Articles | Volume 12, issue 4
https://doi.org/10.5194/os-12-977-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-977-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Effects of surface current–wind interaction in an eddy-rich general ocean circulation simulation of the Baltic Sea
Heiner Dietze
CORRESPONDING AUTHOR
GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Ulrike Löptien
GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Related authors
Heiner Dietze and Ulrike Löptien
EGUsphere, https://doi.org/10.5194/egusphere-2024-918, https://doi.org/10.5194/egusphere-2024-918, 2024
Short summary
Short summary
We introduce argon saturation as a prognostic variable in a suite of coupled general ocean circulation biogeochemical models off Mauretania. Our results indicate that the effect of increasing the spatial horizontal model resolutions from 12 km to 1.5 km leads to changes comparable to other infamous spurious effects of state-of-the-art numerical advection numerics.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Ulrike Löptien and Heiner Dietze
Biogeosciences, 16, 1865–1881, https://doi.org/10.5194/bg-16-1865-2019, https://doi.org/10.5194/bg-16-1865-2019, 2019
Short summary
Short summary
Anthropogenic greenhouse gas emissions trigger complex climate feedbacks. Output form Earth system models provides a basis for related political decision-making. One challenge is to arrive at reliable model parameter estimates for the ocean biogeochemistry module. We illustrate pitfalls through which flaws in the ocean module are masked by wrongly tuning the biogeochemistry and discuss ensuing uncertainties in climate projections.
Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies
Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017, https://doi.org/10.5194/gmd-10-2425-2017, 2017
Short summary
Short summary
Computer models of ocean biology and chemistry are becoming increasingly complex, and thus more expensive, to run. One solution is to approximate the behaviour of the ocean physics and store that information outside of the model. That
offlineinformation can then be used to calculate a steady-state solution from the model's biology and chemistry, without waiting for a traditional
onlineintegration to complete. We show this offline method reproduces online results and is 100 times faster.
Heiner Dietze, Julia Getzlaff, and Ulrike Löptien
Biogeosciences, 14, 1561–1576, https://doi.org/10.5194/bg-14-1561-2017, https://doi.org/10.5194/bg-14-1561-2017, 2017
Short summary
Short summary
The Southern Ocean is a sink for anthropogenic carbon. Projections of how this sink will evolve in an ever-warming climate are based on coupled ocean-circulation–biogeochemical models. This study compares uncertainties of simulated oceanic carbon uptake associated to physical (eddy) parameterizations with those associated wtih (unconstrained) supply of bioavailable iron supply to the surface ocean.
Yonss Saranga José, Heiner Dietze, and Andreas Oschlies
Biogeosciences, 14, 1349–1364, https://doi.org/10.5194/bg-14-1349-2017, https://doi.org/10.5194/bg-14-1349-2017, 2017
Short summary
Short summary
This study aims to investigate the diverse subsurface nutrient patterns observed within anticyclonic eddies in the upwelling system off Peru. Two simulated anticyclonic eddies with opposing subsurface nitrate concentrations were analysed. The results show that diverse nutrient patterns within anticyclonic eddies are related to the presence of water mass from different origins at different depths, responding to variations in depth of the circulation strength at the edge of the eddy.
U. Löptien and H. Dietze
Ocean Sci., 11, 573–590, https://doi.org/10.5194/os-11-573-2015, https://doi.org/10.5194/os-11-573-2015, 2015
Short summary
Short summary
Marine biogeochemical ocean models are embedded into earth system models - which are, to an increasing degree, applied to project the fate of our warming world. These biogeochemical models generally depend on poorly constrained model parameters. In this study we investigate the the demands on observations for an objective estimation of such parameters. A major result is that even modest noise (10%) inherent to observations can hinder the assignment of reasonable parameters.
