Articles | Volume 14, issue 3
https://doi.org/10.5194/os-14-371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-14-371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific
Yasuhiro Hoshiba
CORRESPONDING AUTHOR
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
Takafumi Hirata
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
Masahito Shigemitsu
Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
Hideyuki Nakano
Meteorological Research Institute, Tsukuba, Japan
Taketo Hashioka
Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
Yoshio Masuda
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
Yasuhiro Yamanaka
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
Related authors
No articles found.
Akitomo Yamamoto, Ayako Abe-Ouchi, and Yasuhiro Yamanaka
Biogeosciences, 15, 4163–4180, https://doi.org/10.5194/bg-15-4163-2018, https://doi.org/10.5194/bg-15-4163-2018, 2018
Short summary
Short summary
Millennial-scale changes in oceanic CO2 uptake due to global warming are simulated by a GCM and offline biogeochemical model. Sensitivity studies show that decreases in oceanic CO2 uptake are mainly caused by a weaker biological pump and seawater warming. Enhanced CO2 uptake due to weaker equatorial upwelling cancels out reduced CO2 uptake due to weaker AMOC and AABW formation. Thus, circulation change plays only a small direct role in reduction of CO2 uptake due to global warming.
Takafumi Hirata and Koji Suzuki
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-164, https://doi.org/10.5194/bg-2017-164, 2017
Preprint withdrawn
Short summary
Short summary
This work delivers a regional estimates of primary production due to diatoms, haptophytes and cyanobacteria around the Kuroshio current. Using a novel methodology, photosynthetic efficiency and abundance of marine phytoplankton are now viewed from a satellite in space. Our see that variability in primary production by diatoms is mainly regulated by their abundance rather than their efficiency, whereas the variability by cyanobacteria is more regulated by their efficiency than their abundance.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
A. P. Palacz, M. A. St. John, R. J. W. Brewin, T. Hirata, and W. W. Gregg
Biogeosciences, 10, 7553–7574, https://doi.org/10.5194/bg-10-7553-2013, https://doi.org/10.5194/bg-10-7553-2013, 2013
M. Vogt, T. Hashioka, M. R. Payne, E. T. Buitenhuis, C. Le Quéré, S. Alvain, M. N. Aita, L. Bopp, S. C. Doney, T. Hirata, I. Lima, S. Sailley, and Y. Yamanaka
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-17193-2013, https://doi.org/10.5194/bgd-10-17193-2013, 2013
Revised manuscript has not been submitted
T. Hashioka, M. Vogt, Y. Yamanaka, C. Le Quéré, E. T. Buitenhuis, M. N. Aita, S. Alvain, L. Bopp, T. Hirata, I. Lima, S. Sailley, and S. C. Doney
Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-6833-2013, https://doi.org/10.5194/bg-10-6833-2013, 2013
C. S. Rousseaux, T. Hirata, and W. W. Gregg
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1083-2013, https://doi.org/10.5194/bgd-10-1083-2013, 2013
Revised manuscript not accepted
Related subject area
Approach: Numerical Models | Depth range: Mixed Layer | Geographical range: All Geographic Regions | Phenomena: Biological Processes
Constraining parameters in marine pelagic ecosystem models – is it actually feasible with typical observations of standing stocks?
U. Löptien and H. Dietze
Ocean Sci., 11, 573–590, https://doi.org/10.5194/os-11-573-2015, https://doi.org/10.5194/os-11-573-2015, 2015
Short summary
Short summary
Marine biogeochemical ocean models are embedded into earth system models - which are, to an increasing degree, applied to project the fate of our warming world. These biogeochemical models generally depend on poorly constrained model parameters. In this study we investigate the the demands on observations for an objective estimation of such parameters. A major result is that even modest noise (10%) inherent to observations can hinder the assignment of reasonable parameters.
Cited articles
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006.
Blauw, A. N., Los, H. F. J., Bokhorst, M., and Erftemeijer, P. L. A.: GEM: a
generic ecological model for estuaries and coastal waters, Hydrobiologia,
618, 175–198, 2009.
