1873a.
Gibbs, J. W.: A Method of Graphical Representation of the Thermodynamic Properties of Substances by Means of Surfaces, Transactions of the Connecticut Academy of Arts and Science, 2, 382–404, 1873b.
Gill, A. E.: Atmosphere-Ocean Dynamics, Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto, 1982.
Gleitz, M., Rutgers van der Loeff, M. M., Thomas, D. N., Dieckmann, G. S., and Millero, F. J.: Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine, Mar. Chem., 51, 81–91, https://doi.org/10.1016/0304-4203(95)00053-T, 1995.
Goff, J. A. and Gratch, S.: Thermodynamic properties of moist air, Transactions of the American Society of Heating and Ventilating Engineers, 51, 125–164, 1945.
Goldberg, R. N. and Weir, R. D.: Conversion of temperatures and thermodynamic properties to the basis of the International Temperature Scale of 1990, Pure Appl. Chem., 64, 1545–1562, https://doi.org/10.1351/pac199264101545, 1992.
Gradshteyn, I. S. and Ryzhik, I. M.: Tables of Integrals, Series, and Products, Academic Press, San Diego, CA, 2000.
Guggenheim, E. A.: Thermodynamics, North-Holland Publishing Company, Amsterdam, 1949.
Harvey, A. H. and Huang, P. H.: First-Principles Calculation of the Air-Water Second Virial Coefficient, Int. J. Thermophys., 28, 556–565, https://doi.org/10.1007/s10765-007-0197-8, 2007.
Harvey, A. H., McLinden, M. O., and Tew, W. L.: Thermodynamic analysis and experimental study of the effect of atmospheric pressure on the ice point temperature: Its Measurement and Control in Science and Industry Proc. 9th Int. Temperature Symp., Anaheim, CA, 19–23 March 2012, vol. 8 AIP Conf. Proc. 1552, 221–226, https://doi.org/10.1063/1.4819543, 2013.
Harvey, A. H., Span, R., Fujii, K., Tanaka, M., and Davis, R. S.: Density of water: roles of the CIPM and IAPWS standards, Metrologia, 46, 196–198, https://doi.org/10.1088/0026-1394/46/3/006, 2009.
Hellmuth, O., Feistel, R., Lovell-Smith, J., and Kalova, J.: Metrological aspects of humidity: state of discussion on common positions, challenges, and needs, Technical Report of the Joint BIPM CCT-WG6/CCQM & JCS Workshop on Hygrometry, 16th Int. Conf. on the Properties of Water and Steam (Greenwich, UK, 2013), available at: http://www.teos-10.org/JCS.htm (last access: 9 June 2018), 2014.
Hellmuth, O., Feistel, R., Lovell-Smith, J., Kalova, J., Kretzschmar, H.-J., and Herrmann, S.: Determination of the Properties of Humid Air using the Thermodynamic Equation of Seawater TEOS-10, Wissenschaftliche Mitteilungen des Instituts für Meteorologie der Universität Leipzig, in press, 2018.
Herrmann, S., Kretzschmar, H.-J., and Gatley, D. P.: Thermodynamic properties of real moist air, dry air, steam, water, and ice, ASHRAE RP-1485 (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.), https://doi.org/10.1080/10789669.2009.10390874, 2017.
Hobbs, P. V.: Ice Physics, Clarendon Press, Oxford, 1974.
Hyland, R. W. and Wexler, A.: Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15,K, and of saturated moist air from 173.15 K to 372.15 K, at pressures up to 5 MPa, ASHRAE Tran., 89, 520–535, 1983.
IAPSO: IAPSO Annual Reports, 2005 IAPSO Activities, available at: http://iapso.iugg.org/home-iapso8/iapso-annual-reports.html?showall=&star=12 (last access: 9 June 2018), 2005.
IAPWS: Minutes from 2005 IAPWS Meeting, IAPWS Thermophysical Properties of Water and Steam WG, Santorini, Greece, 4–8 July 2005, available at: http://www.iapws.org/minutes/2005.html (last access: 10 June 2018), 2005.
IAPWS: Minutes from 2007 IAPWS Meeting, IAPWS Thermo-physical Properties of Water and Steam WG, Lucerne, Switzerland, 27–30 August 2007, available at: http://www.iapws.org/minutes/2007.html (last access: 8 June 2018), 2007.
IAPWS: Minutes of the Meetings of the Executive Committee of the International Association for the Properties of Water and Steam, Berlin, Germany, 7–12 September 2008, available at: http://www.iapws.org/minutes/2008/ContentsandECMinutes2008.pdf (last access: 10 June 2018), 2008.
IAPWS: Minutes of the Meetings of the Executive Committee of the International Association for the Properties of Water and Steam held in Boulder, Colorado, 30 September–5 October 2012, available at: http://www.iapws.org/minutes/2012/ECMinutes2012.pdf (last access: 10 June 2018), 2012.
