Articles | Volume 14, issue 6
https://doi.org/10.5194/os-14-1423-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-1423-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From sea ice to seals: a moored marine ecosystem observatory in the Arctic
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Seth Danielson
College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Andrew M. P. McDonnell
College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Russell R. Hopcroft
College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Peter Winsor
College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Peter Shipton
College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Catherine Lalande
Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
Kathleen M. Stafford
Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
John K. Horne
School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
Lee W. Cooper
Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD 20688, USA
Jacqueline M. Grebmeier
Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD 20688, USA
Andrew Mahoney
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Klara Maisch
Klara Maisch Art and Design, Fairbanks, AK 99775, USA
Molly McCammon
Alaska Ocean Observing System, Anchorage, AK 99501, USA
Hank Statscewich
College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Andy Sybrandy
Pacific Gyre Inc., Oceanside, CA 92056, USA
Thomas Weingartner
College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Related authors
Claudine Hauri, Brita Irving, Dan Hayes, Ehsan Abdi, Jöran Kemme, Nadja Kinski, and Andrew M. P. McDonnell
Ocean Sci., 20, 1403–1421, https://doi.org/10.5194/os-20-1403-2024, https://doi.org/10.5194/os-20-1403-2024, 2024
Short summary
Short summary
Here, we describe several sea trials with the newly developed CO2 Seaglider in the Gulf of Alaska. Data evaluation with discrete water and underway samples suggests nearly "weather-quality" CO2 data as defined by the Global Ocean Acidification Network.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
Steve Widdicombe, Kirsten Isensee, Yuri Artioli, Juan Diego Gaitán-Espitia, Claudine Hauri, Janet A. Newton, Mark Wells, and Sam Dupont
Ocean Sci., 19, 101–119, https://doi.org/10.5194/os-19-101-2023, https://doi.org/10.5194/os-19-101-2023, 2023
Short summary
Short summary
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence of increased carbon dioxide concentration in the atmosphere. While great progress has been made over the last decade for chemical monitoring, ocean acidification biological monitoring remains anecdotal. This is a consequence of a lack of standards, general methodological framework, and overall methodology. This paper presents methodology focusing on sensitive traits and rates of change.
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Claudine Hauri, Brita Irving, Dan Hayes, Ehsan Abdi, Jöran Kemme, Nadja Kinski, and Andrew M. P. McDonnell
Ocean Sci., 20, 1403–1421, https://doi.org/10.5194/os-20-1403-2024, https://doi.org/10.5194/os-20-1403-2024, 2024
Short summary
Short summary
Here, we describe several sea trials with the newly developed CO2 Seaglider in the Gulf of Alaska. Data evaluation with discrete water and underway samples suggests nearly "weather-quality" CO2 data as defined by the Global Ocean Acidification Network.
Nathan J. M. Laxague, Christopher J. Zappa, Andrew R. Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, and Alex Whiting
The Cryosphere, 18, 3297–3313, https://doi.org/10.5194/tc-18-3297-2024, https://doi.org/10.5194/tc-18-3297-2024, 2024
Short summary
Short summary
The state of sea ice strongly affects its absorption of solar energy. In May 2019, we flew uncrewed aerial vehicles (UAVs) equipped with sensors designed to quantify the sunlight that is reflected by sea ice at each wavelength over the sea ice of Kotzebue Sound, Alaska. We found that snow patches get darker (up to ~ 20 %) as they get smaller, while bare patches get darker (up to ~ 20 %) as they get larger. We believe that this difference is due to melting around the edges of small features.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023, https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Short summary
We investigate the GAMMA Portable Radar Interferometer (GPRI) as a tool for evaluating flexural–gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20–50 s infragravity waves in landfast ice with ~1 mm amplitude during 23–24 April 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers, confirming the ability to track propagation and properties of waves over hundreds of meters.