Buitenhuis, E. T., Rivkin, R. B., Sailley, S., and Le Quéré, C.:
Biogeochemical fluxes through microzooplankton, Global Biogeochem. Cy., 24,
GB4015, https://doi.org/10.1029/2009GB003601, 2010.
Chai, F., Dugdale, R., Peng, T., Wilkerson, F., and Barber, R.:
One-dimensional ecosystem model of the equatorial Pacific upwelling system,
Part I: model development and silicon and nitrogen cycle, Deep-Sea Res. Pt.
II, 49, 2713–2745, 2002.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, 2011.
Coale, K. H., Wang, X., Tanner, S. J., and Johnson, K. S.: Phytoplankton
growth and biological response to iron and zinc addition in the Ross Sea and
Antarctic Circumpolar Current along 170 W, Deep-Sea Res. Pt II, 50, 635–653,
2003.
Cotrim da Cunha, L., Buitenhuis, E. T., Le
Quéré, C., Giraud, X., and Ludwig, W.: Potential impact of changes in
river nutrient supply on global ocean biogeochemistry, Global Biogeochem.
Cy., 21, GB4007, https://doi.org/10.1029/2006GB002718, 2007.
Edwards, A. M. and Brindley, J.: Oscillatory behaviour in a three-component
plankton population model, Dynam. Stabil. Syst., 11, 347–370, 1996.
Eslinger, D. L., Kashiwai, M. B., Kishi, M. J., Megrey, B. A., Ware, D. M.,
and Werner, F. E.: Final report of the international workshop to develop a
prototype lower trophic level ecosystem model for comparison of different
marine ecosystems in the north Pacific, PICES Scientific Report, 15, 1–77,
2000.
Fasham, M., Ducklow, H., and McKelvie, S.: A nitrogen-based model of plankton
dynamics in the oceanic mixed layer, J. Mar. Res., 48, 591–639, 1990.
Fiechter, J., Herbei, R., Leeds, W., Brown, J., Milliff, R., Wikle, C.,
Moore, A., and Powell, T.: A Bayesian parameter estimation method applied to
a marine ecosystem model for the coastal Gulf of Alaska, Ecol. Model., 258,
122–133, 2013.
Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.: Emergent
biogeography of microbial communities in a model ocean, Science, 315,
1843–1846, 2007.
Fujii, M., Yoshie, N., Yamanaka, Y., and Chai, F.: Simulated biogeochemical
responses to iron enrichments in three high nutrient, low chlorophyll (HNLC)
regions, Prog. Oceanogr., 64, 307–324, 2005.
Fujii, Y. and Kamachi, M.: Three-dimensional analysis of temperature and
salinity in the equatorial Pacific using a variational method with vertical
coupled temperature-salinity empirical orthogonal function modes, J. Geophys.
Res.-Oceans, 108, 3297, https://doi.org/10.1029/2002JC001745, 2003.
Gregg, W. W. and Casey, N. W.: Global and regional evaluation of the SeaWiFS
chlorophyll data set, Remote Sens. Environ., 93, 463–479, 2004.
Hashioka, T., Hirata, T., Chiba S., Noguchi-Aita, M., Nakano, H., and
Yamanaka, Y.: Biogeochemical classification of the global ocean based on
nutrient limitation of phytoplankton growth, Biogeosciences, in
preparation, 2018.
Hashioka, T., Vogt, M., Yamanaka, Y., Le Quéré, C., Buitenhuis, E.
T., Aita, M. N., Alvain, S., Bopp, L., Hirata, T., Lima, I., Sailley, S., and
Doney, S. C.: Phytoplankton competition during the spring bloom in four
plankton functional type models, Biogeosciences, 10, 6833–6850,
https://doi.org/10.5194/bg-10-6833-2013, 2013.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow,
R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and
Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and
diagnostic pigments specific to phytoplankton functional types,
Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hoshiba, Y. and Yamanaka, Y.: Simulation of the effects of bottom topography
on net primary production induced by riverine input, Cont. Shelf Res., 117,
20–29, 2016.
Itoh, S., Yasuda, I., Saito, H., Tsuda, A., and Komatsu, K.: Mixed layer
depth and chlorophyll a: Profiling float observations in the
Kuroshio-Oyashio Extension region, J. Marine Syst., 151, 1–14, 2015.
