AVISO: AVISO User Handbook for Merged TOPEX/POSEIDON products, CLS, ref. AVI-NT-02-101,
CNES, Toulouse, France and CLS, Ramonville, France, available at:
https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_tp_gdrm.pdf
(last access: June 2018), 1996. a
Chassignet, E. P., Smith, L. T., Halliwell, G. R., and Bleck, R.: North Atlantic
simulation with the HYbrid Coordinate Ocean Model (HYCOM): Impact of the vertical
coordinate choice, reference density, and thermobaricity, J. Phys. Oceanogr.,
33, 2504–2526, 2003. a
Cummings, J. A. and Smedstad, O. M.: Variational data analysis for the global
ocean, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications,
Vol. II., edited by: Park, S. K. and Xu, L., Springer-Verlag, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-35088-7_13, 2013.
a
de Ruijter, W. P. M.: Asymptotic analysis of the Agulhas and Brazil Current
systems, J. Phys. Oceanogr., 12, 361–373, 1982. a
Fisher, A.: The circulation and stratification of the Brazil Current, MS thesis,
New York University, New York, 86 pp., 1964. a
Garfield, N.: The Brazil Current at subtropical latitudes, PhD thesis,
Univ. of Rhode Island, Rhode Island, 1990. a
Garzoli, S. L.: Geostrophic velocity and transport variability in the Brazil/Malvinas
Confluence, Deep-Sea Res., 40, 1379–1404, 1993.
a,
b,
c
Garzoli, S. L., Baringer, M. O., Dong, S., Perez, R. C., and Yao, Q.: South
Atlantic meridional fluxes, Deep-Sea Res. Pt. I, 71, 21–32,
https://doi.org/10.1016/j.dsr.2012.09.003, 2013.
a,
b,
c,
d,
e,
f,
g
Goni, G. J. and Wainer, I.: Brazil Current front dynamics from altimeter data.,
J. Geophys. Res., 106, 31,117–31,128, 2001.
a,
b,
c,
d,
e
Goni, G. J., Bringas, F., and DiNezio, P. N.: Observed low frequency variability
of the Brazil Current front, J. Geophys. Res., 116, 1–10,
https://doi.org/10.1029/2011JC007198, 2011.
a,
b,
c,
d,
e,
f,
g
Gordon, A. L.: Brazil-Malvinas Confluence – 1984, Deep-Sea Res., 36, 359–384, 1989.
a,
b,
c
Gordon, A. L., Weiss, R. F., Smethie, W. M., and Warner, M. J.: Thermocline and
Intermediate Water communication between the South Atlantic and Indian Oceans,
J. Geophys. Res., 97, 7223–7240, 1992. a
Jullion, L., Heywood, K. J., Garabato, A. C. N., and Stevens, D. P.:
Circulation and Water Mass Modification in the Brazil-Malvinas Confluence, J.
Phys. Oceanogr., 40, 845–864,
https://doi.org/10.1175/2009JPO4174.1, 2006.
a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J., Fiorino, M.,
and Potter, G. L.: NCEP-DEO AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc.,
83, 1631–1643, 2002. a
Karoly, D. J.: Southern Hemisphere circulation features associated with
El Niño–Southern Oscillation events, J. Climate, 2, 1239–1251, 1989. a
Lima, M. O., Cirano, M. M., Goes, M., Goni, G., and Baringer, M. O.: An
assessment of the Brazil Current baroclinic structure and variability near
22
∘ S in distinct ocean forecasting and analysis systems, Ocean Dynam.,
66, 893–916,
https://doi.org/10.1007/s10236-016-0959-6, 2016.
a,
b
Lopez, H., Dong, S., Lee, S.-K., and Campos, E.: Remote influence of interdecadal
Pacific Oscillation on the South Atlantic Meridional Overturning Circulation
variability, Geophys. Res. Lett., 43, 8250–8258,
https://doi.org/10.1002/2016GL069067, 2016.
a,
b,
c
Maamaatuaiahutapu, K., Garçon, V. C., Provost, C., and Mercier, H.:
Transports of the Brazil and Malvinas Currents at their Confluence, J. Mar.
Res., 56, 417–438, 1998.
a,
b,
c
Majumder, S., Schmid, C., and Halliwell, G.: An observations and model-based
analysis of meridional transports in the South Atlantic, J. Geophys. Res., 121,
5622–5638,
https://doi.org/10.1002/2016JC011693, 2016.
a,
b,
c
Marshall, G. J.: Trends in the Southern Annular Mode from observations and
reanalyses, J. Climate, 16, 4134–4143, 2003. a
Mata, M. M., Cirano, M., van Caspe, M., Fonteles, C., Goni, G., and Baringer,
M.: Observations of Brazil Current baroclinic transport near 22
∘ S:
variability from the AX97 XBT transect, CLIVAR Exchanges, 58, 5–10, 2012.
a,
b,
c,
d,
e
Matano, R. P.: On the Separation of the Brazil Current from the Coast, J. Phys.