IAPWS: Press Release 16th Int. Conf. on the Properties of Water and Steam and Int. Association for the Properties of Water and Steam 2013 Meeting, available at: www.iapws.org/news/Press2013.pdf (last access: 10 June 2018), 2013.
IAPWS AN4-09: Advisory Note No. 4: Roles of IAPWS and CIPM Standards for the Density of Water (Doorwerth, The Netherlands: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2009.
IAPWS AN5-13: Advisory Note No. 5: Industrial Calculation of the Thermodynamic Properties of Seawater (Dresden, Germany: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2016.
IAPWS AN6-16: Advisory Note No. 6: Relationship between Various IAPWS Documents and the International Thermodynamic Equation of Seawater – 2010 (TEOS-10) (Dresden, Germany: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2016.
IAPWS G11-15: Guideline on a Virial Equation for the Fugacity of H2O in Humid Air (Stockholm, Sweden: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2015.
IAPWS G12-15: Guideline on Thermodynamic Properties of Supercooled Water (Stockholm, Sweden: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2015.
IAPWS G5-01: Guideline on the Use of Fundamental Physical Constants and Basic Constants of Water (Dresden, Germany: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2016.
IAPWS G8-10: Guideline on an Equation of State for Humid Air in Contact with Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater (Niagara Falls, Canada: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2010.
IAPWS G11-15: Guideline on a Virial Equation for the Fugacity of H2O in Humid Air (Stockholm, Sweden: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2015.
IAPWS G9-12: Guideline on a Low-Temperature Extension of the IAPWS-95 Formulation for Water Vapor (Boulder, Colorado, USA: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2012.
IAPWS R13-08: Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater, Berlin, Germany: The International Association for the Properties of Water and Steam, available at: http://www.iapws.org (last access: 10 June 2018), 2008.
IAPWS R10-06: Revised Release on the Equation of State 2006 for H2O Ice Ih (Doorwerth, The Netherlands: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2009.
IAPWS R14-08: Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance (Plzeň, Czech Republic: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2011.
IAPWS R6-95: Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (Dresden, Germany: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2016.
IAPWS SR1-86: Revised Supplementary Release on Saturation Properties of Ordinary Water Substance (St. Petersburg, Russia: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 1992.
IAPWS SR6-08: Revised Supplementary Release on Properties of Liquid Water at 0.1 MPa (Plzeň, Czech Republic: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2011.
IAPWS SR7-09: Supplementary Release on a Computationally Efficient Thermodynamic Formulation for Liquid Water for Oceanographic Use (Doorwerth, The Netherlands: The International Association for the Properties of Water and Steam), available at: http://www.iapws.org (last access: 10 June 2018), 2009.
IOC: Intergovernmental Oceanographic Commission, Twenty-fifth Session of the Assembly, Paris, 16–25 June 2009. Resolution XXV-7, INTERNATIONAL THERMODYNAMIC EQUATION OF SEAWATER (TEOS-10) Part I,, available at: http://unesdoc.unesco.org/images/0018/001878/187890e.pdf (last access: 10 June 2018), 2009.
IOC, SCOR, IAPSO: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp., Paris, available at: http://www.TEOS-10.org (last access: 10 June 2018), 2010.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., available at: http://www.ipcc.ch/report/ar5/wg1/ (last access: 10 June 2018), 2013.
IUGG: Int. Union of Geodesy and Geophysics, XXV General Assembly, Melbourne, Australia, Comptes Rendus, available at: www.iugg.org/assemblies/2011melbourne/ (last access: 10 June 2018), 27 June–7 July 2011.
Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies, S. M.: Algorithms for Density, Potential Temperature, Conservative Temperature, and the Freezing Temperature of Seawater, J. Atmos. Ocean. Tech., 23, 1706–1728, 2006.
Jacobsen, J. P. and Knudsen, M.: Urnormal 1937 or primary standard sea-water 1937, Assoc. Oceanog. Phys., Pub. Sci., No. 7, 38 pp., 1940.
Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, 2nd edn., Cambridge University Press, Cambridge, 2005.
Josey, S. A., Gulev, S., and Yu, L.: Exchanges Through the Ocean Surface, in: Ocean Circulation and Climate, edited by: Siedler, G., Griffies, S. M., Gould, J., and Church, J. A., A 21st Century Perspective, Elsevier, Amsterdam, 115–140, 2013.
Justice, J.-C.: Ionic Interactions in Solution: VI. The Activity Expansion and the Association Concept, J. Solution Chem., 20, 1017–1029, https://doi.org/10.1007/BF00664000, 1991.
Kaplan, W.: Advanced Calculus, Addison-Wesley, Reading, MA, 1984.
Kell, G. S.: Density, thermal expansibility and compressibility of liquid water from 0 to 150 C: corrections and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data, 20, 97–105, https://doi.org/10.1021/je60064a005, 1975.