U. Löptien and H. Dietze
Earth Syst. Sci. Data, 6, 367–374, https://doi.org/10.5194/essd-6-367-2014, https://doi.org/10.5194/essd-6-367-2014, 2014
H. Dietze, U. Löptien, and K. Getzlaff
Geosci. Model Dev., 7, 1713–1731, https://doi.org/10.5194/gmd-7-1713-2014, https://doi.org/10.5194/gmd-7-1713-2014, 2014
A. Landolfi, H. Dietze, W. Koeve, and A. Oschlies
Biogeosciences, 10, 1351–1363, https://doi.org/10.5194/bg-10-1351-2013, https://doi.org/10.5194/bg-10-1351-2013, 2013
Heiner Dietze and Ulrike Löptien
EGUsphere, https://doi.org/10.5194/egusphere-2024-918, https://doi.org/10.5194/egusphere-2024-918, 2024
Short summary
Short summary
We introduce argon saturation as a prognostic variable in a suite of coupled general ocean circulation biogeochemical models off Mauretania. Our results indicate that the effect of increasing the spatial horizontal model resolutions from 12 km to 1.5 km leads to changes comparable to other infamous spurious effects of state-of-the-art numerical advection numerics.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
Ulrike Löptien and Heiner Dietze
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-96, https://doi.org/10.5194/bg-2020-96, 2020
Manuscript not accepted for further review
Short summary
Short summary
Nitrogen fixation, conducted by specific microorganisms, makes molecular nitrogen available for marine biota. By this means this process exerts major control on the growth of algae in the ocean. This study compares two contemporary paradigms, anticipating the ecological niche of N-fixing organisms in an Earth System Model. We illustrate respective uncertainties in climate projections and suggest specific observations to advance the reliable representation of nitrogen fixation in numerical models.
Heiner Dietze, Ulrike Löptien, and Julia Getzlaff
Geosci. Model Dev., 13, 71–97, https://doi.org/10.5194/gmd-13-71-2020, https://doi.org/10.5194/gmd-13-71-2020, 2020
Short summary
Short summary
We present a new near-global coupled biogeochemical ocean-circulation model configuration of the Southern Ocean. The configuration features both a relatively equilibrated oceanic carbon inventory and an explicit representation of mesoscale eddies. In this paper, we document the model configuration and showcase its potential to tackle research questions such as the Southern Ocean carbon uptake dynamics on decadal timescales.
Ulrike Löptien and Heiner Dietze
Biogeosciences, 16, 1865–1881, https://doi.org/10.5194/bg-16-1865-2019, https://doi.org/10.5194/bg-16-1865-2019, 2019
Short summary
Short summary
Anthropogenic greenhouse gas emissions trigger complex climate feedbacks. Output form Earth system models provides a basis for related political decision-making. One challenge is to arrive at reliable model parameter estimates for the ocean biogeochemistry module. We illustrate pitfalls through which flaws in the ocean module are masked by wrongly tuning the biogeochemistry and discuss ensuing uncertainties in climate projections.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Volkmar Sauerland, Ulrike Löptien, Claudine Leonhard, Andreas Oschlies, and Anand Srivastav
Geosci. Model Dev., 11, 1181–1198, https://doi.org/10.5194/gmd-11-1181-2018, https://doi.org/10.5194/gmd-11-1181-2018, 2018
Short summary
Short summary
We present a concept to prove that a parametric model is well calibrated, i.e., that changes of its free parameters cannot lead to a much better model–data misfit anymore. The intention is motivated by the fact that calibrating global biogeochemical ocean models is important for assessment and inter-model comparison but computationally expensive.
Per Pemberton, Ulrike Löptien, Robinson Hordoir, Anders Höglund, Semjon Schimanke, Lars Axell, and Jari Haapala
Geosci. Model Dev., 10, 3105–3123, https://doi.org/10.5194/gmd-10-3105-2017, https://doi.org/10.5194/gmd-10-3105-2017, 2017
Short summary
Short summary
The Baltic Sea is seasonally ice covered with intense wintertime ship traffic and a sensitive ecosystem. Understanding the sea-ice pack is important for climate effect studies and forecasting. A NEMO-LIM3.6-based model setup for the North Sea/Baltic Sea is introduced, including a method for ice in the coastal zone. We evaluate different sea-ice parameters and overall find that the model agrees well with the observation though deformed ice is more challenging to capture.
Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies
Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017, https://doi.org/10.5194/gmd-10-2425-2017, 2017
Short summary
Short summary
Computer models of ocean biology and chemistry are becoming increasingly complex, and thus more expensive, to run. One solution is to approximate the behaviour of the ocean physics and store that information outside of the model. That
offlineinformation can then be used to calculate a steady-state solution from the model's biology and chemistry, without waiting for a traditional
onlineintegration to complete. We show this offline method reproduces online results and is 100 times faster.
Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017, https://doi.org/10.5194/bg-14-1647-2017, 2017
Short summary
Short summary
Plankton models have become an integral part in marine ecosystem and biogeochemical research. These models differ in complexity and in their number of parameters. How values are assigned to parameters is essential. An overview of major methodologies of parameter estimation is provided. Aspects of parameter identification in the literature are diverse. Individual findings could be better synthesized if notation and expertise of the different scientific communities would be reasonably merged.
Heiner Dietze, Julia Getzlaff, and Ulrike Löptien
Biogeosciences, 14, 1561–1576, https://doi.org/10.5194/bg-14-1561-2017, https://doi.org/10.5194/bg-14-1561-2017, 2017
Short summary
Short summary
The Southern Ocean is a sink for anthropogenic carbon. Projections of how this sink will evolve in an ever-warming climate are based on coupled ocean-circulation–biogeochemical models. This study compares uncertainties of simulated oceanic carbon uptake associated to physical (eddy) parameterizations with those associated wtih (unconstrained) supply of bioavailable iron supply to the surface ocean.
Yonss Saranga José, Heiner Dietze, and Andreas Oschlies
Biogeosciences, 14, 1349–1364, https://doi.org/10.5194/bg-14-1349-2017, https://doi.org/10.5194/bg-14-1349-2017, 2017
Short summary
Short summary
This study aims to investigate the diverse subsurface nutrient patterns observed within anticyclonic eddies in the upwelling system off Peru. Two simulated anticyclonic eddies with opposing subsurface nitrate concentrations were analysed. The results show that diverse nutrient patterns within anticyclonic eddies are related to the presence of water mass from different origins at different depths, responding to variations in depth of the circulation strength at the edge of the eddy.
U. Löptien and H. Dietze
Ocean Sci., 11, 573–590, https://doi.org/10.5194/os-11-573-2015, https://doi.org/10.5194/os-11-573-2015, 2015
Short summary
Short summary
Marine biogeochemical ocean models are embedded into earth system models - which are, to an increasing degree, applied to project the fate of our warming world. These biogeochemical models generally depend on poorly constrained model parameters. In this study we investigate the the demands on observations for an objective estimation of such parameters. A major result is that even modest noise (10%) inherent to observations can hinder the assignment of reasonable parameters.
U. Löptien and L. Axell
The Cryosphere, 8, 2409–2418, https://doi.org/10.5194/tc-8-2409-2014, https://doi.org/10.5194/tc-8-2409-2014, 2014
Short summary
Short summary
The Baltic Sea is a seasonally ice-covered marginal sea in central northern Europe. In wintertime, on-time shipping depends crucially on sea ice forecasts. Among the forecasting tools heavily applied are numerical models, which suffer from a lack of calibration data because relevant ice properties are difficult (and costly) to monitor. We developed an innovative and inexpensive approach, by using ship speed observations obtained by the automatic identification system (AIS) to asses such models.
