Articles | Volume 14, issue 2
https://doi.org/10.5194/os-14-259-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-259-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model
Kumar Ravi Prakash
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New
Delhi-110016, India
Tanuja Nigam
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New
Delhi-110016, India
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New
Delhi-110016, India
Related authors
Sankar Prasad Lahiri, Kumar Ravi Prakash, and Vimlesh Pant
EGUsphere, https://doi.org/10.5194/egusphere-2024-2848, https://doi.org/10.5194/egusphere-2024-2848, 2024
Short summary
Short summary
The Arabian Sea mini warm pool matures in the southeastern Arabian Sea in May and the influence of the ocean and atmosphere on its formation is debated for the past two decades. Using a coupled numerical model, our study concludes that both the oceanic and atmospheric conditions are necessary for its genesis. For instance, in a robust Mini Warm Pool year, the pre-April ocean condition primarily influences its formation, which is further favored by the presence of a 'wind shadow zone.'
Sankar Prasad Lahiri, Kumar Ravi Prakash, and Vimlesh Pant
EGUsphere, https://doi.org/10.5194/egusphere-2024-2848, https://doi.org/10.5194/egusphere-2024-2848, 2024
Short summary
Short summary
The Arabian Sea mini warm pool matures in the southeastern Arabian Sea in May and the influence of the ocean and atmosphere on its formation is debated for the past two decades. Using a coupled numerical model, our study concludes that both the oceanic and atmospheric conditions are necessary for its genesis. For instance, in a robust Mini Warm Pool year, the pre-April ocean condition primarily influences its formation, which is further favored by the presence of a 'wind shadow zone.'
Cited articles
Alam, M. M., Hossain, M. A., and Shafee, S.: Frequency of Bay of Bengal
cyclonic storms and depressions crossing different coastal zones, Int. J.
Climatol., 23, 1119–1125, https://doi.org/10.1002/joc.927, 2003.
Alford, M. H. and Gregg, M. C.: Near-inertial mixing: modulation of shear, strain
and microstructure at low latitude, J. Geophys. Res., 106, 16947–16968,
2001.
Auger, F. and Flandrin, P.: Improving the Readability of Time-Frequency and
Time-Scale Representations by the Reassignment Method, IEEE Transactions on
Signal Processing, 43, 1068–1089, 1995.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model
for coastal regions, Part I, Model description and validation, J. Geophys.
Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999.
Burchard, H. and Rippeth, T. P.: Generation of bulk shear spikes in shallow
stratified tidal seas, J. Phys. Oceanogr., 39, 969–985, 2009.
Chang, S. W. and Anthes, F. A.: The mutual response of the tropical cyclone
and the ocean, J. Phys. Oceanogr., 9, 128–135, 1979.
Chant, R. J.: Evolution of near-inertial waves during an upwelling event on
the New Jersey Inner Shelf, J. Phys. Oceanogr., 31, 746–764, 2001.
Chassignet, E. P., Arango, H. G., Dietrich, D., Ezer, T., Ghil, M.,
Haidvogel, D. B., Ma, C. C., Mehra, A., Paiva, A. M., and Sirkes, Z.:
DAMEE-NAB: the base experiments. Dyn. Atmos. Oceans, 32, 155–183, 2000.
Chen, S., Chen, D., and Xing, J.: A study on some basic features of inertial
oscillations and near-inertial internal waves, Ocean Sci., 13, 829–836,
https://doi.org/10.5194/os-13-829-2017, 2017.
Cione, J. J. and Uhlhorn, E. W.: Sea surface temperature variability in
hurricanes: Implications with respect to intensity change, Mon. Weather Rev.,
131, 1783–1796, https://doi.org/10.1175//2562.1, 2003.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two dimensional model, J. Atmos. Sci., 46,
3077–3107, 1989.
Gill, A. E.: On the behavior of internal waves in the wake of storms, J.
Phys. Oceanogr., 14, 1129–1151, 1984.