Knudsen, M.: On the standard-water used in the hydrographical research until July 1903, Tech. rep., Conseil permanent international pour l'exploration de la mer, Publications de circonstance no. 2, 1903.
Kraus, E. B. and Businger, J. A.: Atmosphere–Ocean Interaction, Oxford University Press/Clarendon, New York, Oxford, 1994.
Kremling, K.: New method for measuring density of seawater, Nature, 229, 109–110, https://doi.org/10.1038/229109a0, 1971.
Kretzschmar, H.-J., Feistel, R., Wagner, W., Miyagawa, K., Harvey, A. H., Cooper, J. R., Hiegemann, M., Blangetti, F., Orlov, K., Weber, I., Singh, A., and Herrmann, S.: The IAPWS Industrial Formulation for the Thermodynamic Properties of Seawater, Desalin. Water Treat., 55, 1177–1199, https://doi.org/10.1080/19443994.2014.925838, 2015.
Krümmel, O.: Handbuch der Ozeanographie, Band I, Verlag von J. Engelhorn, Stuttgart, 1907.
Kwiecinski, B.: The relation between the chlorinity and the conductivity in Baltic water, Deep-Sea Res., 12, 113–120, https://doi.org/10.1016/0011-7471(65)90017-3, 1965.
Lacis, A. A., Schmidt, G. A., Rind, D., and Ruedy, R. A.: Atmospheric CO2: Principal Control Knob Governing Earth's Temperature, Science, 330, 356–359, https://doi.org/10.1126/science.1190653, 2010.
Lago, S., Giuliano Albo, P. A., von Rohden, C., and Rudtsch, S.: Speed of sound measurements in North Atlantic Seawater and IAPSO Standard Seawater up to 70 MPa, Mar. Chem., 177, 662–667, https://doi.org/10.1016/j.marchem.2015.10.007, 2015.
Landau, L. D. and Lifschitz, E. M.: Statistische Physik. Akademie-Verlag, Berlin, 1966.
Lemmon, E. W., Jacobsen, R. T., Penoncello, S. G., and Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen From 60 to 2000 K at Pressures to 2000 MPa, J. Phys. Chem. Ref. Data, 29, 331–362, https://doi.org/10.1063/1.1285884, 2000.
Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I., Jain, A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C. S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R., Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng, N.: Global carbon budget 2014, Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, 2015.
Lewis, E. L.: The Practical Salinity Scale 1978 and its antecedents, IEEE J. Oceanic Eng., OE-5, 3–8, https://doi.org/10.1109/JOE.1980.1145448, 1980.
Lewis, E. L. and Perkin, R. G.: Salinity: Its definition and calculation, J. Geophys. Res., 83, 466–478, https://doi.org/10.1029/JC083iC01p00466, 1978.
Lewis, G. N.: The law of physico-chemical change, P. Am. Acad. Arts Sci., 37, 49–69, https://doi.org/10.2307/20021635,1901.
Lewis, G. N. and Randall, M.: Thermodynamics and the Free Energy of Chemical Substances, MacGraw-Hill Book Company, New York, 1923.
Linke, F. and Baur, F.: Meteorologisches Taschenbuch, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1970.
Logan, B. W. and Cebulsk, D. E.: Sedimentary environments of Shark Bay, Western Australia, in: Carbonate Sedimentation and Environments, Shark Bay, Western Australia, Memoir No. 13, The American Association of Petroleum Geologists, 1–37, 1970.
Lovell-Smith, J. W., Feistel, R., Harvey, A. H., Hellmuth, O., Bell, S. A., Heinonen, M., and Cooper, J. R.: Metrological challenges for measurements of key climatological observables. Part 4: atmospheric relative humidity, Metrologia, 53, R40–R59, https://doi.org/10.1088/0026-1394/53/1/R40, 2016.
Lübken, F.-J., Lautenbach, J., Höffner, J., Rapp, M., and Zecha, M.: First continuous temperature measurements within polar mesosphere summer echoes, J. Atmos. Sol.-Terr. Phys., 71, 453–463, https://doi.org/10.1016/j.jastp.2008.06.001, 2009.
Lyman, J.: Redefinition of salinity and chlorinity, Limnol. Oceanogr., 14, 928–929, https://doi.org/10.4319/lo.1969.14.6.0928, 1969.
Margenau, H. and Murphy, G. M.: The Mathematics of Physics and Chemistry, D. van Nostrand Company, Inc., New York, 1943.
Marion, G. M. and Grant, S. A.: FREZCHEM: A Chemical-Thermodynamic Model for Aqueous Solutions at Subzero Temperatures, CRREL Special Report 94-18, U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, Hanover, NH, https://doi.org/10.1016/j.marchem.2011.04.002, 1994.
Marion, G. M. and Kargel, J. S.: Cold Aqueous Planetary Geochemistry with FREZCHEM: From Modeling to the Search for Life at the Limits, Springer, Berlin/Heidelberg, 2008.
