Articles | Volume 14, issue 2
https://doi.org/10.5194/os-14-293-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-293-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing
Achim Randelhoff
CORRESPONDING AUTHOR
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
now at: Québec-Océan and Takuvik, Département de biologie,
Université Laval, Québec, Canada
Arild Sundfjord
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Related authors
No articles found.
Øyvind Lundesgaard, Arild Sundfjord, Sigrid Lind, Frank Nilsen, and Angelika H. H. Renner
Ocean Sci., 18, 1389–1418, https://doi.org/10.5194/os-18-1389-2022, https://doi.org/10.5194/os-18-1389-2022, 2022
Short summary
Short summary
In this study, 2-year mooring observations show the evolution of temperature, salinity, and currents in the northern Barents Sea. Inflow of Atlantic Water from the north in autumn and winter was the main driver of the seasonal cycle in the ocean. Winds modulated the inflow on shorter timescales. The upper-ocean state reflected how much sea ice had previously melted in the area. The import of ocean water and sea ice from adjacent regions plays a key role in the complex air–ice–ocean interplay.
Pedro Duarte, Philipp Assmy, Karley Campbell, and Arild Sundfjord
Geosci. Model Dev., 15, 841–857, https://doi.org/10.5194/gmd-15-841-2022, https://doi.org/10.5194/gmd-15-841-2022, 2022
Short summary
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Andrey V. Pnyushkov, Igor V. Polyakov, Robert Rember, Vladimir V. Ivanov, Matthew B. Alkire, Igor M. Ashik, Till M. Baumann, Genrikh V. Alekseev, and Arild Sundfjord
Ocean Sci., 14, 1349–1371, https://doi.org/10.5194/os-14-1349-2018, https://doi.org/10.5194/os-14-1349-2018, 2018
Short summary
Short summary
This study describes along-slope volume, heat, and salt transports derived from observations collected between 2013 and 2015 in the eastern Eurasian Basin of the Arctic Ocean using a cross-slope array of six moorings. Inferred transport estimates may have wide implications and should be considered when assessing high-latitude ocean dynamics.
Cited articles
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in
the Arctic circulation, J. Geophys. Res.-Oceans, 94,
14485–14498, https://doi.org/10.1029/JC094iC10p14485, 1989. a
Aagaard, K., Coachman, L., and Carmack, E.: On the halocline of the Arctic
Ocean, Deep-Sea Res., 28,
529–545, 1981. a
Arrigo, K.-R. and van Dijken, G.-L.: Secular trends in Arctic Ocean net
primary production, J. Geohpys. Res., 116, C09011,
https://doi.org/10.1029/2011jc007151, 2011. a
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70,
https://doi.org/10.1016/j.pocean.2015.05.002,
Synthesis of Arctic Research (SOAR), 2015. a, b
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken,
G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bates, N. R.,
Benitez-Nelson, C. R., Brownlee, E., Frey, K. E., Laney, S. R., Mathis, J.,
Matsuoka, A., Mitchell, B. G., Moore, G., Reynolds, R. A., Sosik, H. M., and
Swift, J. H.: Phytoplankton blooms beneath the sea ice in the Chukchi Sea,
Deep-Sea Res. Pt. II, 105, 1–16,
https://doi.org/10.1016/j.dsr2.2014.03.018, 2014. a, b
Bélanger, S., Babin, M., and Tremblay, J.-É.: Increasing cloudiness
in Arctic damps the increase in phytoplankton primary production due to sea
ice receding, Biogeosciences, 10, 4087–4101,
https://doi.org/10.5194/bg-10-4087-2013, 2013 a
Carmack, E. and Chapman, D. C.: Wind-driven shelf/basin exchange on an
Arctic
shelf: The joint roles of ice cover extent and shelf-break bathymetry,
Geophys. Res. Lett., 30, 1778, https://doi.org/10.1029/2003gl017526,
