Articles | Volume 13, issue 4
https://doi.org/10.5194/os-13-599-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-599-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The double high tide at Port Ellen: Doodson's criterion revisited
Hannah A. M. Byrne
Bangor University, School of Ocean Sciences, Menai Bridge,
Anglesey, LL59 5AB, UK
Bangor University, School of Ocean Sciences, Menai Bridge,
Anglesey, LL59 5AB, UK
David G. Bowers
Bangor University, School of Ocean Sciences, Menai Bridge,
Anglesey, LL59 5AB, UK
Related authors
J. A. Mattias Green, David G. Bowers, and Hannah A. M. Byrne
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-72, https://doi.org/10.5194/os-2018-72, 2018
Preprint withdrawn
Short summary
Short summary
In a double tide the ocean reaches high or low tide, starts to fall or rise, only to go back to a new high or low. Here, we describe three ways this can happen by dividing locations with observed double tides into three classes. This showed that double tides are more common than we thought, and more complicated than most textbooks claim because they only describe one class of double tides. This matters to shipping, coastal flood management, and other disciplines interested in sea-level change.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024, https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Philip L. Woodworth, J. A. Mattias Green, Richard D. Ray, and John M. Huthnance
Ocean Sci., 17, 809–818, https://doi.org/10.5194/os-17-809-2021, https://doi.org/10.5194/os-17-809-2021, 2021
Short summary
Short summary
This special issue marks the 100th anniversary of the founding of the Liverpool Tidal Institute (LTI). The preface gives a history of the LTI founding and of its first two directors. It also gives an overview of LTI research on tides. Summaries are given of the 26 papers in the special issue. Their topics could be thought of as providing a continuation of the research first undertaken at the LTI. They provide an interesting snapshot of work on tides now being made by groups around the world.
J. A. Mattias Green and David T. Pugh
Ocean Sci., 16, 1337–1345, https://doi.org/10.5194/os-16-1337-2020, https://doi.org/10.5194/os-16-1337-2020, 2020
Short summary
Short summary
Bardsey Island lies 3 km offshore the western end of the Llŷn Peninsula in northwestern Wales. However, the island is too small to show up in tidal databases based on satellite data, and thus they may not provide the correct local tides. Our new sea level data shows that the tidal currents in the satellite databases are one-third of the observed currents. Any investigation of other coastal activities, e.g. renewable energy installations, must use local observations to get the correct tides.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
Hannah S. Davies, J. A. Mattias Green, and Joao C. Duarte
Earth Syst. Dynam., 11, 291–299, https://doi.org/10.5194/esd-11-291-2020, https://doi.org/10.5194/esd-11-291-2020, 2020
Short summary
Short summary
We have confirmed that there is a supertidal cycle associated with the supercontinent cycle. As continents drift due to plate tectonics, oceans also change size, controlling the strength of the tides and causing periods of supertides. In this work, we used a coupled tectonic–tidal model of Earth's future to test four different scenarios that undergo different styles of ocean closure and periods of supertides. This has implications for the Earth system and for other planets with liquid oceans.
Alexander Harker, J. A. Mattias Green, Michael Schindelegger, and Sophie-Berenice Wilmes
Ocean Sci., 15, 147–159, https://doi.org/10.5194/os-15-147-2019, https://doi.org/10.5194/os-15-147-2019, 2019
Short summary
Short summary
We used a computer model to help predict how changing sea levels around Australia will affect the ebb and flow of the tide. We found that sea-level rise and coastal flooding affect where energy from the tide is dissipated and how the tide flows around the coastline. We found that we must consider how sea-level rise will affect tides across the rest of the world, as that will have an impact on Australia too. This sort of investigation can help direct coastal management and protection efforts.
