Articles | Volume 14, issue 2
https://doi.org/10.5194/os-14-205-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-205-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
Saskia Esselborn
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Department 1: Geodesy,
Potsdam, Germany
Sergei Rudenko
GFZ German Research Centre for Geosciences, Department 1: Geodesy,
Potsdam, Germany
now at: Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische
Universität München, Munich, Germany
Tilo Schöne
GFZ German Research Centre for Geosciences, Department 1: Geodesy,
Potsdam, Germany
Related authors
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Maren Bender, Thomas Mann, Paolo Stocchi, Dominik Kneer, Tilo Schöne, Julia Illigner, Jamaluddin Jompa, and Alessio Rovere
Clim. Past, 16, 1187–1205, https://doi.org/10.5194/cp-16-1187-2020, https://doi.org/10.5194/cp-16-1187-2020, 2020
Short summary
Short summary
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and the reconstruction of the local Holocene relative sea-level history in combination with glacial isostasic adjustment models. We further show the importance of surveying the height of living coral microatolls as modern analogs to the fossil ones. Other interesting aspects are the potential subsidence of one of the densely populated islands, and we present eight samples that are dated to the Common Era.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018, https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
Short summary
By using a set of evaluation methods involving GPS, ICESat, hydrological modelling and altimetry satellite orbits, we show that the novel radial basis function (RBF) processing technique can be used for processing the Gravity Recovery and Climate Experiment (GRACE) data yielding global gravity field models which fit independent reference values at the same level as commonly accepted global geopotential models based on spherical harmonics.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
T. Schöne, C. Zech, K. Unger-Shayesteh, V. Rudenko, H. Thoss, H.-U. Wetzel, A. Gafurov, J. Illigner, and A. Zubovich
Geosci. Instrum. Method. Data Syst., 2, 97–111, https://doi.org/10.5194/gi-2-97-2013, https://doi.org/10.5194/gi-2-97-2013, 2013
S. Rudenko, N. Schön, M. Uhlemann, and G. Gendt
Solid Earth, 4, 23–41, https://doi.org/10.5194/se-4-23-2013, https://doi.org/10.5194/se-4-23-2013, 2013
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Sea Level
A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations
GEM: a dynamic tracking model for mesoscale eddies in the ocean
El Niño, La Niña, and the global sea level budget
DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years
Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis
Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a
Technical Note: Watershed strategy for oceanic mesoscale eddy splitting
Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project
Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level
From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography
Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018, https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
Qiu-Yang Li, Liang Sun, and Sheng-Fu Lin
Ocean Sci., 12, 1249–1267, https://doi.org/10.5194/os-12-1249-2016, https://doi.org/10.5194/os-12-1249-2016, 2016
Short summary
Short summary
The Genealogical Evolution Model (GEM) is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern with a two-dimensional vector. All of the computational steps are linear and do not include iteration. It is very fast and is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
Christopher G. Piecuch and Katherine J. Quinn
Ocean Sci., 12, 1165–1177, https://doi.org/10.5194/os-12-1165-2016, https://doi.org/10.5194/os-12-1165-2016, 2016
Short summary
Short summary
We use satellite and in situ data to elucidate global-mean sea level (GMSL) changes related to El Niño-Southern Oscillation (ENSO) over 2005–2015. Steric and mass effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize mass contributions. Results exemplify the usefulness of the Global Ocean Observing System for understanding the Earth's radiation imbalance and hydrological cycle.
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
Q. Y. Li and L. Sun
Ocean Sci., 11, 269–273, https://doi.org/10.5194/os-11-269-2015, https://doi.org/10.5194/os-11-269-2015, 2015
Short summary
Short summary
This study established a splitting strategy that could separate multinuclear eddies into mononuclear eddies. As the values of eddy parameters (e.g. SLA, geostrophic potential vorticity, Okubo–Weiss parameter) are similar to basins in a map, the natural divisions of the basins are the watersheds between them. It can also be applied to automatic identification of troughs and ridges from weather charts. We denoted it the Universal Splitting Technology for Circulations (USTC) method.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
P. Y. Le Traon
Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, https://doi.org/10.5194/os-9-901-2013, 2013
D. P. Chambers and J. A. Bonin
Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, https://doi.org/10.5194/os-8-859-2012, 2012
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate
estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009.
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A.,
Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G.,
and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project,
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015.
Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L.,
Dieng, H. B., Benveniste, J., and Cazenave, A.: Satellite Altimetry-Based Sea
Level at Global and Regional Scales, Surv. Geophys., 38, 7–31,
https://doi.org/10.1007/s10712-016-9389-8, 2016.