2003. a, b, c
Carmack, E. C.: The alpha/beta ocean distinction: A perspective on
freshwater fluxes, convection, nutrients and productivity in high-latitude
seas, Deep-Sea Res. Pt. II, 54,
2578–2598, https://doi.org/10.1016/j.dsr2.2007.08.018, 2007. a
Codispoti, L., Kelly, V., Thessen, A., Matrai, P., Suttles, S., Hill, V.,
Steele, M., and Light, B.: Synthesis of primary production in the Arctic
Ocean: III. Nitrate and phosphate based estimates of net community
production, Prog. Oceanogr., 110, 126–150,
https://doi.org/10.1016/j.pocean.2012.11.006, 2013. a
Cury, P. and Roy, C.: Optimal Environmental Window and Pelagic Fish
Recruitment
Success in Upwelling Areas, Can. J. Fish. Aquat. Sci., 46, 670–680, https://doi.org/10.1139/f89-086, 1989. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Falk-Petersen, S., Pavlov, V., Berge, J., Cottier, F., Kovacs, K. M., and
Lydersen, C.: At the rainbow's end: high productivity fueled by winter
upwelling along an Arctic shelf, Polar Biol., 38, 5–11
https://doi.org/10.1007/s00300-014-1482-1, 2014. a
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on
arctic
river biogeochemistry, Hydrol. Process., 23, 169–182,
https://doi.org/10.1002/hyp.7196,
2009. a
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077,
1997. a
Haug, T., Bogstad, B., Chierici, M., Gjøsæter, H., Hallfredsson,
E. H.,
Høines, A. S., Hoel, A. H., Ingvaldsen, R. B., Jørgensen, L. L.,
Knutsen, T., Loeng, H., Naustvoll, L.-J., Røttingen, I., and Sunnanå,
K.: Future harvest of living resources in the Arctic Ocean north of the
Nordic and Barents Seas: A review of possibilities and constraints,
Fish. Res., 188, 38–57,
https://doi.org/10.1016/j.fishres.2016.12.002,
2017. a
Hunt, G. L., Drinkwater, K. F., Arrigo, K., Berge, J., Daly, K., Danielson,
S.,
Daase, M., Hop, H., Isla, E., Karnovsky, N., Laidre, K., Mueter, F. J.,
Murphy, E. J., Renaud, P. E., Smith, W. O., Trathan, P., Turner, J., and
Wolf-Gladrow, D.: Advection in polar and sub-polar environments: Impacts on
high latitude marine ecosystems, Prog. Oceanogr., 149, 40–81,
https://doi.org/10.1016/j.pocean.2016.10.004, 2016. a
Ivanov, V., Alexeev, V., Koldunov, N. V., Repina, I., Sandø, A. B.,
Smedsrud, L. H., and Smirnov, A.: Arctic Ocean heat impact on regional ice
decay – a suggested positive feedback, J. Phys. Oceanogr., 46, 1437–1456, https://doi.org/10.1175/jpo-d-15-0144.1,
2016. a
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S.,
Fridman,
B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W.,
Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P.,
Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell,
B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D.,
Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The
International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0,
Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012. a, b, c
Koenig, Z., Provost, C., Villacieros-Robineau, N., Sennéchael, N., Meyer,
A., Lellouche, J.-M., and Garric, G.: Atlantic waters inflow north of
Svalbard: Insights from IAOOS observations and Mercator Ocean global
operational system during N-ICE2015, J. Geophys. Res.-Oceans, 122, 1254–1273, https://doi.org/10.1002/2016JC012424, 2017. a
Li, W. K. W., McLaughlin, F. A., Lovejoy, C., and Carmack, E. C.: Smallest
Algae Thrive As the Arctic Ocean Freshens, Science, 326, 539–539,
https://doi.org/10.1126/science.1179798, 2009. a
Li, W. K. W., Carmack, E. C., McLaughlin, F. A., Nelson, R. J., and Williams,
W. J.: Space-for-time substitution in predicting the state of picoplankton