Marion, G. M., Millero, F. J., and Feistel, R.: Precipitation of solid phase calcium carbonates and their effect on application of seawater SA–T–P models, Ocean Sci., 5, 285–291, https://doi.org/10.5194/os-5-285-2009, 2009.
Marion, G. M., Millero, F. J., Camões, F., Spitzer, P., Feistel, R., and Chen, C.-T. A.: pH of Seawater, Mar. Chem., 126, 89–96, 2011.
McDougall, T. J.: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes, J. Phys. Oceanogr., 33, 945–963, https://doi.org/10.1175/1520-0485(2003)033<945:PEACOV>2.0.CO;2, 2003.
McDougall, T. J. and Feistel, R.: What causes the adiabatic lapse rate? Deep-Sea Res. Pt. I, 50, 1523–1535, https://doi.org/10.1016/j.dsr.2003.09.007, 2003.
McDougall, T. J., Jackett, D. R., Wright, D. G., and Feistel, R.: Accurate and computationally efficient algorithms for potential temperature and density of seawater, J. Atmos. Ocean. Tech., 20, 730–741, https://doi.org/10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2, 2003.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 28 pp., 2011.
McDougall, T. J., Chen, C.-T. A., Feistel, R., Gramm-Osipova, V. N., Jackett, D. R., King, B. A., Marion, G. M., Spitzer, P., Wright, D., and Tremaine, P.: Improved seawater thermodynamics: How should the proposed change in salinity be implemented?, DGM-Mitteilungen, 3-4, 2–7, 2008.
McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R., and Barker, P. M.: A global algorithm for estimating Absolute Salinity, Ocean Sci., 8, 1123–1134, https://doi.org/10.5194/os-8-1123-2012, 2012.
McDougall, T. J., Feistel, R., and Pawlowicz, R.: Thermodynamics of Seawater, in: Ocean Circulation and Climate, A 21st Century Perspective, edited by: Siedler, G., Griffies, S. M., Gould, J., and Church, J. A., Academic Press/Elsevier, Oxford/Amsterdam, 141–158, 2013.
Millero, F. J.: The physical chemistry of estuaries, in: Marine Chemistry in the Coastal Environment, edited by: Church, T. M., American Chemical Society, 25–55, 1975.
Millero, F. J.: Effects of changes in the composition of seawater on the density–salinity relationship, Deep-Sea Res. Pt. 1, 47, 1583–1590, https://doi.org/10.1016/S0967-0637(99)00104-1, 2000a.
Millero, F. J.: The Equation of State of Lakes, Aquat. Geochem., 6, 1–17, https://doi.org/10.1023/A:1009626325650, 2000b.
Millero, F. J.: The thermodynamics of seawater. Part I. The PVT properties, Ocean Phys. Eng., 7, 403–460, 1982.
Millero, F. J.: The Thermodynamics of Seawater. Part II. Thermochemical Properties, Ocean Phys. Eng., 8, 1–40, 1983.
Millero, F. J.: What is psu?, Oceanography, 6, p. 67, 1993.
Millero, F. J. and Huang, F.: The density of seawater as a function of salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K), Ocean Sci., 5, 91–100, https://doi.org/10.5194/os-5-91-2009, 2009.
Millero, F. J. and Huang, F.: The compressibility of seawater from 0 to 95 °C at 1 atm, Mar. Chem., 126, 149–154, https://doi.org/10.1016/j.marchem.2011.05.003, 2011.
Millero, F. J. and Leung, W. H.: The thermodynamics of seawater at one atmosphere, Am. J. Sci., 276, 1035–1077, https://doi.org/10.2475/ajs.276.9.1035, 1976.
Millero, F. J. and Kremling, K.: The densities of Baltic Sea waters, Deep-Sea Res., 23, 1129–1138, https://doi.org/10.1016/0011-7471(76)90889-5, 1976.
Millero, F. J. and Li, X.: Comments on “On equations for the speed of sound in seawater” [J. Acoust. Soc. Am. 94, 255–275 (1993)], J. Acoust. Soc. Am., 95, 2757–2759, https://doi.org/10.1121/1.409844, 1994.
Millero, F. J., Gonzales, A., Brewer, P. G., and Bradshaw, A.: The density of North Atlantic and North Pacific deep waters, Earth Planet. Sc. Lett., 32, 468–472, https://doi.org/10.1016/0012-821X(76)90087-X, 1976.
Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.: The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep-Sea Res. Pt. I, 55, 50–72, https://doi.org/10.1016/j.dsr.2007.10.001, 2008.
Millero, F. J., Waters, J., Woosley, R., Huang, F., and Chanson, M.: The effect of composition on the density of Indian Ocean waters, Deep-Sea Res. Pt. I, 55, 460–470, https://doi.org/10.1016/j.dsr.2008.01.006, 2008.
Millero, F. J., Huang, F., Williams, N., Waters, J., and Woosley, R.: The effect of composition on the density of South Pacific Ocean waters, Mar. Chem., 114, 56–62, https://doi.org/10.1016/j.marchem.2009.04.001, 2009.