Girishkumar, M. S., Ravichandran, M., and Han, W.: Observed intraseasonal
thermocline variability in the Bay of Bengal, J. Geophys. Res.-Oceans, 118,
3336–3349, https://doi.org/10.1002/jgrc.20245, 2013.
Gonella, J.: A study of inertial oscillations in the upper layers of the
oceans, Deep-Sea Res., 18, 775–788, 1971.
Gonella, J.: A rotary-component method for analysing meteorological and
oceanographic vector time series, Deep-Sea Res., 19, 833–846, 1972.
Gröger, M., Dieterich, C., Meier, H. E. M., and Schimanke, S.: Thermal
air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on
the NW European shelf, Tellus A, 67, 26911, https://doi.org/10.3402/tellusa.v67.26911,
2015.
Guan, S., Zhao, W., Huthnance, J. Tian, J., and Wang, J.: Observed upper
ocean response to typhoon Megi (2010) in the Northern South China Sea, J.
Geophys. Res.-Oceans, 119, 3134–3157, https://doi.org/10.1002/2013JC009661, 2014.
Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A.,
Malanotte-Rizzoli, P., and Shchepetkin, A. F.: Model evaluation experiments
in the North Atlantic Basin: Simulations in nonlinear terrain-following
coordinates, Dyn. Atmos. Oceans, 32, 239–281, 2000.
Haidvogel, D. B., Arango, H. G., Budgell, W. P., Cornuelle, B. D.,
Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J.,
Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M.,
Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner,
J. C., and Wilkin, J.: Regional ocean forecasting in terrain-following
coordinates: model formulation and skill assessment, J. Comput. Phys., 227,
3595–3624, 2008.
Hayashi, Y.: Space-time spectral analysis of rotary vector series, J. Atmos.
Sci., 36, 757–766, 1979.
Ho-Hagemann, H. T. M., Gröger, M., Rockel, B., Zahn, M., Geyer, B., and
Meier, H. E. M: Effects of air-sea coupling over the North Sea and the Baltic
Sea on simulated summer precipitation over Central Europe, Clim. Dyn., 49,
3851, https://doi.org/10.1007/s00382-017-3546-8, 2017.
Hong, S. Y. and Lim, J. O. J.: The WRF single-moment 6-class microphysics
scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006.
IMD Report: Very Severe Cyclonic Storm, PHAILIN over the Bay of Bengal
(08–14 October 2013) A Report, India Meteorological Department, Technical
Report, October 2013.
Jacob, S. D. and Shay, L. K.: The role of oceanic mesoscale features on the
tropical cyclone-induced mixed layer response: A case study, J. Phys.
Oceanog., 33, 649–676, 2003.
Jacob, R., Larson, J., and Ong, E.: M x N Communication and Parallel
Interpolation in CCSM Using the Model Coupling Toolkit, Preprint
ANL/MCSP1225-0205, Mathematics and Computer Science Division, Argonne
National Laboratory, 25 pp., 2005.
Jeworrek, J., Wu, L., Dieterich, C., and Rutgersson, A.: Characteristics of
convective snow bands along the Swedish east coast, Earth Syst. Dynam., 8,
163–175, https://doi.org/10.5194/esd-8-163-2017, 2017.
Johnston, T. M. S., Chaudhuri, D., Mathur, M., Rudnick, D. L., Sengupta, D.,
Simmons, H. L., Tandon, A., and Venkatesan, R.: Decay mechanisms of
near-inertial mixed layer oscillations in the Bay of Bengal, Oceanography,
29, 180–191, https://doi.org/10.5670/oceanog.2016.50, 2016.
Kain, J. S.: The Kain-Fritsch convective parameterization: An update, J.
Appl. Meteor., 43, 170–181, 2004.
Kessler, W. S.: Observations of long Rossby waves in the northern tropical
Pacific, J. Geophys. Res., 95, 5183–5217, 1990.