U. Löptien and H. Dietze
Earth Syst. Sci. Data, 6, 367–374, https://doi.org/10.5194/essd-6-367-2014, https://doi.org/10.5194/essd-6-367-2014, 2014
H. Dietze, U. Löptien, and K. Getzlaff
Geosci. Model Dev., 7, 1713–1731, https://doi.org/10.5194/gmd-7-1713-2014, https://doi.org/10.5194/gmd-7-1713-2014, 2014
A. Landolfi, H. Dietze, W. Koeve, and A. Oschlies
Biogeosciences, 10, 1351–1363, https://doi.org/10.5194/bg-10-1351-2013, https://doi.org/10.5194/bg-10-1351-2013, 2013
Cited articles
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.: Deoxygenation of the Baltic Sea during the last century, PNAS, 111, 5628–5633, 2014.
Dewar, W. K. and Flierl, G. R.: Some Effects of the Wind on Rings, J. Phys. Oceanogr., 17, 1653–1667, 1987.
Dietze, H. and Kriest, I.: 137Cs off Fukushima Dai-ichi, Japan – model based estimates of dilution and fate, Ocean Sci., 8, 319–332, https://doi.org/10.5194/os-8-319-2012, 2012.
Dietze, H. and Löptien, U.: Revisiting “nutrient trapping” in global coupled biogeochemical ocean circulation models, Global Biogeochem. Cy., 27, 265–284, 2013.
Dietze, H. and Oschlies, A.: Modeling abiotic production of apparent oxygen utilisation in the oligotrophic subtropical North Atlantic, Ocean Dynam., 55, 28–33, 2005.
Dietze, H., Löptien, U., and Getzlaff, K.: MOMBA 1.1 – a high-resolution Baltic Sea configuration of GFDL's Modular Ocean Model, Geosci. Model Dev., 7, 1713–1731, https://doi.org/10.5194/gmd-7-1713-2014, 2014.
Duhaut, T. H. A. and Straub, D. N.: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation, J. Phys. Oceanogr., 36, 202–211, 2006.
Eden, C. and Dietze, H.: Effects of mesoscale eddy/wind interactions on biologic new production and eddy kinetic energy, J. Geophys. Res., 114, C05023, https://doi.org/10.1029/2008JC005129, 2009.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. E.: Bulk parameterization of air sea fluxes: updates and verification for the COARE algorithm, J. Clim., 16, 571–591, 2003.
Fennel, W., Seifert, T., and Kayser, B.: Rossby radii and phase speeds in the Baltic Sea, Cont. Shelf Res., 11, 23–36, 1991.
Griffies, S. M., Yin, J., Durack, P. J., Goddard, P., Bates, S. C., Behrens, Bentsen, M., Bi, D., Biastoch, A., Böning, C. W., Bozec, A., Chassignet, E., Danabasoglu, G., Danilov, S., Domingues, C. M., Drange, Farneti, R., Fernandez, Greatbatch, R. J., Holland, D. M., Ilicak, M., Large, W. L., Lorbacher, K., Lu, J., Marsland, S. J., Mishra, Nurser A. J. G., Salas y Mélia, D., Palter, J. B., L. S., Bonita, Schröter, J., Schwarzkopf, F. U., Sidorenko, D., A.-M.Treguier, Tseng, Y.-h., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., Wang, Q., Winton, M., and Zhang, X.: An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations, Ocean Modell., 78, 35–89, 2014.
HELCOM: Ensuring Safe Shipping in the Baltic, edited by: Stankiewicz, M. and Vlasov, N., Helsinki Comission, Helsinki, 2009.
Hordoir, R., Dieterich, C., Basu, C., Dietze, H., and Meier, H. E. M.: Freshwater outflow of the Baltic Sea and transport in the Norwegian current: A statistical correlation analysis based on a numerical experiment, Cont. Shelf Res., 64, 1–9, https://doi.org/10.1016/j.csr.2013.05.006, 2013.
Hordoir, R., Axell, L., Löptien, U., Dietze, H., and Kutzenov, I.: Influence of Sea Level Rise on the Dynamics of Salt Inflows in the Baltic Sea, J. Geophys. Res.-Ocean., 120, 6653–6668, https://doi.org/10.1002/2014JC010642, 2015.