Steve Widdicombe, Kirsten Isensee, Yuri Artioli, Juan Diego Gaitán-Espitia, Claudine Hauri, Janet A. Newton, Mark Wells, and Sam Dupont
Ocean Sci., 19, 101–119, https://doi.org/10.5194/os-19-101-2023, https://doi.org/10.5194/os-19-101-2023, 2023
Short summary
Short summary
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence of increased carbon dioxide concentration in the atmosphere. While great progress has been made over the last decade for chemical monitoring, ocean acidification biological monitoring remains anecdotal. This is a consequence of a lack of standards, general methodological framework, and overall methodology. This paper presents methodology focusing on sensitive traits and rates of change.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019, https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Short summary
We validate TanDEM-X interferometry as a tool for deriving iceberg subaerial morphology using Operation IceBridge data. This approach enables a volumetric classification of icebergs, according to volume relevant to iceberg drift and decay, freshwater contribution, and potential impact on structures. We find iceberg volumes to generally match within 7 %. These results suggest that TanDEM-X could pave the way for future interferometric systems of scientific and operational iceberg classification.
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395–1408, https://doi.org/10.5194/tc-13-1395-2019, https://doi.org/10.5194/tc-13-1395-2019, 2019
Short summary
Short summary
We evaluate single-pass synthetic aperture radar interferometry (InSAR) as a tool to assess sea ice drift and deformation. Initial validation shows that TanDEM-X phase-derived drift speed corresponds well with ground-based radar-derived motion. We further show that InSAR enables the identification of potentially important short-lived dynamic processes otherwise difficult to observe, with possible implication for engineering and sea ice modeling.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Wei Han, Zhiheng Du, Andrew R. Mahoney, Joshua Jones, and Hajo Eicken
The Cryosphere, 13, 1233–1246, https://doi.org/10.5194/tc-13-1233-2019, https://doi.org/10.5194/tc-13-1233-2019, 2019
Short summary
Short summary
The variability and potential trends of rain-on-snow events over Arctic sea ice and their role in sea-ice losses are poorly understood. This study demonstrates that rain-on-snow events are a critical factor in initiating the onset of surface melt over Arctic sea ice, and onset of spring rainfall over sea ice has shifted to earlier dates since the 1970s, which may have profound impacts on ice melt through feedbacks involving earlier onset of surface melt.
Dyre O. Dammann, Leif E. B. Eriksson, Andrew R. Mahoney, Hajo Eicken, and Franz J. Meyer
The Cryosphere, 13, 557–577, https://doi.org/10.5194/tc-13-557-2019, https://doi.org/10.5194/tc-13-557-2019, 2019
Short summary
Short summary
We present an approach for mapping bottomfast sea ice and landfast sea ice stability using Synthetic Aperture Radar Interferometry. This is the first comprehensive assessment of Arctic bottomfast sea ice extent with implications for subsea permafrost and marine habitats. Our pan-Arctic analysis also provides a new understanding of sea ice dynamics in five marginal seas of the Arctic Ocean relevant for strategic planning and tactical decision-making for different uses of coastal ice.
Rebecca J. Rolph, Andrew R. Mahoney, John Walsh, and Philip A. Loring
The Cryosphere, 12, 1779–1790, https://doi.org/10.5194/tc-12-1779-2018, https://doi.org/10.5194/tc-12-1779-2018, 2018
Short summary
Short summary
Using thresholds of physical climate variables developed from community observations, together with two large-scale datasets, we have produced local indices directly relevant to the impacts of a reduced sea ice cover on Alaska coastal communities. We demonstrate how community observations can inform use of large-scale datasets to derive these locally relevant indices.
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Cited articles
Ambrose, W. G., Von Quillfeldt, C., Clough, L. M., Tilney, P. V. R., and
Tucker, T.: The sub-ice algal community in the Chukchi sea: Large- and
small-scale patterns of abundance based on images from a remotely operated
vehicle, Polar Biol., 28, 784–795, https://doi.org/10.1007/s00300-005-0002-8, 2005.
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken, G.
L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bates, N. R.,
Benitez-Nelson, C. R., Brownlee, E., Frey, K. E., Laney, S. R., Mathis, J.,
Matsuoka, A., Mitchell, B. G., Moore, G. W. K., Reynolds, R. A., Sosik, H.
M., and Swift, J. H.: Phytoplankton blooms beneath the sea ice in the Chukchi
Sea, Deep-Sea Res. Pt. II, 105, 1–16, https://doi.org/10.1016/j.dsr2.2014.03.018,
2014.