Jiang, M., Chai, F., Dugdale, R., Wilkerson, F., Peng, T., and Barber, R.: A
nitrate and silicate budget in the equatorial Pacific Ocean: a coupled
physical-biological model study, Deep-Sea Res. Pt. II, 50, 2971–2996, 2003.
Jickells, T. D.: Nutrient biogeochemistry of the coastal zone, Science, 281,
217–221, 1998.
Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L.,
Werner, F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M., and Hashimoto, S.:
NEMURO – a lower trophic level model for the North Pacific marine ecosystem,
Ecol. Model., 202, 12–25, 2007.
Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary
function optimization, Proc. SPIE, 1196, https://doi.org/10.1117/12.969927, 1990.
Kudo, I., Noiri, Y., Nishioka, J., Taira, Y., Kiyosawa, H., and Tsuda, A.:
Phytoplankton community response to Fe and temperature gradients in the NE
(SERIES) and NW (SEEDS) subarctic Pacific Ocean, Deep-Sea Res. Pt. II, 53,
2201–2213, 2006.
Kuroda, H. and Kishi, M. J.: A data assimilation technique applied to
estimate parameters for the NEMURO marine ecosystem model, Ecol. Model., 172,
69–85, 2004.
Lancelot, C., Hannon, E., Becquevort, S., Veth, C., and De Baar, H. J. W.:
Modeling phytoplankton blooms and carbon export production in the Southern
Ocean: dominant controls by light and iron in the Atlantic sector in Austral
spring 1992, Deep-Sea Res. Pt. I, 47, 1621–1662, 2000.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364, 2009.
Longhurst, A.: Seasonal cycles of pelagic production and consumption, Prog.
Oceanogr., 36, 77–167, 1995.
Michaelis, L., Menten, M. L., Johnson, K. A., and Goody, R. S.: The original
Michaelis constant: translation of the 1913 Michaelis-Menten paper,
Biochemistry, 50, 8264–8269, 2011.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, 2013.
Nishioka, J., Ono, T., Saito, H., Sakaoka, K., and Yoshimura, T.: Oceanic
iron supply mechanisms which support the spring diatom bloom in the Oyashio
region, western subarctic Pacific, J. Geophys. Res.-Oceans, 116, C02021,
https://doi.org/10.1029/2010JC006321, 2011.
Parekh, P., Follows, M., and Boyle, E.: Modeling the global ocean iron cycle,
Global Biogeochem. Cy., 18, GB1002, https://doi.org/10.1029/2003GB002061, 2004.
Price, N., Ahner, B., and Morel, F.: The equatorial Pacific Ocean:
Grazercontrolled phytoplankton populations in an iron-limited ecosystem,
Limnol. Oceanogr., 39, 520–534, 1994.
Qiu, B. and Chen, S.: Eddy-mean flow interaction in the decadally modulating
Kuroshio Extension system, Deep-Sea Res. Pt. II, 57, 1098–1110, 2010.
Schartau, M., Wallhead, P., Hemmings, J., Löptien, U., Kriest, I.,
Krishna, S., Ward, B. A., Slawig, T., and Oschlies, A.: Reviews and
syntheses: parameter identification in marine planktonic ecosystem modelling,
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017, 2017.
Shigemitsu, M., Okunishi, T., Nishioka, J., Sumata, H., Hashioka, T., Aita,
M., Smith, S., Yoshie, N., Okada, N., and Yamanaka, Y.: Development of a
onedimensional ecosystem model including the iron cycle applied to the
Oyashio region, western subarctic Pacific, J. Geophys. Res.-Oceans, 117,
C06021, https://doi.org/10.1029/2011JC007689, 2012.
Smith, S. L. and Yamanaka, Y.: Quantitative comparison of photoacclimation
models for marine phytoplankton, Ecol. Model., 201, 547–552, 2007.
Smith, S. L., Yamanaka, Y., Pahlow, M., and Oschlies, A.: Optimal uptake
kinetics: physiological acclimation explains the pattern of nitrate uptake by
phytoplankton in the ocean, Mar. Ecol.-Prog. Ser., 384, 1–12, 2009.