Oceanogr., 23, 79–89, 1993. a
Mill, G. N., da Costa, V. S., Lima, N. D., Gabioux, M., Guerra, L. A. A., and
Paiva, A. M.: Northward migration of Cape São Tomé rings, Brazil, Cont.
Shelf Res., 106, 27–37,
https://doi.org/10.1016/j.csr.2015.06.010, 2015.
a,
b
Mo, K. C. and Ghil, M.: Statistics and dynamics of persistent anomalies, J.
Atmos. Sci., 44, 877–901, 1986.
a,
b
Msadek, R., Johns, W. E., Yeager, S. G., Danabasoglu, G., Delworth, T. L., and
Rosatiglu, A.: The Atlantic Meridional Heat Transport at 26.58
∘ N and
Its Relationship with the MOC in the RAPID Array and the GFDL and NCAR Coupled
Models, J. Climate, 26, 4335–4356,
https://doi.org/10.1175/JCLI-D-12-00081.1, 2014.
a
Müller, T., Ikeda, Y., Zangenberg, N., and Nonato, L.: Direct measurements
of western boundary currents off Brazil between 20
∘ S and 28
∘ S,
J. Geophys. Res., 103, 5429–5437,
https://doi.org/10.1029/97JC03529, 1998.
a
Oliveira, L. R., Piola, A. R., Mata, M. M., and Soares, I. D.: Brazil Current
surface circulation and energetics observed from drifting buoys, J. Geophys.
Res., 114, 1–12,
https://doi.org/10.1029/2008JC004900, 2009.
a,
b,
c,
d,
e,
f
Peterson, R. G.: On the volume transport in the southwestern South Atlantic
(abstract), EOS Trans. Am. Geophys. Union, 71, 542, 1990. a
Peterson, R. G. and Stramma, L.: Upper-level circulation in the South Atlantic
Ocean, Prog. Oceanogr., 26, 1–73, 1991.
a,
b,
c
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu,
E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen,
J., Collins, D., Conaty, A., and da Silva, A.: MERRA: NASA's Modern-Era
Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
a
Rocha, C. B., Tandon, A., da Silveira, I. C. A., and Lima, J. A. M.: Traditional
quasi-geostrophic modes and surface quasi-geostrophic solutions in the
Southwestern Atlantic, J. Geophys. Res., 118, 2734–2745,
https://doi.org/10.1002/jgrc.20214, 2013.
a
Rocha, C. B., da Silveira, I. C. A., Castro, B. M., and Lima, J. A. M.: Vertical
structure, energetics, and dynamics of the Brazil Current System at
22
∘ S–28
∘ S, J. Geophys. Res., 119, 52–69,
https://doi.org/10.1002/2013JC009143, 2014.
a
Rodrigues, R. R., Dampos, E. J. D., and Haarsma, R.: The Impact of ENSO on the
South Atlantic Subtropical Dipole Mode, J. Climate, 28, 2691–2705,
https://doi.org/10.1175/JCLI-D-14-00483.1, 2015.
a
Schmid, C.: Mean vertical and horizontal structure of the subtropical circulation
in the South Atlantic from three-dimensional observed velocity fields, Deep-Sea
Res. Pt. I, 91, 50–71,
https://doi.org/10.1016/j.dsr.2014.04.015, 2014.
a,
b,
c,
d,
e,
f,
g,
h
Schmid, C., Schäfer, H., Podestá, G., and Zenk, W.: The Vitória
eddy and its relation to the Brazil Current, J. Phys. Oceanogr., 25, 2532–2546, 1995.
a,
b,
c
Signorini, S. R.: On the circulation and the volume transport of the Brazil
Current between the Cape of São Tomé and Guanabara Bay, Deep-Sea Res.,
25, 481–490, 1978. a
Stramma, L.: The Brazil Current transport south of 23
∘ S, Deep-Sea
Res., 36, 639–646, 1989.
a,
b,
c,
d
Vivier, F. and Provost, C.: Direct velocity measurements in the Malvinas Current,
J. Geophys. Res., 104, 21083–21103, 1999.
a,
b
Zemba, J. C.: The structure and transport of the Brazil Current between 27
∘
and 36
∘ south, PhD thesis, Woods Hole Oceanographic Institution,
Woods Hole, MA, USA, 1991.
a,
b