Kirby, J. T. and Chen, T. M.: Surface waves on vertically sheared flows
Approximate dispersion relations, J. Geophys. Res., 94, 1013–1027,
https://doi.org/10.1029/JC094iC01p01013, 1989.
Komen, G. J., Hasselmann, S., and Hasselmann, K.: On the existence of a fully
developed wind-sea spectrum, J. Phys. Oceanogr., 14, 1271–1285, 1984.
Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A New
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models, Preprint
ANL/MCS- P1208-1204, Mathematics and Computer Science Division, Argonne
National Laboratory, 25 pp., 2004.
Leipper, D. F.: Observed Ocean Conditions and Hurricane Hilda, 1964, J.
Atmos. Sci., 24, 182–186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2, 1967.
Li, Z., Yu, W., Li, T., Murty, V. S. N., and
Tangang, F.: Bimodal character of cyclone climatology in the Bay of Bengal
modulated by monsoon seasonal cycle, J. Climate, 26, 1033–1046,
https://doi.org/10.1175/JCLI-D-11-00627.1, 2013.
Lilly, J. M. and Olhede, S. C.: Generalized Morse Wavelets as a Superfamily
of Analytic Wavelets, IEEE Transactions on Signal Processing, 60, 6036–6041,
2012.
Longshore, D.: Encyclopedia of Hurricanes, Typhoons, and Cyclones, 468 pp.,
Checkmark, New York, 2008.
Lukas, R. and Lindstrom, E.: The mixed layer of the western equatorial
Pacific Ocean, J. Geophys. Res., 96, 3343–3357, 1991.
MacKinnon, J. A. and Gregg, M. C.: Spring Mixing: Turbulence and Internal Waves
during Restratification on the New England Shelf, J. Phys. Oceanogr., 12,
2425–2443 2005.
Mandal, M., Singh, K. S., Balaji, M., and Mohapatra, M.: Performance of
WRF-ARW model in real-time prediction of Bay of Bengal cyclone `Phailin',
Pure Appl. Geophys., 173, https://doi.org/10.1007/s00024-015-1206-7, 2015.
Menenenlis, D., Hill, C., Adcroft, A., Campin, J.-M., Cheng, B., Clottl, B., Fukumori, I., Pheimbach, C., Henze, A., Kohl, T., Lee, D., Stammer, J., Taft, and Zhang, J.: NASA
supercomputer improves prospects for ocean climate research, Eos Trans. AGU,
86, 89–96, https://doi.org/10.1029/2005EO090002, 2005.
Monin, A. S. and Obukhov, A. M. F.: Basic laws of turbulent mixing in the
surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR,
151, e187, 1954.
National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. (NCEPFNL): Department of Commerce, NCEP FNL Operational Model Global
Tropospheric Analyses, continuing from July 1999, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory, data set, available at:
https://doi.org/10.5065/D6M043C6 (last access: 4 July 2015), 2000.
National Geophysical Data Center: 2-minute Gridded Global Relief Data
(ETOPO2) v2. National Geophysical Data Center, NOAA, available at:
https://doi.org/10.7289/V5J1012Q (last access: July 2015), 2006.
Neetu, S., Lengaigne, M., Vincent, E. M., Vialard, J., Madec, G., Samson, G.,
Ramesh Kumar, M. R., and Durand, F.: Influence of upper-ocean stratification
on tropical cyclone-induced surface cooling in the Bay of Bengal, J. Geophys.
Res., 117, C12020, https://doi.org/10.1029/2012JC008433, 2012.
Noh, Y., Cheon, W. G., Hong, S. Y., and Raasch, S.: Improvement of the
K-profile model for the planetary boundary layer based on large eddy
simulation data, Bound. Layer Meteor., 107, 401–427, 2003.
Osborn, T. R.: Estimates of the Local-Rate of Vertical Diffusion from
Dissipation Measurements, J. Phys. Oceanogr., 10, 83–89, 1980.