and nanoplankton in a changing Arctic Ocean, J. Geophys. Res.-Oceans, 118, 5750–5759, https://doi.org/10.1002/jgrc.20417, 2013. a
Lin, P., Pickart, R. S., Stafford, K. M., Moore, G. W. K., Torres, D. J.,
Bahr,
F., and Hu, J.: Seasonal variation of the Beaufort shelfbreak jet and its
relationship to Arctic cetacean occurrence, J. Geophys. Res.-Oceans, 121, 8434–8454, https://doi.org/10.1002/2016JC011890, 2016. a, b, c
Lind, S. and Ingvaldsen, R. B.: Variability and impacts of Atlantic Water
entering the Barents Sea from the north, Deep-Sea Res. Pt. I, 62, 70–88, https://doi.org/10.1016/j.dsr.2011.12.007, 2012. a
Martin, T., Steele, M., and Zhang, J.: Seasonality and long-term trend of
Arctic Ocean surface stress in a model, J. Geophys. Res.-Oceans, 119,
1723–1738, https://doi.org/10.1002/2013jc009425, 2014. a, b
Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and
Emery, W.: A younger, thinner Arctic ice cover: Increased potential for
rapid, extensive sea-ice loss, Geophys. Res. Lett., 34, L24501,
https://doi.org/10.1029/2007GL032043, 2007. a
Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen,
R.,
and Steele, M.: Changing Arctic Ocean freshwater pathways, Nature, 481,
66–70, https://doi.org/10.1038/nature10705, 2012. a
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., and Nilsen, F.: Loss of
sea ice during winter north of Svalbard, Tellus A, 66, 23933,
https://doi.org/10.3402/tellusa.v66.23933, 2014. a
Osborn, T. R.: Estimates of the Local Rate of Vertical Diffusion from
Dissipation Measurements, J. Phys. Oceanogr., 10, 83–89,
https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980. a
Polyakov, I. V., Pnyushkov, A. V., and Timokhov, L. A.: Warming of the
Intermediate Atlantic Water of the Arctic Ocean in the 2000s, J. Climate,
25, 8362–8370, https://doi.org/10.1175/jcli-d-12-00266.1, 2012. a
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann,
T. M.,
Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin
of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204, 2017. a
Price, J. F. and Sundermeyer, M. A.: Stratified Ekman layers, J. Geophys.
Res.-Oceans, 104, 20467–20494,
https://doi.org/10.1029/1999JC900164, 1999. a
Price, J. F., Weller, R. A., and Schudlich, R. R.: Wind-driven ocean currents
and Ekman transport, Science, 238, 1534–1538, 1987. a
Proshutinsky, A., Dukhovskoy, D., Timmermans, M.-L., Krishfield, R., and
Bamber, J. L.: Arctic circulation regimes, Philos. T. R. Soc. A.,
373, 20140160, https://doi.org/10.1098/rsta.2014.0160,
2015. a
Randelhoff, A. and Sundfjord, A.: Carbon Bridge CTD hydrography 2014,
https://doi.org/10.21334/npolar.2017.f40317d5, 2017. a
Randelhoff, A., Sundfjord, A., and Reigstad, M.: Seasonal variability and
fluxes of nitrate in the surface waters over the Arctic shelf slope,
Geophys. Res. Lett., 42, 3442–3449, https://doi.org/10.1002/2015gl063655, 2015. a
Randelhoff, A., Reigstad, M., Chierici, M., Sundfjord, A., Ivanov, V., Cape,
M., Vernet, M., Tremblay, J.-E., Bratbak, G., and Kristiansen, S.:
Seasonality of the physical and biogeochemical hydrography of the Fram Strait
branch,
Frontiers in Marine Science, submitted, 2018.
Renner, A. H., Hendricks, S., Gerland, S., Beckers, J., Haas, C., and
Krumpen,
T.: Large-scale ice thickness distribution of first-year sea ice in spring
and summer north of Svalbard, Ann. Glaciol., 54, 13–18,
https://doi.org/10.3189/2013AoG62A146, 2013. a
Renner, A. H., Sundfjord, A., Janout, M. A., Ingvaldsen, R. B.,
Beszczynska-Möller, A., Pickart, R. S., and Pérez-Hernández, M.
D.: Variability and redistribution of heat in the Atlantic Water boundary
current north of Svalbard, J. Geophys. Res., in review, 2018.