Altamimi, Z., Collilieux, X., and Métivier, L.: ITRF2008: an improved
solution of the international terrestrial reference frame, J. Geodesy, 85,
457–473, https://doi.org/10.1007/s00190-011-0444-4, 2011.
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014:
A new release of the International Terrestrial Reference Frame modeling
nonlinear station motions, J. Geophys. Res.-Sol. Ea., 121,
2016JB013098, https://doi.org/10.1002/2016JB013098, 2016.
Beckley, B., Ray, R., Holmes, S., Zelensky, N., Lemoine, F., Yang, X.,
Brown, S., Desai, S., Mitchum, G., and Hausman, J.: Integrated Multi-Mission
Ocean Altimeter Data for Climate Research TOPEX/Poseidon, Jason-1 and
OSTM/Jason-2 User's Handbook Version 3.0, 61 pp., California Institute of
Technology, available at:
ftp://podaac.jpl.nasa.gov/allData/merged_alt/L2/TP_J1_OSTM/docs/v121415.version3.0_multi_alt_handbook.pdf (last access: 30 May 2017), 2015.
Bloßfeld, M., Stefka, V., Müller, H., and Gerstl M.: Satellite laser
ranging – a tool to realize GGOS? in: IAG 150
Years, edited by: Rizos, C. and Willis, P., IAG Symposia, 143, 540–547,
https://doi.org/10.1007/1345_2015_202, 2016
Boehm, J. and Schuh, H.: Vienna mapping functions in VLBI analyses, Geophys.
Res. Lett., 31, L01603, https://doi.org/10.1029/2003GL018984, 2004.
Carrère, L., Lyard, F., Cancet, M., Roblou, L., and Guillot, A.: FES
2012: a new tidal model taking advantage of nearly 20 years of altimetry
measurements, OSTST meeting, September 22–29, Venice-Lido, Italy,
available at:
http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/01_thursday_27/03_tides/04_TID_Carrere2.pdf (last access: 30 May 2017), 2012.
Cazenave, A., Dieng, H.-B., Meyssignac, B., von Schuckmann, K., Decharme, B.,
and Berthier, E.: The rate of sea-level rise, Nature Climate Change, 4,
358–361, https://doi.org/10.1038/nclimate2159, 2014.
Cerri, L. and Ferrage, P.: DORIS satellites models implemented in POE
processing, CNES, Paris, France, Tech. Rep. SALP-NTBORD-OP-16137-CN, Rev.
10, available at:
ftp://ftp.ids-doris.org/pub/ids/satellites/DORISSatelliteModels.pdf
(last access: 30 May 2017), 2016.
Church, J. A. and White, N. J.: Sea-Level Rise from the Late 19th to the
Early 21st Century, Surv. Geophys., 32, 585–602,
https://doi.org/10.1007/s10712-011-9119-1, 2011.
Couhert, A., Cerri, L., Legeais, J.-F., Ablain, M., Zelensky, N. P., Haines,
B. J., Lemoine, F. G., Bertiger, W. I., Desai, S. D., and Otten, M.: Towards
the 1 mm/y stability of the radial orbit error at regional scales, Adv.
Space Res., 55, 2–23, https://doi.org/10.1016/j.asr.2014.06.041, 2015.
Dobslaw, H., Flechtner, F., Bergmann-Wolf, I., Dahle, C., Dill, R.,
Esselborn, S., Sasgen, I., and Thomas, M.: Simulating high-frequency
atmosphere-ocean mass variability for dealiasing of satellite gravity
observations: AOD1B RL05, J. Geophys. Res.-Oceans, 118, 3704–3711,
https://doi.org/10.1002/jgrc.20271, 2013.
Douglas, B. C.: Global Sea Rise: A Redetermination, Surv. Geophys.,
18, 279–292, https://doi.org/10.1023/A:1006544227856, 1997.
Esselborn, S., Schöne, T., and Rudenko, S.: Impact of Time Variable
Gravity on Annual Sea Level Variability from Altimetry, in IAG 150 Years,
Springer, Cham., 55–62, https://doi.org/10.1007/1345_2015_103, 2015.
Fasullo, J. T., Nerem, R. S., and Hamlington, B.: Is the detection of
accelerated sea level rise imminent?, Scientific Reports, 6, 31245,
https://doi.org/10.1038/srep31245, 2016.
Fernandes, M. J. and Lázaro, C.: GPD+ Wet Tropospheric Corrections for
CryoSat-2 and GFO Altimetry Missions, Remote Sensing, 8, 851,
https://doi.org/10.3390/rs8100851, 2016.
Förste, C., Bruinsma, S., Abrikosov, O., Rudenko, S., Lemoine, J.-M.,
Marty, J.-C., Neumayer, K. H., and Biancale, R.: EIGEN-6S4 A time-variable
satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and
GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse, https://doi.org/10.5880/icgem.2016.008,
2016.
