Articles | Volume 13, issue 4
https://doi.org/10.5194/os-13-589-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-589-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The “shallow-waterness” of the wave climate in European coastal regions
Kai Håkon Christensen
CORRESPONDING AUTHOR
Norwegian Meteorological Institute, Henrik Mohns plass 1, 0313 Oslo, Norway
Department of Geosciences, University of Oslo, Sem Sælands vei 1, 0316, Oslo, Norway
Ana Carrasco
Norwegian Meteorological Institute, Henrik Mohns plass 1, 0313 Oslo, Norway
Jean-Raymond Bidlot
European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK
Øyvind Breivik
Norwegian Meteorological Institute, Henrik Mohns plass 1, 0313 Oslo, Norway
Geophysical Institute, University of Bergen, Allégaten 70, 5007, Bergen, Norway
Related authors
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Sindre Fritzner, Rune Graversen, Kai H. Christensen, Philip Rostosky, and Keguang Wang
The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, https://doi.org/10.5194/tc-13-491-2019, 2019
Short summary
Short summary
In this work, a coupled ocean and sea-ice ensemble-based assimilation system is used to assess the impact of different observations on the assimilation system. The focus of this study is on sea-ice observations, including the use of satellite observations of sea-ice concentration, sea-ice thickness and snow depth for assimilation. The study showed that assimilation of sea-ice thickness in addition to sea-ice concentration has a large positive impact on the coupled model.
A. K. Sperrevik, K. H. Christensen, and J. Röhrs
Ocean Sci., 11, 237–249, https://doi.org/10.5194/os-11-237-2015, https://doi.org/10.5194/os-11-237-2015, 2015
T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. H. Christensen, and E. S. Saltzman
Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, https://doi.org/10.5194/acp-13-11073-2013, 2013
G. Sutherland, B. Ward, and K. H. Christensen
Ocean Sci., 9, 597–608, https://doi.org/10.5194/os-9-597-2013, https://doi.org/10.5194/os-9-597-2013, 2013
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Alvise Benetazzo, Trygve Halsne, Øyvind Breivik, Kjersti Opstad Strand, Adrian H. Callaghan, Francesco Barbariol, Silvio Davison, Filippo Bergamasco, Cristobal Molina, and Mauro Bastianini
Ocean Sci., 20, 639–660, https://doi.org/10.5194/os-20-639-2024, https://doi.org/10.5194/os-20-639-2024, 2024
Short summary
Short summary
We investigated the behaviour of air bubble plumes in the upper ocean in various stormy conditions. We conducted a field experiment in the North Adriatic Sea using high-resolution sonar. We found that bubble penetration depths respond rapidly to wind and wave forcings and can be triggered by the cooling of the water masses. We also found a strong connection between bubble depths and theoretical CO2 gas transfer. Our findings have implications for air–sea interaction studies.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
EGUsphere, https://doi.org/10.5194/egusphere-2024-913, https://doi.org/10.5194/egusphere-2024-913, 2024
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale"), and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
Short summary
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the ocean and in coastal regions. The model combines ocean physics, including transport due to currents, turbulence due to surface winds and the sinking of particles to the sea floor, with ocean chemistry, such as the partitioning, the degradation and the evaporation of chemicals. The model will be utilized for risk assessment of ocean and sea-floor contamination from pollutants emitted from shipping.
Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik
The Cryosphere, 16, 2103–2114, https://doi.org/10.5194/tc-16-2103-2022, https://doi.org/10.5194/tc-16-2103-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ), which is the transition region between the open ocean and the dense pack ice, is a very dynamic region comprising a mixture of ice and ocean conditions. Using novel drifters deployed in various ice conditions in the MIZ, several material transport models are tested with two operational ice–ocean prediction systems. A new general transport equation, which uses both the ice and ocean solutions, is developed that reduces the error in drift prediction for our case study.
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Sindre Fritzner, Rune Graversen, Kai H. Christensen, Philip Rostosky, and Keguang Wang
The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, https://doi.org/10.5194/tc-13-491-2019, 2019
Short summary
Short summary
In this work, a coupled ocean and sea-ice ensemble-based assimilation system is used to assess the impact of different observations on the assimilation system. The focus of this study is on sea-ice observations, including the use of satellite observations of sea-ice concentration, sea-ice thickness and snow depth for assimilation. The study showed that assimilation of sea-ice thickness in addition to sea-ice concentration has a large positive impact on the coupled model.
Anne Wiese, Joanna Staneva, Johannes Schulz-Stellenfleth, Arno Behrens, Luciana Fenoglio-Marc, and Jean-Raymond Bidlot
Ocean Sci., 14, 1503–1521, https://doi.org/10.5194/os-14-1503-2018, https://doi.org/10.5194/os-14-1503-2018, 2018
Short summary
Short summary
The increase of data quality of wind and wave measurements provided by the new Sentinel-3A satellite in coastal areas is demonstrated compared to measurements of older satellites with in situ data and spectral wave model simulations. Furthermore, the sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, where an hourly temporal resolution is necessary to represent the peak of extreme events better.