Palmer, M. R., Rippeth, T. P., and Simpson, J. H.: An investigation of
internal mixing in a seasonally stratified shelf sea, J. Geophys. Res., 113,
C12005, https://doi.org/10.1029/2007JC004531, 2008.
Pant, V., Girishkumar, M. S., Udaya Bhaskar, T. V. S., Ravichandran, M.,
Papa, F., and Thangaprakash, V. P.: Observed interannual variability of
near-surface salinity in the Bay of Bengal, J. Geophys. Res., 120,
3315–3329, 2015.
Park, J. H. and Watts, D. R.: Near-inertial oscillations interacting with
mesoscale circulation in the southwestern Japan/East Sea, Geophys. Res.
Lett., 32, L10611, https://doi.org/10.1029/2005GL022936, 2005.
Prakash, K. R. and Pant, V:
Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using
a coupled atmosphere-ocean model, Ocean Dynam., 67, 51–64,
https://doi.org/10.1007/s10236-016-1020-5, 2017.
Price, J. F.: Upper ocean response to a hurricane, J. Phys. Oceanog., 11,
153–175, 1981.
Price, J. F., Mooers, C. N., and Van Leer, J. C.: Observation and simulation
of storm-induced mixed-layer deepening, J. Phys. Oceanogr., 8, 582–599,
doi10.1175/1520-0485(1978)008<0582:OASOSI>2.0.CO;2, 1978.
doi10.1175/1520-0485(1978)008<0582:OASOSI>2.0.CO;2, 1978.
Pugh, D. T.: Tides, Surges and Mean Sea-Level, John Wiley & Sons,
Chichester, 472 pp., 1987.
Rao, R. R. and Sivakumar, R.: Seasonal variability of sea surface salinity
and salt budget of the mixed layer of the north Indian Ocean, J. Geophys.
Res., 108, 3009, https://doi.org/10.1029/2001JC000907, 2003.
Sanford, T. B., Black, P. G., Haustein, J., Feeney, J. W., Forristall, G. Z.,
and Price, J. F.: Ocean response to a hurricane. Part I: Observations, J.
Phys. Oceanogr., 17, 2065–2083, 1987.
Sanil Kumar, V. and Anjali Nair, M.: Inter-annual variations in wave spectral
characteristics at a location off the central west coast of India, Ann.
Geophys., 33, 159–167, https://doi.org/10.5194/angeo-33-159-2015, 2015.
Schahinger, R. B.: Near inertial motion on the south Australian shelf, J.
Phys. Oceanogr., 18, 492–504, 1988.
Shay, L. K. and Elsberry, R. L.: Vertical structure of the ocean current
response to a hurricane, J. Phys. Oceanog., 19, 649–669, 1989.
Shay, L. K., Black, P., Mariano, A., Hawkins, J., and Elsberry, R.: Upper
ocean response to hurricane Gilbert, J. Geophys. Res., 97, 227–248, 1992.
Shay, L. K., Goni, G. J., and Black, P. G.: Effects of a warm oceanic feature
on Hurricane Opal, Mon. Weather Rev., 128, 1366–1383,
https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2, 2000.
Shchepetkinand A. F. and McWilliams J. C.: The Regional Ocean Modeling
System: A split-explicit, free-surface, topography following coordinates
ocean model, Ocean Modell., 9, 347–404, 2005.
Shearman, R. K.: Observations of near-inertial current variability on the New
England shelf, J. Geophys. Res., 110, C02012, https://doi.org/10.1029/2004JC002341, 2005.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2,
NCAR Technical Note, NCAR/TN-468+STR., 2005.
Srinivas, C. V., Mohan, G. M., Naidu, C. V., Baskaran, R., and Venkatraman,
B.: Impact of air-sea coupling on the simulation of tropical cyclones in the
North Indian Ocean using a simple 3-D ocean model coupled to ARW, J. Geophys.
Res.-Atmos., 121, 9400, https://doi.org/10.1002/2015JD024431, 2016.