Barrett, S. A. and Stringer, W. J.: Growth Mechanisms of “Katie's
Floeberg,” Arct. Alp. Res., 10, 775, https://doi.org/10.2307/1550744, 1978.
Bates, N.: Air-sea CO2 fluxes and the continental shelf pump of
carbon in the Chukchi Sea adjacent to the Arctic Ocean, J. Geophys. Res.,
111, C10013, https://doi.org/10.1029/2005JC003083, 2006.
Baumgartner, M. F., Stafford, K. M., Winsor, P., Statscewich, H., and
Fratantoni, D. M.: Glider-based passive acoustic monitoring in the Arctic,
Mar. Technol. Soc. J., 48, 40–51, https://doi.org/10.4031/MTSJ.48.5.2, 2014.
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation
linked to local evaporation and sea-ice retreat, Nature, 509, 479–482,
https://doi.org/10.1038/nature13259, 2014.
Corlett, W. B. and Pickart, R. S.: The Chukchi Slope Current, Prog.
Oceanogr., 153, 50–65, https://doi.org/10.1016/j.pocean.2017.04.005, 2017.
Danielson, S. L., Cooper, L. W., Grebmeier, J. M., Hauri, C., Iken, K.,
Hopcroft, R. R., Horne, J. H., Lalande, C., McDonnell, A. M. P., Stafford, K.
M., and Winsor, P.: Collaborative approaches to multi-disciplinary monitoring
of the Chukchi shelf marine ecosystem, in: MTS/IEEE Oceans17 conference
proceedings, Anchorage, AK, USA, 18–21 September 2017, IEEE, 1–7, 2017.
Day, R. H., Weingartner, T. J., Hopcroft, R. R., Aerts, L. A. M., Blanchard,
A. L., Gall, A. E., Gallaway, B. J., Hannay, D. E., Holladay, B. A., Mathis,
J. T., Norcross, B. L., Questel, J. M., and Wisdom, S. S.: The offshore
northeastern Chukchi Sea, Alaska: A complex high-latitude ecosystem, Cont.
Shelf Res., 67, 147–165, https://doi.org/10.1016/j.csr.2013.02.002, 2013.
de Jong, M. F., Oltmanns, M., Karstensen, J., and de Steur, L: Deep
Convection in the Irminger Sea observed with a dense mooring array,
Oceanography, 31, 50–59, https://doi.org/10.5670/oceanog.2018.109, 2018.
Dunton, K. H., Grebmeier, J. M., and Trefry, J. H: The benthic ecosystem of
the northeastern Chukchi Sea: An overview of its unique biogeochemistry and
biological characteristics, Deep-Sea Res. Pt. II, 102, 1–8,
https://doi.org/10.1016/j.dsr2.2014.01.001, 2014.
Else, B. G. T., Papakyriakou, T. N., Galley, R. J., Mucci, A., Gosselin, M.,
Miller, L. A., Shadwick, E. H., and Thomas, H.: Annual cycles of
pCO2sw in the southeastern Beaufort Sea: New
understandings of air-sea CO2 exchange in arctic polynya regions,
J. Geophys. Res., 117, C00G13, https://doi.org/10.1029/2011JC007346, 2012.
Eriksen R., Trull, T. W., Davies, D., Jansen, P., Davidson, A.T., Westwood,
K., and van den Enden, R.: Seasonal succession of phytoplankton community
structure from autonomous sampling at the Australian Southern Ocean Time
Series (SOTS) observatory, Mar. Ecol. Prog. Ser., 589, 13–31,
https://doi.org/10.3354/meps12420, 2018.
Ershova, A. E., Hopcroft, R. R., and Kosobokova, K. N.: Inter-annual
variability of summer mesozooplankton communities of the western Chukchi Sea:
2004–2012, Polar Biol., 38, 1461–1481, https://doi.org/10.1007/s00300-015-1709-9,
2015.
Evans, W., Mathis, J. T., and Cross, J. N.: Calcium carbonate corrosivity in
an Alaskan inland sea, Biogeosciences, 11, 365–379,
https://doi.org/10.5194/bg-11-365-2014, 2014.