Smith, S. L., Pahlow, M., Merico, A., Acevedo-Trejos, E., Sasai, Y.,
Yoshikawa, C., Sasaoka, K., Fujiki, T., Matsumoto, K., and Honda, M. C.:
Flexible phytoplankton functional type (FlexPFT) model: size-scaling of
traits and optimal growth, J. Plankton Res., 38, 977–992, 2015.
Sugimoto, R., Kasai, A., Miyajima, T., and Fujita, K.: Modeling phytoplankton
production in Ise Bay, Japan: Use of nitrogen isotopes to identify dissolved
inorganic nitrogen sources, Estuar. Coast. Shelf. S., 86, 450–466, 2010.
Sumata, H., Hashioka, T., Suzuki, T., Yoshie, N., Okunishi, T., Aita, M. N.,
Sakamoto, T. T., Ishida, A., Okada, N., and Yamanaka, Y.: Effect of eddy
transport on the nutrient supply into the euphotic zone simulated in an
eddy-permitting ocean ecosystem model, J. Mar. Syst., 83, 67–87, 2010.
Toyoda, T., Awaji, T., Masuda, S., Sugiura, N., Igarashi, H., Sasaki, Y.,
Hiyoshi, Y., Ishikawa, Y., Saitoh, S., and Yoon, S.: Improved state
estimations of lower trophic ecosystems in the global ocean based on a
Green's function approach, Prog. Oceanogr., 119, 90–107, 2013.
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I.,
Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D.,
Yoshimura, T., Aono, T., Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y.,
Noiri, Y., Tani, H., Deguchi, Y., Tsurushima, N., Ogawa, H., Fukami, K.,
Kuma, K., and Saino, T.: A mesoscale iron enrichment in the western subarctic
Pacific induces a large centric diatom bloom, Science, 300, 958–961, 2003.
Tsujino, H., Hirabara, M., Nakano, H., Yasuda, T., Motoi, T., and Yamanaka,
G.: Simulating present climate of the global ocean-ice system using the
Meteorological Research Institute Community Ocean Model (MRI. COM):
simulation characteristics and variability in the Pacific sector, J.
Oceanogr., 67, 449–479, 2011.
Tsurushima, N., Nojiri, Y., Imai, K., and Watanabe, S.: Seasonal variations
of carbon dioxide system and nutrients in the surface mixed layer at station
KNOT (44 N, 155 E) in the subarctic western North Pacific, Deep-Sea Res. Pt.
II, 49, 5377–5394, 2002.
Usui, N., Ishizaki, S., Fujii, Y., Tsujino, H., Yasuda, T., and Kamachi, M.:
Meteorological Research Institute multivariate ocean variational estimation
(MOVE) system: Some early results, Adv. Space Res., 37, 806–822, 2006.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H.,
Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E.,
Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description
and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4,
845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Xiao, Y. and Friedrichs, M. A. M.: The assimilation of satellite-derived data
into a one-dimensional lower trophic level marine ecosystem model, J.
Geophys. Res.-Oceans, 119, 2691–2712, 2014.
Yamanaka, Y., Yoshie, N., Fujii, M., Aita, M. N., and Kishi, M. J.: An
ecosystem model coupled with Nitrogen-Silicon-Carbon cycles applied to
Station A7 in the Northwestern Pacific, J. Oceanogr., 60, 227–241, 2004.
Yoshie, N., Yamanaka, Y., Rose, K. A., Eslinger, D. L., Ware, D. M., and
Kishi, M. J.: Parameter sensitivity study of the NEMURO lower trophic level
marine ecosystem model, Ecol. Model., 202, 26–37, 2007.
Yoshikawa, C., Yamanaka, Y., and Nakatsuka, T.: An ecosystem model including
nitrogen isotopes: perspectives on a study of the marine nitrogen cycle, J.
Oceanogr., 61, 921–942, 2005.
Short summary
We developed a three-dimensional lower-trophic-level marine ecosystem model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate physiological parameters for two phytoplankton functional types in the western North Pacific. The NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation.
We developed a three-dimensional lower-trophic-level marine ecosystem model (NSI-MEM) and...