Fu, L.-L. and Haines, B. J.: The challenges in long-term altimetry
calibration for addressing the problem of global sea level change, Adv.
Space Res., 51, 1284–1300, https://doi.org/10.1016/j.asr.2012.06.005, 2013.
Goiginger, H., Hoeck, E., Rieser, D., Mayer-Guerr, T., Maier, A., Krauss,
S., Pail, R., Fecher, T., Gruber, T., and Brockmann, J.: The combined
satellite-only global gravity field model GOCO02S, Geophysical Research
Abstracts, 13, EGU2011-10571, available at:
http://www.goco.eu/data/egu2011-10571-goco02s.pdf (last access: 30 May 2017), 2011.
Hedin, A. E.: MSIS-86 Thermospheric Model, J. Geophys. Res.-Space,
92, 4649–4662, https://doi.org/10.1029/JA092iA05p04649, 1987.
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Probabilistic
reanalysis of twentieth-century sea-level rise, Nature, 517, 481–484,
https://doi.org/10.1038/nature14093, 2015.
IERS Conventions (2003): Bundesamt
für Kartographie und Geodäsie, edited by: McCarthy, D. D. and Petit, G., Frankfurt am Main, available at: http://www.iers.org/TN32
(last access: 30 May 2017), 2004.
IERS Conventions (2010): Bundesamt für
Kartographie und Geodäsie, edited by: Petit, G. and Luzum, B., Frankfurt am Main, available at:
https://www.iers.org/TN36 (last access: 30 May 2017), 2010.
Jevrejeva, S., Moore, J. C., Grinsted, A., and Woodworth, P. L.: Recent
global sea level acceleration started over 200 years ago?, Geophys. Res.
Lett., 35, L08715, https://doi.org/10.1029/2008GL033611, 2008.
Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., and Spada, G.:
Trends and acceleration in global and regional sea levels since 1807, Global Planet. Change, 113, 11–22, https://doi.org/10.1016/j.gloplacha.2013.12.004,
2014.
Knocke, P., Ries, J., and Tapley, B.: Earth radiation pressure effects on
satellites, in: AIAA Paper 88-4292, Austin, TX, United States,
577–587, 1988.
Lemoine, F. G., Zelensky, N. P., Chinn, D. S., Pavlis, D. E., Rowlands, D.
D., Beckley, B. D., Luthcke, S. B., Willis, P., Ziebart, M., Sibthorpe, A.,
Boy, J. P., and Luceri, V.: Towards development of a consistent orbit series
for TOPEX, Jason-1, and Jason-2, Adv. Space Res., 46, 1513–1540,
https://doi.org/10.1016/j.asr.2010.05.007, 2010.
Lemoine, F. G., Chinn, D. S., Zelensky, N. P., Beall, J. W., and Le Bail, K.:
The development of the GSFC DORIS contribution to ITRF2014, Adv. Space Res.,
58, 2520–2542, https://doi.org/10.1016/j.asr.2015.12.043, 2016.
Llovel, W., Becker, M., Cazenave, A., Jevrejeva, S., Alkama, R., Decharme,
B., Douville, H., Ablain, M., and Beckley, B.: Terrestrial waters and sea
level variations on interannual time scale, Global Planet. Change, 75,
76–82, https://doi.org/10.1016/j.gloplacha.2010.10.008, 2011.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006.
Marshall, J. A., Zelensky, N. R., Klosko, S. M., Chinn, D. S., Luthcke, S.
B., Rachlin, K. E., and Williamson, R. G.: The temporal and spatial
characteristics of TOPEX/POSEIDON radial orbit error, J. Geophys. Res.,
100, 25331–25352, https://doi.org/10.1029/95JC01845, 1995.
Mendes, V. B. and Pavlis, E. C.: High-accuracy zenith delay prediction at
optical wavelengths, Geophys. Res. Lett., 31, L14602,
https://doi.org/10.1029/2004GL020308, 2004.
Pavlis, E. C.: SLRF2008: The ILRS reference frame for SLR POD contributed to
ITRF2008, presented at the Ocean Surf. Topogr. Sci. Team Meeting, Seattle,
WA, USA, June 2009, available at:
http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2009/poster/Pavlis_2.pdf (last access: 30 May 2017), 2009.
Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J., Rudenko, S., Carrère, L., García, P. N., Cipollini, P.,
Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled
sea level data, Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, 2017.
Ray, R. D.: Precise comparisons of bottom-pressure and altimetric ocean
tides, J. Geophys. Res.-Oceans, 118, 4570–4584, https://doi.org/10.1002/jgrc.20336,
2013.