Camargo, S. J., Sobel, A. H., Barnston, A. G., and Emanuel, K. A.: Tropical
cyclone genesis potential index in climate models, Tellus A, 59, 428–443,
2007.
Taylor, P. K. and Yelland, M. J.: The dependence of sea surface roughness on
the height and steepness of the waves, J. Phys. Oceanogr., 31, 572–590,
2001.
Thadathil, P., Muraleedharan, P. M., Rao, R. R., Somayajulu, Y. K., Reddy, G.
V., and Revichandran, C.: Observed seasonal variability of barrier layer in
the Bay of Bengal, J. Geophys. Res., 112, C02009, https://doi.org/10.1029/2006JC003651,
2007.
van der Lee, E. M. and Umlauf, L.: Internal wave mixing in the Baltic Sea:
near-inertial waves in the absence of tides, J. Geophys. Res., 116, C10016,
https://doi.org/10.1029/2011JC007072, 2011.
Varkey, M. J., Murty, V. S. N., and Suryanarayana, A.: Physical oceanography
of the Bay of Bengal and Andaman Sea, Oceanogr. Mar. Biol., 34, 1–70, 1996.
Vinayachandran, P. N., Murty, V. S. N., and Ramesh Babu, V.: Observations of
barrier layer formation in the Bay of Bengal during summer monsoon, J.
Geophys. Res., 107, 8018, https://doi.org/10.1029/2001JC000831, 2002.
Vissa, N. K., Satyanarayana, A. N. V., and Prasad Kumar, B.: Intensity of
tropical cyclones during pre- and post-monsoon seasons in relation to
accumulated tropical cyclone heat potential over Bay of Bengal, Nat. Hazards,
68, 351, https://doi.org/10.1007/s11069-013-0625-y, 2013.
Wang, B., Wu, R., and Lukas, R.: Annual adjustment of the thermocline in the
tropical Pacific Ocean, J. Clim., 13, 596–616, 2000.
Warner, J. C., Sherwood, C. R., Arango, H. G., and Signell, R. P.:
Performance of four turbulence closure models implemented using a generic
length scale method, Ocean Modell., 8, 81–113,
https://doi.org/10.1016/j.ocemod.2003.12.003, 2005.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a
coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system,
Ocean Modell., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Wu, C.-C., Tu, W.-T., Pun, I.-F., Lin, I.-I., and Peng, M. S.: Tropical
cyclone-ocean interaction in Typhoon Megi (2010) – A synergy study based on
ITOP observations and atmosphere-ocean coupled model simulations, J. Geophys.
Res.-Atmos., 121, 153–167, https://doi.org/10.1002/2015JD024198, 2016.
Yanase, W., Satosh, M., Taniguchi, H., and Fujinami, H.: Seasonal and
Intraseasonal Modulation of tropical cyclogenesis environment over the Bay of
Bengal during the extended summer monsoon, J. Climate, 25, 2914–2930,
https://doi.org/10.1175/JCLI-D-11-00208.1, 2012.
Zambon J. B., He, R., and Warner, J. C.: Investigation of hurricane Ivan
using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model,
Ocean Dyn., 64, 1535–1554, https://doi.org/10.1007/s10236-014-0777-7, 2014.
Zhang, S., Xie, L., Hou, Y., Zhao, H., Qi, Y., and Yi, X.: Tropical
storm-induced turbulent mixing and chlorophyll-a enhancement in the
continental shelf southeast of Hainan Island, J. Mar. Syst., 129,
405–414, 2014.
Short summary
Parameters at the sea surface are determined by the air–sea fluxes of heat, salt, and momentum. Surface wind speed drives the oceanic surface circulation and mixing of temperature and salinity up to a certain depth (mixed layer depth) from the sea surface. In this study, we examined the oceanic mixing process using numerical models under strong cyclonic winds. Results highlight the important role of inertial oscillations in subsurface mixing.
Parameters at the sea surface are determined by the air–sea fluxes of heat, salt, and momentum....