Matthew Cooper, Charles Bishop, Matthew Lewis, David Bowers, Mark Bolton, Ellie Owen, and Stephen Dodd
Ocean Sci., 14, 1483–1490, https://doi.org/10.5194/os-14-1483-2018, https://doi.org/10.5194/os-14-1483-2018, 2018
Short summary
Short summary
This paper describes a feasibility study carried out to determine if information gathered for one discipline could be
repurposedto provide insight in another. Data gathered during a study of bird distribution were used to investigate whether these same data could be used to measure tidal current velocities and direction. The paper concludes that there is potential to use GPS-tagged birds as
drifters of opportunityand that interdisciplinary sharing of data can provide additional insight.
J. A. Mattias Green, David G. Bowers, and Hannah A. M. Byrne
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-72, https://doi.org/10.5194/os-2018-72, 2018
Preprint withdrawn
Short summary
Short summary
In a double tide the ocean reaches high or low tide, starts to fall or rise, only to go back to a new high or low. Here, we describe three ways this can happen by dividing locations with observed double tides into three classes. This showed that double tides are more common than we thought, and more complicated than most textbooks claim because they only describe one class of double tides. This matters to shipping, coastal flood management, and other disciplines interested in sea-level change.
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 9, 1649–1661, https://doi.org/10.5194/tc-9-1649-2015, https://doi.org/10.5194/tc-9-1649-2015, 2015
Short summary
Short summary
We use a full-Stokes model to investigate the long period modulation of Rutford Ice Stream flow by the ocean tide. We find that using a nonlinear sliding law cannot fully explain the measurements and an additional mechanism, whereby tidally induced subglacial pressure variations are transmitted upstream from the grounding line, is also required to match the large amplitude and decay length scale of the observations.
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 8, 1763–1775, https://doi.org/10.5194/tc-8-1763-2014, https://doi.org/10.5194/tc-8-1763-2014, 2014
N. Herold, J. Buzan, M. Seton, A. Goldner, J. A. M. Green, R. D. Müller, P. Markwick, and M. Huber
Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, https://doi.org/10.5194/gmd-7-2077-2014, 2014
Cited articles
Airy, G. B.: On the laws of individual tides at Southampton and at Ipswich, Philos. T. R. Soc. Lond., 133, 45–54, 1843.
Bowers, D., Macdonald, R., McKee, D., Nimmo-Smith, W., and Graham, G.: On the formation of tide-produced seiches and double high waters in coastal seas, Estuarine, Coast. Shelf Sci., 134, 108–116, 2013.
Doodson, A. T. and Warburg, H.: Admiralty manual of tides, Her Majesty's Stationery Office, London, 1941.
Emery, W. J. and Thomson, R. E.: Data analysis methods in physical oceanography, 2nd Edn., Pergamon Press, 650 pp., 1996.
Godin, G.: An investigation of the phenomenon of double high water or double low water at some harbours, Deutsche Hydrographische Zeitschrift, 45, 87–106, 1993.
Nunes, R. and Lennon, G.: Physical property distributions and seasonal trends in Spencer Gulf, South Australia, an inverse estuary, Mar. Freshwater Res., 37, 39–53, 1986.
Pugh, D.: A comparison of recent and historical tides and mean sea-levels off Ireland, Geophys. J. Roy. Astr. S., 71, 809–815, 1982.
Pugh, D. T.: Tides, surges and mean sea level: a handbook for engineers and scientists, Wiley, Chichester, UK, 1987.
Pugh, D. and Woodworth, P.: Sea-Level Science: Understanding tides, surges, tsunamis and mean sea-level changes, Cambridge University Press, Cambridge, UK, 2014.
Redfield, A. C.: The tides of New England and New York, Woods Hole Oceanographic Institution, USA, 1980.
Weatherall P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345, doi:10.1002/2015EA000107, 2015.
Woodworth, P. L.: Differences between mean tide level and mean sea level, J. Geodesy, 91, 69–90, 2017.
Short summary
Some places experience double high tides, where the tide starts to ebb for a short while, only to briefly flood again before finally receding. The result is a very long high tide with weak currents, and is important for navigational purposes. The existing theory for when and where double high tides occur does not always capture them, and it can only be applied to double highs occurring on a twice-daily tide. Here, the criterion has been generalized to capture all double high or low tides.
Some places experience double high tides, where the tide starts to ebb for a short while, only...