Hsu, S. A.: A Dynamic Roughness Equation and Its Application to Wind Stress Determination at the Air-Sea Interface, J. Phys. Oceanogr., 4, 116–120, 1973.
Hsu, S. A.: On the log-linear wind profile and the relationship between shear stress and stability characteristics over the sea, Bound.-Lay. Meterol., 6, 509–514, 1974.
Jedrasik, J., Cieslikiewicz, W., Kowalewski, M., Bradtke, K., and Jankowski, A.: 44 years hindcast od the sea level and circulation in the Baltic Sea, Coast. Engin., 55, 849–860, 2008.
Jones, C. G., Willen, U., Ullerstig, A., and Hansson, U.: The Rossby Centre Regional Atmospheric Climate Model Part I: Model climatology and performance for the present climate over Europe, Ambio, 33, 199–210, 2004.
Kähler, P., Oschlies, A., Dietze, H., and Koeve, W.: Oxygen, carbon, and nutrients in the oligotrophic eastern subtropical North Atlantic, Biogeosciences, 7, 1143–1156, https://doi.org/10.5194/bg-7-1143-2010, 2010.
Kara, A. B., Metzger, E. J., and Bourassa, M. A.: Ocean current and wave effects on wind stress drag coefficient over the global ocean, Geophys. Res. Lett., 34, L01604, https://doi.org/10.1029/2006GL027849, 2007.
Large, W.: Surface fluxes for practioners of global ocean data assimilation, in: Ocean weather and forecasting, edited by: Chassignet E. and Verron J., Springer, Heidelberg, 229–270, 2006.
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing f/or ocean and sea-ice models: The data sets and flux climatologies, Rep. NCAR/TN-460+STR, Natl. Cent. Atmos. Res., Boulder, Colorado, 105 pp., 2004.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing – A review and a model with nonlocal boundary-layer parameterization, Rev. Geophys., 32, 363–403, 1994.
Ledwell, J. R., McGillicuddy, D. J., and Anderson, L. A.: Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy, Deep-Sea Res. Pt. II, 55, 1139–1160, https://doi.org/10.1016/j.dsr2.2008.02.005, 2008.
Lehmann, A. and Myrberg, K.: Upwelling in the Baltic Sea – A review, J. Mar. Syst., 74, S3–S12, https://doi.org/10.1016/j.jmarsys.2008.02.010, 2008.
Lehmann, A., Myrberg, A., and Höflich, K.: A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009, Oceanologica, 53, 369–393, 2012.
Leppäranta, M. and Myrberg, K.: Physical oceanography of the Baltic Sea, ISBN 978-3-540-79702-9, Springer, 2009.
Liu, N., Eden, C., Dietze, H., Wu, D., and Lin, X.: Model-based estimates of the heat budget in the East China Sea, J. Geophys. Res., 115, C08026, https://doi.org/10.1029/2009JC005869, 2010.
Löptien, U. and Meier, H. E. M.: The influence of increasing water turbidity on the sea surface temperature in the Baltic Sea: A model sensitivity study, J. Mar. Syst., 88, 323–331, 2011.
Löptien, U., Mårtensson, S., Meier, H. E. M., and Höglund, A.: Long-term characteristics of simulated ice deformation in the Baltic Sea (1962–2007), J. Geophys. Res.-Ocean., 118, 801–815, 2013.
Martin, A. P. and Richards, K. J.: Mechanisms for the vertical nutrient transport within a North Atlantic mesoscale eddy, Deep-Sea Res. Pt. II, 48, 757–773, 2001.
McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D., and Steinberg, D. K.: Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms, Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256, 2007.
Meier, H. M. and Faxen, T.: Performance analysis of a multiprocessor coupled ice-ocean model for the Baltic Sea, J. Atmos. Ocean. Technol., 19, 114–124, 2002.