Ries, J.: Annual geocenter motion from space geodesy and models, abstract
G12A-08, AGU Fall Meeting, San Francisco, 9–13 December 2013, available at:
http://ids-doris.org/images/documents/report/publications/AGU2013-AnnualGeocenterMotion-Ries.pdf
(last access: 30 May 2017), 2013.
Rudenko, S., Otten, M., Visser, P., Scharroo, R., Schöne, T., and
Esselborn, S.: New improved orbit solutions for the ERS-1 and ERS-2
satellites, Adv. Space Res., 49, 1229–1244,
https://doi.org/10.1016/j.asr.2012.01.021, 2012.
Rudenko, S., Dettmering, D., Esselborn, S., Schöne, T., Förste, C.,
Lemoine, J.-M., Ablain, M., Alexandre, D., and Neumayer, K.-H.: Influence of
time variable geopotential models on precise orbits of altimetry satellites,
global and regional mean sea level trends, Adv. Space Res., 54, 92–118,
https://doi.org/10.1016/j.asr.2014.03.010, 2014.
Rudenko, S., Dettmering, D., Esselborn, S., Fagiolini, E., and Schöne,
T.: Impact of Atmospheric and Oceanic De-aliasing Level-1B (AOD1B) products
on precise orbits of altimetry satellites and altimetry results, Geophys. J.
Int., 204, 1695–1702, https://doi.org/10.1093/gji/ggv545, 2016a.
Rudenko, S., Schöne, T., Neumayer, K.-H., Esselborn, S., Raimondo, J.-C., and Dettmering, D.: GFZ VER11 SLCCI precise orbits of altimetry
satellites ERS-1, ERS-2, Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 in the ITRF2008, V. VER11, GFZ German Research Centre for
Geosciences, https://doi.org/10.5880/GFZ.1.2.2018.001, 2016b.
Rudenko, S., Neumayer, K.-H, Dettmering, D., Esselborn, S., Schöne, T.,
and Raimondo, J.-C.: Improvements in precise orbits of altimetry satellites
and their impact on mean sea level monitoring, IEEE T. Geosci. Remote, 55, 3382–3395, https://doi.org/10.1109/TGRS.2017.2670061, 2017.
Savcenko, R. and Bosch, W.: EOT11a-empirical ocean tide model from
multi-mission satellite altimetry, DGFI Report 89, available at:
http://epic.awi.de/36001/1/DGFI_Report_89.pdf
(last access: 30 May 2017), 2012.
Schöne, T., Esselborn, S., Rudenko, S., and Raimondo, J.-C.: Radar
Altimetry Derived Sea Level Anomalies – The Benefit of New Orbits and
Harmonization, in: System Earth via Geodetic-Geophysical Space Techniques,
edited by: Flechtner, F. M., Gruber, T., Güntner, A., Mandea, M.,
Rothacher, M., Schöne, T., and Wickert, J., 317–324, Springer Berlin
Heidelberg, Berlin, Heidelberg, available at:
http://edoc.gfz-potsdam.de/gfz/16014 (last access: 30 May 2017), 2010.
Sośnica, K., Jäggi, A., Meyer, U., Thaller, D., Beutler, G., Arnold,
D., and Dach, R.: Time variable Earth's gravity field from SLR satellites, J. Geodesy, 89, 945–960, https://doi.org/10.1007/s00190-015-0825-1, 2015.
Soudarin, L., Capdeville, H., and Lemoine, J.-M.: Activity of the CNES/CLS
Analysis Center for the IDS contribution to ITRF2014, Adv. Space Res.,
58, 2543–2560, https://doi.org/10.1016/j.asr.2016.08.006, 2016.
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., and
Legresy, B.: Unabated global mean sea-level rise over the satellite
altimeter era, Nature Climate Change, 5, 565–568,
https://doi.org/10.1038/nclimate2635, 2015.
Willis, P., Zelensky, N. P., Ries, J., Soudarin, L., Cerri, L., Moreaux, G.,
Lemoine, F. G., Otten, M., Argus, D. F., and Heflin, M. B.: DPOD2008: A
DORIS-Oriented Terrestrial Reference Frame for Precise Orbit Determination,
in IAG 150 Years, Springer, Cham., 175–181, https://doi.org/10.1007/1345_2015_125, 2015.
Zelensky, N. P., Berthias, J.-P., and Lemoine, F. G.: DORIS time bias estimated
using Jason-1, TOPEX/Poseidon and ENVISAT orbits, J. Geodesy, 80, 497–506,
https://doi.org/10.1007/s00190-006-0075-3, 2006.
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
Global and regional sea level changes are the subject of public and scientific concern. Sea...