Knut-Frode Dagestad, Johannes Röhrs, Øyvind Breivik, and Bjørn Ådlandsvik
Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018, https://doi.org/10.5194/gmd-11-1405-2018, 2018
Short summary
Short summary
We have developed a computer code with ability to predict how various substances and objects drift in the ocean. This may be used to, e.g. predict the drift of oil to aid cleanup operations, the drift of man-over-board or lifeboats to aid search and rescue operations, or the drift of fish eggs and larvae to understand and manage fish stocks. This new code merges all such applications into one software tool, allowing to optimise and channel any available resources and developments.
A. K. Sperrevik, K. H. Christensen, and J. Röhrs
Ocean Sci., 11, 237–249, https://doi.org/10.5194/os-11-237-2015, https://doi.org/10.5194/os-11-237-2015, 2015
T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. H. Christensen, and E. S. Saltzman
Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, https://doi.org/10.5194/acp-13-11073-2013, 2013
G. Sutherland, B. Ward, and K. H. Christensen
Ocean Sci., 9, 597–608, https://doi.org/10.5194/os-9-597-2013, https://doi.org/10.5194/os-9-597-2013, 2013
Cited articles
Aarnes, O. J., Breivik, Ø., and Reistad, M.: Wave extremes in the Northeast Atlantic, J. Clim., 25, 1529–1543, https://doi.org/10.1175/JCLI-D-11-00132.1, 2012.
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P., Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical wave modeling in conditions with strong currents: dissipation, refraction, and relative wind, J. Phys. Oceanogr., 42, 2101–2120, https://doi.org/10.1175/JPO-D-11-0220.1, 2012.
Bidlot, J.-R.: Grib and ASCII data, subset ERA-I for shallow water waves Ocean Science study [Data set], Zenodo, https://doi.org/10.5281/zenodo.831329, 2017.
Boukhanovsky, A. V., Lopatoukhin, L. J., and Guedes Soares, C.: Spectral wave climate of the North Sea, Appl. Ocean Res., 29, 146–154, https://doi.org/10.1016/j.apor.2007.08.004, 2007.
Dee, D., Uppala, S., Simmons, A. et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dodet, G., Bertin, X., and Taborda, R.: Wave climate variability in the North-East Atlantic Ocean over the last six decades, Ocean Model., 31, 120–131, https://doi.org/10.1016/j.ocemod.2009.10.010, 2010.
Gorman, R. M., Bryan, K. R., and Laing, A. K.: Wave hindcast for the New Zealand region: nearshore validation and coastal wave climate, New Zeal. J. Mar. Fresh., 37, 567–588, https://doi.org/10.1080/00288330.2003.9517190, 2003.
Hemer, M. A., Fan, Y., Mori, N., Semedo, A., and Wang, X. L.: Projected changes in wave climate from a multi-model ensemble, Nat. Clim. Change, 3, 471–476, https://doi.org/10.1038/nclimate1791, 2013.
Holthuijsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University Press, Cambridge, 2007.
Janssen, P.: Wave-induced stress and the drag of air flow over sea waves, J. Phys. Oceangr., 19, 745–754, https://doi.org/10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2, 1989.
Janssen, P.: Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceangr., 21, 1631–1642, https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2, 1991.
Janssen, P.: The Interaction of Ocean Waves and Wind, Cambridge University Press, Cambridge, UK, 2004.
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M.: Dynamics and Modelling of Ocean Waves, Cambridge University Press, Cambridge, 1994.
Longuet-Higgins, M. S. and Stewart, R.: Radiation stresses in water waves; a physical discussion, with applications, Deep-Sea Res., 11, 529–562, https://doi.org/10.1016/0011-7471(64)90001-4, 1964.
Mcintyre, M. E.: A note on the divergence effect and the Lagrangian-mean surface elevation in periodic water waves, J. Fluid Mech., 189, 235–242, https://doi.org/10.1017/S0022112088000989, 1988.
Reguero, B. G., Méndez, M., Méndez, F. J., Ménguez, R., and Losada, I. J.: A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards, Coast. Eng., 65, 38–55, https://doi.org/10.1016/j.coastaleng.2012.03.003, 2012.
Reistad, M., Breivik, Ø., Haakenstad, H., Aarnes, O. J., Furevik, B. R., and Bidlot, J.-R.: A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea, J. Geophys. Res., 116, C05019, https://doi.org/10.1029/2010JC006402, 2011.
Smith, J. A.: Wave current interactions in finite depth, J. Phys. Oceanogr., 36, 1403–1419, https://doi.org/10.1175/JPO2911.1, 2006.
Wang, X. L., Zwiers, F. W., and Swail, V. R.: North Atlantic Ocean wave climate change scenarios for the twenty-first century, J. Clim., 17, 2368–2383, https://doi.org/10.1175/1520-0442(2004)017<2368:NAOWCC>2.0.CO;2, 2004.
Whitham, G.: Mass, momentum and energy flux in water waves, J. Fluid Mech., 12, 135–147, https://doi.org/10.1017/S0022112062000099, 1962.
Short summary
In this note we investigate when and where we would expect the bottom to influence the dynamics of surface waves. In deep water, where the presence of the bottom is not felt by the waves, modelers can use a simpler description of wave-mean flow interactions; hence, the results are relevant for coupled wave-ocean modeling systems. The most pronounced influence is on the Northwest Shelf during winter, and can sometimes be significant even far from the coast.
In this note we investigate when and where we would expect the bottom to influence the dynamics...