Rudels, B.: Arctic Ocean stability: The effects of local cooling, oceanic
heat transport, freshwater input, and sea ice melt with special emphasis on
the Nansen Basin, J. Geophys. Res.-Oceans, 121, 4450–4473,
https://doi.org/10.1002/2015jc011045, 2016. a
Schulze, L. M. and Pickart, R. S.: Seasonal variation of upwelling in the
Alaskan Beaufort Sea: Impact of sea ice cover, J. Geophys. Res.-Oceans, 117, C06022, https://doi.org/10.1029/2012JC007985, 2012.
a, b
Serreze, M. C. and Barrett, A. P.: Characteristics of the Beaufort Sea
High,
J. Climate, 24, 159–182, https://doi.org/10.1175/2010JCLI3636.1, 2011. a
Spall, M. A., Pickart, R. S., Brugler, E. T., Moore, G., Thomas, L., and
Arrigo, K. R.: Role of shelfbreak upwelling in the formation of a massive
under-ice bloom in the Chukchi Sea, Deep-Sea Res. Pt. II, 105, 17–29,
https://doi.org/10.1016/j.dsr2.2014.03.017,
2014. a, b, c
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Climatic Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1, 2012. a
Tetzlaff, A., Lüpkes, C., Birnbaum, G., Hartmann, J., Nygård, T., and
Vihma, T.: Brief Communication: Trends in sea ice extent north of Svalbard
and its impact on cold air outbreaks as observed in spring 2013, The
Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014, 2014. a
Tremblay, J.-E., Anderson, L. G., Matrai, P., Coupel, P., Bélanger, S.,
Michel, C., and Reigstad, M.: Global and regional drivers of nutrient
supply, primary production and CO2 drawdown in the changing Arctic Ocean,
Prog. Oceanogr., 139, 171–196, https://doi.org/10.1016/j.pocean.2015.08.009, 2015. a
Våge, K., Pickart, R. S., Pavlov, V., Lin, P., Torres, D. J., Ingvaldsen,
R., Sundfjord, A., and Proshutinsky, A.: The Atlantic Water boundary current
in the Nansen Basin: Transport and mechanisms of lateral exchange, J. Geophys. Res.-Oceans, 121, 6946–6960, https://doi.org/10.1002/2016jc011715, 2016. a
Wang, W. and Huang, R. X.: Wind Energy Input to the Ekman Layer, J. Phys.
Oceanogr., 34, 1267–1275,
https://doi.org/10.1175/1520-0485(2004)034<1267:WEITTE>2.0.CO;2,
2004. a
Wassmann, P., Kosobokova, K., Slagstad, D., Drinkwater, K., Hopcroft, R.,
Moore, S., Ellingsen, I., Nelson, R., Carmack, E., Popova, E., and Berge, J.:
The contiguous domains of Arctic Ocean advection: Trails of life and death,
Prog. Oceanogr., 139, 42–65,
https://doi.org/10.1016/j.pocean.2015.06.011,
2015. a, b, c
Williams, W. J. and Carmack, E. C.: The “interior” shelves of the Arctic
Ocean: Physical oceanographic setting, climatology and effects of sea-ice
retreat on cross-shelf exchange, Prog. Oceanogr., 139, 24–41,
https://doi.org/10.1016/j.pocean.2015.07.008, 2015. a, b, c
Williams, W. J., Carmack, E. C., Shimada, K., Melling, H., Aagaard, K.,
Macdonald, R. W., and Ingram, R. G.: Joint effects of wind and ice motion in
forcing upwelling in Mackenzie Trough, Beaufort Sea, Cont. Shelf
Res., 26, 2352–2366,
https://doi.org/10.1016/j.csr.2006.06.012,
2006. a
Short summary
The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Regional differences in the hydrography, bathymetry and atmospheric forcing of nutrient fluxes essential for phytoplankton growth mean that wind-driven mixing, advection and upwelling will influence the polar ecosystem in differing magnitudes in different regions of the Arctic Ocean, with particular effects likely being restricted to very specific areas.
The future of Arctic marine ecosystems has received increasing attention in recent years as the...