Millero, F. J., Huang, F., Woosley, R. J., Letscher, R. T., and Hansell, D. A.: Effect of dissolved organic carbon and alkalinity on the density of Arctic Ocean waters, Aquat. Geochem., 17, 311–326, https://doi.org/10.1007/s10498-010-9111-2, 2011.
Mulligan, J. F. and Hertz, G. G.: An unpublished lecture by Heinrich Hertz: “On the energy balance of the Earth”, Am. J. Phys., 65, 36–45, https://doi.org/10.1119/1.18565, 1997.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc., 131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
Nayar, K. G., Sharkawy, M. H., Banchik, L. D., and Lienhard, V. J. H.: Thermophysical properties of seawater: A review and new correlations that include pressure dependence, Desalination, 390, 1–24, https://doi.org/10.1016/j.desal.2016.02.024, 2016.
Nesbitt, H. W.: A Consistency Test for Single Ion Activity Coefficients in Electrolyte Solutions, Including Seawater, Chem. Geol., 29, 107–116, https://doi.org/10.1016/0009-2541(80)90008-X, 1980.
OMI: Values of some physical functions and constants used in meteorology, Definitions and specifications of water vapour in the atmosphere, Organisation Météorologique Internationale, Publication 79, Lausanne, 1951.
Pátek, J., Hrubý, J., Klomfar, J., Součková, M., and Harvey, A. H.: Reference correlations for thermophysical properties of liquid water at 0.1 MPa, J. Phys. Chem. Ref. Data, 38, 21–29, 2009.
Pawlowicz, R.: Calculating the Conductivity of Natural Waters, Limnol. Oceanogr.-Meth., 4, 489–501, https://doi.org/10.4319/lom.2008.6.489, 2008.
Pawlowicz, R.: A model for predicting changes in the electrical conductivity, practical salinity, and absolute salinity of seawater due to variations in relative chemical composition, Ocean Sci., 6, 361–378, https://doi.org/10.5194/os-6-361-2010, 2010.
Pawlowicz, R. and Feistel, R.: Limnological applications of the Thermodynamic Equation of Seawater 2010 (TEOS-10), Limnol. Oceanogr.-Meth., 10, 853–867, https://doi.org/10.4319/lom.2012.10.853, 2012.
Pawlowicz, R., McDougall, T., Feistel, R., and Tailleux, R.: Preface “An historical perspective on the development of the Thermodynamic Equation of Seawater – 2010”, Ocean Sci., 8, 161–174, https://doi.org/10.5194/os-8-161-2012, 2012.
Pawlowicz, R., Feistel, R., and McDougall, T. J.: SCOR/IAPSO/IAPWS Joint Committee on Seawater, available at: http://www.scor-int.org/JCS.htm (last access: 10 June 2018), 2014.
Pawlowicz, R., Feistel, R., McDougall, T. J., Ridout, P., Seitz, S., and Wolf, H.: Metrological challenges for measurements of key climatological observables, Part 2: Oceanic salinity, Metrologia, 53, R12–R25, https://doi.org/10.1088/0026-1394/53/1/R12, 2016.
Penny, A. H.: A theoretical determination of the elastic constants of ice, Proc. Camb. Phil. Soc. Math. Phys. Sci., 44, 423–439, 1948.
Petrenko, V. F. and Whitworth, R. W.: Physics of Ice, Oxford University Press, Oxford, 1999.
Picard, A., Davis, R. S., Gläser, M., and Fujii, K.: Revised formula for the density of moist air (CIPM-2007), Metrologia, 45, 149–55, https://doi.org/10.1088/0026-1394/45/2/004, 2008.
Pierrehumbert, R. T.: Principles of Planetary Climate, Cambridge University Press, Cambrige, 2010.
Prausnitz, J. M., Lichtenthaler, R. N., and de Azevedo, E. G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn., Prentice Hall, Upper Saddle River, NJ, 1999.
Preston-Thomas, H.: The International Temperature Scale of 1990 (ITS-90), Metrologia, 27, 3–10, 1990.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, Second Revised and Enlarged Edition with an Introduction to Cloud Chemistry and Cloud Electricity, Kluwer Academic Publishers, Dordrecht, Boston, MA, London, 1997.
PTB: The new International System of Units (SI), Physikalisch-Technische Bundesanstalt, Braunschweig, 2017.
Reid, P. C. and Valdés, L.: ICES status report on climate change in the North Atlantic, ICES Cooperative Research Report 310, ICES, Copenhagen, 2011.
Rogers, R. R. and Yau, M. K.: Short Course in Cloud Physics, 3rd edn., Butterworth-Heinemann, Oxford, 1989.
Rohde, K.-H.: Untersuchungen über die Calcium- und Magnesiumanomalie in der Ostsee, Beitr. Meereskunde, 19, 18–31, 1966.
Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.: Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard, Ocean Model., 90, 29–43, https://doi.org/10.1016/j.ocemod.2015.04.002, 2015.
Rusby, R. L.: The conversion of thermal reference values to the ITS-90, J. Chem. Thermodyn., 23, 1153–1161, https://doi.org/10.1016/S0021-9614(05)80148-X, 1991.
Rusby, R. L., Hudson, R. P., and Durieux, M.: Revised Values for (t90 – t68) from 630 °C to 1064 °C, Metrologia, 31, 149–153, https://doi.org/10.1088/0026-1394/31/2/009, 1994.
Safarov, J., Millero, F., Feistel, R., Heintz, A., and Hassel, E.: Thermodynamic properties of standard seawater: extensions to high temperatures and pressures, Ocean Sci., 5, 235–246, https://doi.org/10.5194/os-5-235-2009, 2009.
Safarov, J., Millero, F. J., Feistel, R., Heintz, A., and Hassel, E. P.: Pressure, Density, and Temperature Properties and Vapor Pressure of Seawater in Various Salinities, Chem.-Ing.-Tech., 82, 1587–1587, https://doi.org/10.1002/cite.201050649m 2010.
Safarov, J., Berndt, S., Millero, F. J., Feistel, R., Heintz, A., and Hassel, E. P.: (p, ρ, T) properties of seawater: Extensions to high salinities, Deep-Sea Res. Pt. I, 65, 146–156, https://doi.org/10.1016/j.dsr.2012.03.010, 2012.
Safarov, J., Berndt, S., Millero, F.J., Feistel, R., Heintz, A., and Hassel, E. P.: (p, ρ, T) Properties of seawater at brackish salinities: Extensions to high temperatures and pressures, Deep-Sea Res. Pt. I, 78, 95–101, https://doi.org/10.1016/j.dsr.2013.04.004, 2013.
Saunders, P.: The International Temperature Scale of 1990, ITS-90, WOCE Newsletter, 10, available at: https://www.nodc.noaa.gov/woce/wdiu/wocedocs/newsltr/news10/contents.htm (last access: 10 June 2018), 1990.
Schmidt, G. A., Ruedy, R. A., Miller, R. L., and Lacis, A. A.: The attribution of the present-day total greenhouse effect, J. Geophys. Res., 115, D20106, https://doi.org/10.1029/2010JD014287, 2010.
Schmidt, H., Wolf, H., and Hassel, E.: A method to measure the density of seawater accurately to the level of 10−6, Metrologia, 53, 770–786, https://doi.org/10.1088/0026-1394/53/2/770, 2016.
Schmidt, H., Seitz, S., Hassel, E., and Wolf, H.: The density–salinity relation of standard seawater, Ocean Sci., 14, 15–40, https://doi.org/10.5194/os-14-15-2018, 2018.
Schulson, E. M.: The structure and mechanical behavior of ice, Memb. J. Min. Met. Mat. Soc., 51, 21–27, https://doi.org/10.1007/s11837-999-0206-4, 1999.
SCOR: SCOR Electronic Newsletter #4, October 2005, available at: http://www.scor-int.org/Publications/SCOR-NL-4.pdf (last access: 10 June 2018), 2005.
Seitz, S., Spitzer, P. and Brown, R. J. C.: CCQM-P111 study on traceable determination of practical salinity and mass fraction of major seawater components, Accredit. Qual. Assur. 15, 9–17, https://doi.org/10.1007/s00769-009-0578-8, 2010.
Seitz, S., Feistel, R., Wright, D. G., Weinreben, S., Spitzer, P., and De Bièvre, P.: Metrological traceability of oceanographic salinity measurement results, Ocean Sci., 7, 45–62, https://doi.org/10.5194/os-7-45-2011, 2011.
Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M.: Thermophysical properties of seawater: a review of existing correlations and data, Desalin. Water Treat., 16, 354–380, https://doi.org/10.5004/dwt.2010.1079 , 2010.
Sharp, J. D., Albehadili, M. H. M., Millero, F. J., and Woosley, R. J.: Estimating the Density and Compressibility of Natural Hypersaline Brines Using the Pitzer Ionic Interaction Model, Aquat. Geochem., 21, 11–29, https://doi.org/10.1007/s10498-015-9252-4, 2015.
Shaw, A. N.: The Derivation of Thermodynamical Relations for a Simple System, Philos. T. Roy. Soc. Lond. A, 234, 299–328, https://doi.org/10.1098/rsta.1935.0009, 1935.
Sherwood, S. C., Ingram, W., Tsushima, Y., Satoh, M., Roberts, M., Vidale, P. L., and O'Gorman, P. A.: Relative humidity changes in a warmer climate, J. Geophys. Res., 115, D09104, https://doi.org/10.1029/2009JD012585, 2010.
Siedler, G.: SI units in oceanography, Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, Nr. 101, 1998.