Forest, A., Joint, T., Lalande, C., Hwang, J., Korea, S., and Sampei, M.:
Bio-mooring arrays and long-term sediment traps: Key tools to detect change
in the biogeochemical and ecological functioning of Arctic marine ecosystems,
Arct. Obs. Summit 2013, 1–20, 2013.
Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V., Fossheim,
M., and Aschan, M. M.: Climate-driven changes in functional biogeography of
Arctic marine fish communities, P. Natl. Acad. Sci. USA, 114, 12202–12207,
https://doi.org/10.1073/pnas.1706080114, 2017.
Frey, K. E., Moore, G. W. K., Cooper, L. W., and Grebmeier, J. M.: Divergent
patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort
seas of the Pacific Arctic Region, Prog. Oceanogr., 136, 32–49,
https://doi.org/10.1016/j.pocean.2015.05.009, 2015.
Gradinger, R.: Sea-ice algae: Major contributors to primary production and
algal biomass in the Chukchi and Beaufort Seas during May/June 2002, Deep-Sea
Res. Pt. II, 56, 1201–1212, https://doi.org/10.1016/j.dsr2.2008.10.016, 2009.
Grebmeier, J. M., Cooper, L. W, Feder., H. M., and Sirenko, B. I.: Ecosystem
dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the
Amerasian Arctic, Prog. Oceanogr., 71, 331–361,
https://doi.org/10.1016/j.pocean.2006.10.001, 2006.
Grebmeier, J. M., Bluhm, B. A., Cooper, L. W., Danielson, S. L., Arrigo, K.
R., Blanchard, A. L., Clarke, J. T., Day, R. H., Frey, K. E., Gradinger, R.
R., Kędra, M., Konar, B., Kuletz, K. J., Lee, S. H., Lovvorn, J. R.,
Norcross, B. L., and Okkonen, S. R.: Ecosystem characteristics and processes
facilitating persistent macrobenthic biomass hotspots and associated
benthivory in the Pacific Arctic, Prog. Oceanogr., 136, 92–114,
https://doi.org/10.1016/j.pocean.2015.05.006, 2015.
Hakkinen, S., Proshutinsky, A., and Ashik, I.: Sea ice drift in the Arctic
since the 1950s, Geophys. Res. Lett., 35, L19704, https://doi.org/10.1029/2008GL034791,
2008.
Hannay, D. E., Delarue, J., Mouy, X., Martin, B. S., Leary, D., Oswald, J.
N., and Vallarta, J.: Marine mammal acoustic detections in the northeastern
Chukchi Sea, September 2007–July 2011, Cont. Shelf Res., 67, 127–146,
https://doi.org/10.1016/j.csr.2013.07.009, 2013.
Hauri, C., Winsor, P., Juranek, L. W., McDonnell, A. M. P., Takahashi, T.,
and Mathis, J. T.: Wind-driven mixing causes a reduction in the strength of
the continental shelf carbon pump in the Chukchi Sea, Geophys. Res. Lett.,
40, 5932–5936, https://doi.org/10.1002/2013GL058267, 2013.
Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S.
C., John, J., and Beaulieu, C.: Detection of anthropogenic climate change in
satellite records of ocean chlorophyll and productivity, Biogeosciences, 7,
621–640, https://doi.org/10.5194/bg-7-621-2010, 2010.
Hill, V., Ardyna, M., Lee, S.H., and Varela, D.E.: Decadal trends in
phytoplankton production in the Pacific Arctic Region from 1950 to 2012,
Deep-Sea Res. Pt. II, 152, 82–94, https://doi.org/10.1016/j.dsr2.2016.12.015, 2018.
Jay, C. V., Fischbach, A. S., and Kochnev, A. A.: Walrus areas of use in the
Chukchi Sea during sparse sea ice cover, Mar. Ecol. Prog. Ser., 468, 1–13,
https://doi.org/10.3354/meps10057, 2012.
Kenitz, K. M., Visser, A. W., Mariani, P., and Andersen, K. H.: Seasonal
succession in zooplankton feeding traits reveals trophic trait coupling,
Limnol. Oceanogr., 62, 1184–1197, https://doi.org/10.1002/lno.10494, 2017.