Meier, H. E. M., Döscher, R., Coward, A. C., Nycander, J., and Döös, K.: RCO-Rossby Centre regional Ocean climate model: model description (version 1.0) and first results from the hindcast period 1992/93, SMHI Reports Oceanogr., 23, 1–102, 1999.
Meier, H. E. M., Hordoir, R., Andersson, A. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A., and Schimanke, S.: Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099, Clim. Dynam., 39, 2421–2441, 2011.
Köhl, A., Stammer, D., and Cornuelle, B.: Interannual to Decadal Changes in the ECCO Global Synthesis, J. Phys. Oceanogr., 37, 313–337, 2007.
Kuznetsov, I., Neumann, T., and Burchard, H.: Model study on the ecosystem impact of a variable C : N : P ratio for cyanobacteria in the Baltic Proper, Ecol. Modell., 219, 107–114, 2008.
Neumann, T., Eilola, K., Gustafsson, B., Müller-Karulis, B., Kuznetsov, I., Meier, H. E. M., and Savchuk, O. P.: Extremes of Temperature, Oxygen and Blooms in the Baltic Sea in a Changing Climate, AMBIO, 41, 574–585, 2012.
Olita, A., Iermano, I., Fazioli, L., Ribotti, A., Tedesco, C., Pessini, F., and Sorgente, R.: Impact of currents on surface flux computations and their feedback on dynamics at regional scales, Ocean Sci., 11, 657–666, https://doi.org/10.5194/os-11-657-2015, 2015.
Oschlies, A., Dietze, H., and Kähler, P.: Salt-finger driven enhancement of upper ocean nutrient supply, Geophys. Res. Lett., 30, 2204, https://doi.org/10.1029/2003GL018552, 2003.
Roquet, F., Wunsch, C., and Madec, G.: On the Patterns of Wind-Power Input to the Ocean Circulation, J. Phys. Oceanogr., 41, 2328–2342, 2011.
Samuelsson, P., Jones, C. G., Willen, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., and Wyser, K.: The Rossby Centre Regional Climate model RCA3: model description and performance, Tellus A, 63, 4–23, 2011.
Smith, S. D. and Banke, E. G.: Variation of the sea surface drag coefficient with wind speed, Q. J. R. Meterol. Soc., 101, 665–673, 1975.
Stammer, D., Ueyoshi, K., Köhl, A., Large, W. G., Josey, S. A., and Wunsch, C.: Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation, J. Geophys. Res., 109, C05023, https://doi.org/10.1029/2003JC002082, 2004.
Stommel, H.: A survey of ocean current theory, Deep-Sea Res. Pt. I, 4, 149–184, 1957.
Taylor, G.: Skin friction of the wind on the earth's surface, Proc. Roy. Soc. London, A92, 196–199, 1916.
Tuovinen, P., Kostilainen, V., and Hämäläinen, A.: Studies on Ship casualties in the Baltic Sea 1979–1984, Baltic Sea Environ. Proc., 11, 1–88, 1984.
Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bech- told, V. D., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Holm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J.- F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961–3012, 2005.
Xu, Y. and Scott, R. B.: Subtleties in forcing eddy resolving ocean models with satellite wind data, Ocean Modell., 20, 240–251, 2008.
Zhai, X. and Greatbatch, R.: Wind work in a model of the northwest Atlantic Ocean, Geophys. Res. Lett., 34, L04606, https://doi.org/10.1029/2006GL028907, 2007.
Short summary
Winds blowing over the ocean drive ocean currents. The oceanic response to winds is, in turn, influenced by ocean currents. Theoretical considerations suggest that the latter effect is especially pronounced in the Baltic Sea. The study presented here puts theses theoretical considerations in a high-resolution ocean circulation model of the Baltic Sea to the test.
Winds blowing over the ocean drive ocean currents. The oceanic response to winds is, in turn,...