Siedler, G. and Peters, H.: Properties of seawater, in: Landolt-Börnstein New Series V/3a, Oceanography, edited by: Sündermann, J., Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, 233–264, 1986.
Sörensen, S. P. L.: Enzymstudien. II. Mitteilung, Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen, Biochem. Z., 21, 131–304, 1909.
Sørensen, S. P. L. and Linderstrøm-Lang, K. U.: On the Determination and Value of π0 in Electrometric Measurement of Hydrogen-Ion Concentration, Comptes rendus des travaux du laboratoire Carlsberg, 15, 1-40, 1924.
Sörensen, S. P. L. and Palitzsch, S.: Über die Messung der Wasserstoffionenkonzentration des Meerwassers, Biochem. Z., 24, 387–415, 1910.
Sonntag, D.: Hygrometrie, Akademie-Verlag, Berlin, 1966.
Spitzer, P., Fisicaro, P., Meinrath, G., and Stoica, D.: pH buffer assessment and Pitzer's equations, Accredit. Qual. Assur., 16, 191–198, https://doi.org/10.1007/s00769-010-0743-0, 2011.
Stevens, B. and Bony, S.: What Are Climate Models Missing?, Science, 340, 1053–1054, https://doi.org/10.1126/science.1237554, 2013.
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H.: The Oceans, their Physics, Chemistry and General Biology, Prentice-Hall Inc., New York, 1942.
Tanaka, M., Girard, G., Davis, R., Peuto, A., and Bignell, N.: Recommended table for the density of water between 0 °C and 40 °C based on recent experimental reports, Metrologia, 38, 301–309, https://doi.org/10.1088/0026-1394/38/4/3, 2001.
Tillner-Roth, R.: Fundamental Equations of State, Shaker Verlag, Aachen, 1998.
Tollefsen, J.: A break in the clouds, Nature, 485, 164–166, https://doi.org/10.1038/485164a, 2012.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., and Zhai, P.: Observations: Surface and Atmospheric Climate Change, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor M., and Miller, H. L., Cambridge, United Kingdom and New York, NY, USA, available at: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter3-supp-material.pdf (last access: 11 June 2018), 2007.
Tsunogai, S., Kusakabe, M., Iizumi, H., Koike, I., and Hattori, A.: Hydrographic features of the deep water of the Bering Sea – the Sea of Silica, Deep-Sea Res., 26, 641–659, https://doi.org/10.1016/0198-0149(79)90038-4, 1979.
Turner, D. R., Achterberg, E. P., Chen, C.-T. A., Clegg, S. L., Hatje, V., Maldonado, M. T., Sander, S. G., van den Berg, C. M. G., and Wells, M.: Toward a Quality-Controlled and Accessible Pitzer Model for Seawater and Related Systems, Frontiers in Marine Science, 3, 139, https://doi.org/10.3389/fmars.2016.00139, 2016.
Uchida, H., Kawano, T., Aoyama, M., and Murata, A.: Absolute salinity measurements of standard seawaters for conductivity and nutrients, La mer, 49, 119–126, available at: http://www.sfjo-lamer.org/la_mer/49-3_4/49-3-4-5.pdf (last access: 11 June 2018), 2011.
Unesco: Collected reports of the joint panel on oceanographic tables and standards, 1964–1969, Unesco Technical Paper Marine Science, 27, UNESCO, Paris, 1976.
Unesco: The Practical Salinity Scale 1978 and the International Equation of State of Seawater 1980. Tenth report of the joint panel on oceanographic tables and standards, Unesco Technical Paper Marine Science, 36, UNESCO, Paris, available at: http://unesdoc.unesco.org/images/0004/000461/046148eb.pdf (last access: 11 June 2018), 1981a.
Unesco: Background papers and supporting data on the International Equation of State of Sea water 1980, Unesco Technical Paper Marine Science, 38, UNESCO, Paris, available at: http://unesdoc.unesco.org/images/0004/000479/047932eb.pdf (last access: 11 June 2018), 1981b.
Unesco: Background papers and supporting data on the Practical Salinity Scale 1978, Unesco Technical Paper Marine Science, 37, UNESCO, Paris, 1981c.
Unesco: Algorithms for computation of fundamental properties of seawater, Unesco Technical Papers in Marine Science, 44, UNESCO, Paris, available at: http://unesdoc.unesco.org/images/0005/000598/059832eb.pdf (last access: 11 June 2018), 1983.
Unesco: The International System of Units (SI) in Oceanography, Unesco Technical Papers in Marine Science, 45, UNESCO, Paris, 1985.
Unesco: Progress on oceanographic tables and standards 1983–1986: Work and recommendations of the Unesco/SCOR/ICES/IAPSO Joint Panel, Unesco Technical Papers in Marine Science, 50, UNESCO, Paris, 1986.
Valladares, J., Fennel, W., and Morozov, E. G.: Announcement: Replacement of EOS-80 with the International Thermodynamic Equation of Seawater – 2010 (TEOS-10), Deep-Sea Res., 58, p. 978, https://doi.org/10.1016/j.dsr.2011.07.005, 2011a.