Kuletz, K. J., Ferguson, M. C., Hurley, B., Gall, A. E., Labunski, E. A., and
Morgan, T. C.: Seasonal spatial patterns in seabird and marine mammal
distribution in the eastern Chukchi and western Beaufort seas: Identifying
biologically important pelagic areas, Prog. Oceanogr., 136, 175–200,
https://doi.org/10.1016/j.pocean.2015.05.012, 2015.
Lalande, C., Grebmeier, J. M., Wassmann, P., Cooper, L. W., Flint, M. V., and
Sergeeva, V. M.: Export fluxes of biogenic matter in the presence and absence
of seasonal sea ice cover in the Chukchi Sea, Cont. Shelf Res., 27,
2051–2065, https://doi.org/10.1016/j.csr.2007.05.005, 2007.
Lu, K., Weingartner, T., Danielson, D., Winsor, P., Dobbins, E., Martini, K.,
and Statscewich, H.: Lateral mixing across meltwater fronts of the Chukchi
Sea shelf, Geophys. Res. Lett., 42, 6754–6761, https://doi.org/10.1002/2015GL064967,
2015.
Martini, K. I., Stabeno, P. J., Ladd, C., Winsor, P., Weingartner, T. J.,
Mordy, C. W., and Eisner, L. B.: Dependence of subsurface chlorophyll on
seasonal water masses in the Chukchi Sea, J. Geophys. Res.-Oceans, 121,
1755–1770, https://doi.org/10.1002/2015JC011359, 2016.
McCabe, G. J., Clark, M. P., and Serreze, M. C.: Trends in Northern
Hemisphere Surface Cyclone Frequency and Intensity, J. Climate, 14,
2763–2768,
https://doi.org/10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2,
2001.
McPhee, M. G., Proshutinsky, A., Morison, J. H., Steele, M., and Alkire, M.
B.: Rapid change in freshwater content of the Arctic Ocean, Geophys. Res.
Lett., 36, L10602, https://doi.org/10.1029/2009GL037525, 2009.
Moore, S. E. and Grebmeier, J. M.: The Distributed Biological Observatory:
Linking Physics to Biology in the Pacific Arctic Region, Arctic, 71, 1–7,
https://doi.org/10.14430/arctic4606, 2018.
Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen,
R., and Steele, M.: Changing Arctic Ocean freshwater pathways, Nature, 481,
66–70, https://doi.org/10.1038/nature10705, 2012.
Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis J.:
Global Ocean Acidification Observing Network: Requirements and Governance
Plan, 2nd edn., GOA-ON, available at:
http://goa-on.org/documents/resources/GOA-ON_2nd_edition_final.pdf
(last access: 9 November 2018), 2015.
Nishino, S., Kikuchi, T., Fujiwara, A., Hirawake, T., and Aoyama, M.: Water
mass characteristics and their temporal changes in a biological hotspot in
the southern Chukchi Sea, Biogeosciences, 13, 2563–2578,
https://doi.org/10.5194/bg-13-2563-2016, 2016.
Orr, J. C.: Recent and future changes in ocean carbonate chemistry, in: Ocean
Acidification, vol. 2, edited by: Gattuso, J.-P. and Hansson, L., Oxford
University Press, Oxford, 41–66, 2011.
Peralta-Ferriz, C. and Woodgate, R. A.: Seasonal and interannual variability
of pan-Arctic surface mixed layer properties from 1979 to 2012 from
hydrographic data, and the dominance of stratification for multiyear mixed
layer depth shoaling, Prog. Oceanogr., 134, 19–53,
https://doi.org/10.1016/j.pocean.2014.12.005, 2015.
Pickart, R. S., Schulze, L. M., Moore, G. W. K., Charette, M. A., Arrigo, K.
R., van Dijken, G., and Danielson, S. L.: Long-term trends of upwelling and
impacts on primary productivity in the Alaskan Beaufort Sea, Deep-Sea Res.
Pt. I, 79, 106–121, https://doi.org/10.1016/j.dsr.2013.05.003, 2013.
Pirtle-Levy, R., Grebmeier, J. M., Cooper, L. W., and Larsen, I. L.:
Chlorophyll a in Arctic sediments implies long persistence of algal pigments,
Deep-Sea Res. Pt. II, 56, 1326–1338, https://doi.org/10.1016/j.dsr2.2008.10.022, 2009.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T.