Valladares, J., Fennel, W., and Morozov, E. G.: Announcement: Replacement of EOS-80 with the International Thermodynamic Equation of Seawater – 2010 (TEOS-10), Ocean Model., 40, p. 1, https://doi.org/10.1016/S1463-5003(11)00154-5, 2011b.
VIM3: International Vocabulary of Metrology – Basic and General Concepts and Associated Terms, VIM 3rd edn., JCGM 200, available at: https://www.bipm.org/en/publications/guides/vim.html (last access: 11 June 2018), 2012.
Von Rohden, C., Fehres, F., and Rudtsch, S.: Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater, J. Acoust. Soc. Am., 138, 651–662, https://doi.org/10.1121/1.4926380, 2015.
von Rohden, C., Weinreben, S., and Fehres, F.: The sound speed anomaly of Baltic seawater, Ocean Sci., 12, 275–283, https://doi.org/10.5194/os-12-275-2016, 2016.
Wagner, W. and Kretzschmar, H.-J.: International Steam Tables, Springer-Verlag Berlin, Heidelberg, 2008.
Wagner, W. and Pruß, A.: The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data, 31, 387–535, https://doi.org/10.1063/1.1461829, 2002.
Wagner, W., Riethmann, T., Feistel, R., and Harvey, A. H.: New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih, J. Phys. Chem. Ref. Data, 40, 043103, https://doi.org/10.1063/1.3657937, 2011.
Wallace, W. J.: The Development of the Chlorinity/Salinity Concept in Oceanography, Elsevier, Amsterdam, London, New York, 1974.
Waters, J. F. and Millero, F. J.: The free proton concentration scale for seawater pH, Mar. Chem., 149, 8–22, https://doi.org/10.1016/j.marchem.2012.11.003, 2013.
Weir, R. D. and Goldberg, R. N.: On the conversion of thermodynamic properties to the basis of the International Temperature Scale of 1990, J. Chem. Thermodyn., 28, 261–276, https://doi.org/10.1006/jcht.1996.0026, 1996.
Wells, N. C.: The Atmosphere and Ocean, Wiley-Blackwell, Oxford, 2012.
Wiechert, H., Krienke, H., Feistel, R., and Ebeling, W.: Interionische Wechselwirkung und Thermodynamik starker Elektrolyte, Z. Phys. Chem.-Leipzig, 259, 1057–1076, 1978.
Wirth, H. E.: The Problem of the Density of Seawater, J. Mar. Res., 3, 230–247, 1940.
WMO: Guide to Meteorological Instruments and Methods of Observation, 7th edn., World Meteorological Organization, Geneva, Switzerland, available at: https://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf (last access: 11 June 2018), 2008.
WMO: Report on the WMO-BIPM workshop on Measurement Challenges for Global Observation Systems for Climate Change Monitoring: Traceability, Stability and Uncertainty, WMO Headquarters, Geneva, Switzerland, 30 March–1 April 2010.
Wolf, H.: Determination of water density: limitations at the uncertainty level of 1×10−6, Accredit. Qual. Assur., 13, 587–591, https://doi.org/10.1007/s00769-008-0442-2, 2008.
Woosley, R. J., Huang, F., and Millero, F. J.: Estimating absolute salinity (SA) in the world's oceans using density and composition, Deep-Sea Res. Pt.I, 93, 14–20, 2014.
Wright, D. G., Feistel, R., Reissmann, J. H., Miyagawa, K., Jackett, D. R., Wagner, W., Overhoff, U., Guder, C., Feistel, A., and Marion, G. M.: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines, Ocean Sci., 6, 695–718, https://doi.org/10.5194/os-6-695-2010, 2010a.
Wright, D. G., Pawlowicz, R., McDougall, T. J., and Feistel, R.: Progress Report for the SCOR/IAPSO Working Group 127 on “Thermodynamics and Equation of State of Seawater”, Canadian Ocean Science Newsletter 49, 30 March 2010, Canadian National Committee for SCOR, available at: http://cmosarchives.ca/scor/NL30Mar2010.pdf (last access: 11 June 2018), 2010b.
Wright, D. G., Pawlowicz, R., McDougall, T. J., Feistel, R., and Marion, G. M.: Absolute Salinity,“'Density Salinity” and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10, Ocean Sci., 7, 1–26, https://doi.org/10.5194/os-7-1-2011, 2011.
Short summary
TEOS-10 is the present international standard for thermodynamic properties of water, ice, seawater and humid air recommended for geosciences by leading international organisations such as UNESCO/IOC and IUGG. TEOS-10 incorporates an extended manifold of different experimental data for those substances, collected from publications over many decades, in an unprecedentedly compact, consistent, comprehensive and accurate way.
TEOS-10 is the present international standard for thermodynamic properties of water, ice,...