M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, T., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin
of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204,
2017.
Proshutinsky, A., Krishfield, R., Timmermans, M.-L., Toole, J., Carmack, E.,
McLaughlin, F., Williams, W. J., Zimmermann, S., Itoh, M., and Shimada, K.:
Beaufort Gyre freshwater reservoir: State and variability from observations,
J. Geophys. Res., 114, C00A10, https://doi.org/10.1029/2008JC005104, 2009.
Sambrotto, R. N., Goering, J. J., and McRoy, C. P.: Large yearly production
of phytoplankton in the Western Bering Strait, Science, 225, 1147–1150,
https://doi.org/10.1126/science.225.4667.1147, 1984.
Serreze, M. C. and Francis, J. A.: The Arctic amplification debate, Clim.
Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y, 2006.
Serreze, M. C. and Stroeve, J. C.: Arctic sea ice trends, variability and
implications for seasonal ice forecasting, Philos. T. Roy. Soc. A, 373,
20140159, https://doi.org/10.1098/rsta.2014.0159, 2015.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements NOAAs Historical Merged Land–Ocean Temp Analysis (1880–2006),
J. Climate, 21, 2283–2296, https://doi.org/10.1175/2007JCLI2100.1, 2008.
Springer, A. M., McRoy, C. P., and Flint, M. V.: The Bering Sea Green Belt:
shelf-edge processes and ecosystem production, Fish. Oceanogr., 5, 205–223,
https://doi.org/10.1111/j.1365-2419.1996.tb00118.x, 1996.
Stigebrandt, A.: The North Pacific: A Global-Scale Estuary, J. Phys.
Oceanogr., 14, 464–470,
https://doi.org/10.1175/1520-0485(1984)014<0464:TNPAGS>2.0.CO;2,
1984.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: IPCC: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
1535 pp., 2013.
Walsh, J. J., McRoy, C. P., Coachman, L. K., Goering, J. J., Nihoul, J. J.,
Whitledge, T. E., Blackburn, T. H., Parker, P. L., Wirick, C. D., Shuert, P.
G., Grebmeier, J. M., Springer, A. M., Tripp, R. D., Hansell, D., Djenidi,
S., Deleersnijder, E., Henriksen, K., Lund, B. A., Andersen, P.,
Müller-Karger, F. E., and Dean, K.: Carbon and nitrogen cycling within
the Bering/Chukchi Seas: source regions for organic matter affecting AOU
demands of the Arctic Ocean, Prog. Oceanogr., 22, 279–361,
https://doi.org/10.1016/0079-6611(89)90006-2, 1989.
Wassmann, P.: Arctic marine ecosystems in an era of rapid climate change,
Prog. Oceanogr., 90, 1–17, https://doi.org/10.1016/j.pocean.2011.02.002, 2011.
Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y., and
Cavalieri, D.: Circulation on the north central Chukchi Sea shelf, Deep-Sea
Res. Pt. II, 52, 3150–3174, https://doi.org/10.1016/j.dsr2.2005.10.015, 2005.
Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in
Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011
and their impacts on the Arctic Ocean water column, Geophys. Res. Lett., 39,
L24603, https://doi.org/10.1029/2012GL054092, 2012.
Yamamoto-Kawai, M., McLaughlin, F. A, Carmack, E. C., Nishino, S., and
Shimada, K.: Aragonite undersaturation in the Arctic Ocean: effects of ocean
acidification and sea ice melt, Science, 326, 1098–100,
https://doi.org/10.1126/science.1174190, 2009.
Short summary
The Arctic Ocean is changing rapidly. In order to track these changes, we developed and deployed a long-term marine ecosystem observatory in the Chukchi Sea. It helps us to better understand currents, waves, sea ice, salinity, temperature, nutrient and carbon concentrations, oxygen, phytoplankton blooms and export, zooplankton abundance and vertical migration, and the occurrence of fish and marine mammals throughout the year, even during the ice covered winter months.
The Arctic Ocean is changing rapidly. In order to track these changes, we developed and deployed...