Articles | Volume 12, issue 3
https://doi.org/10.5194/os-12-687-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-687-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Mesoscale eddies and submesoscale structures of Persian Gulf Water off the Omani coast in spring 2011
Pierre L'Hégaret
CORRESPONDING AUTHOR
Laboratoire de Physique des Oceans/UMR6523, UBO, 6 avenue Le Gorgeu
CS93837, 29238 Brest CEDEX 3, France
Xavier Carton
Laboratoire de Physique des Oceans/UMR6523, UBO, 6 avenue Le Gorgeu
CS93837, 29238 Brest CEDEX 3, France
Stephanie Louazel
Service Hydrographique et
Oceanographique de la Marine, 13 rue de Chatellier CS92803, 29228 Brest CEDEX
2, Brest, France
Guillaume Boutin
Laboratoire de Physique des Oceans/UMR6523, UBO, 6 avenue Le Gorgeu
CS93837, 29238 Brest CEDEX 3, France
Related authors
No articles found.
Yan Barabinot, Sabrina Speich, and Xavier Carton
EGUsphere, https://doi.org/10.22541/essoar.169833426.64842571/v1, https://doi.org/10.22541/essoar.169833426.64842571/v1, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies called "Materially Coherent" are able to transport a different water mass from the surrounding water. By analyzing 3D eddies structures sampled during oceanographic cruises, we found that eddies can be nonmaterially coherent accounting only for their surface properties, but materially coherent considering their properties at depth. Future studies cannot rely solely on satellite data to evaluate heat and salt transport.
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024, https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Short summary
This paper focuses on predicting Arctic-wide sea-ice thickness using surrogate modeling with deep learning. The model has a predictive power of 12 h up to 6 months. For this forecast horizon, persistence and daily climatology are systematically outperformed, a result of learned thermodynamics and advection. Consequently, surrogate modeling with deep learning proves to be effective at capturing the complex behavior of sea ice.
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023, https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
Short summary
Multiyear ice (MYI), sea ice that survives the summer, is more resistant to changes than younger ice in the Arctic, so it is a good indicator of sea ice resilience. We use a model with a new way of tracking MYI to assess the contribution of different processes affecting MYI. We find two important years for MYI decline: 2007, when dynamics are important, and 2012, when melt is important. These affect MYI volume and area in different ways, which is important for the interpretation of observations.
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023, https://doi.org/10.5194/tc-17-617-2023, 2023
Short summary
Short summary
Sea ice cover in the Arctic is full of cracks, which we call leads. We suspect that these leads play a role for atmosphere–ocean interactions in polar regions, but their importance remains challenging to estimate. We use a new ocean–sea ice model with an original way of representing sea ice dynamics to estimate their impact on winter sea ice production. This model successfully represents sea ice evolution from 2000 to 2018, and we find that about 30 % of ice production takes place in leads.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021, https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
Short summary
In this study, we investigate the interactions of surface ocean waves with sea ice. We focus on the evolution of sea ice after it has been fragmented by the waves. Fragmented sea ice is expected to experience less resistance to deformation. We reproduce this evolution using a new coupling framework between a wave model and the recently developed sea ice model neXtSIM. We find that waves can significantly increase the mobility of compact sea ice over wide areas in the wake of storm events.
Guillaume Boutin, Camille Lique, Fabrice Ardhuin, Clément Rousset, Claude Talandier, Mickael Accensi, and Fanny Girard-Ardhuin
The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, https://doi.org/10.5194/tc-14-709-2020, 2020
Short summary
Short summary
We investigate the interactions of surface ocean waves with sea ice taking place at the interface between the compact sea ice cover and the open ocean. We use a newly developed coupling framework between a wave and an ocean–sea ice numerical model. Our results show how the push on sea ice exerted by waves changes the amount and the location of sea ice melting, with a strong impact on the ocean surface properties close to the ice edge.
Mathieu Morvan, Pierre L'Hégaret, Xavier Carton, Jonathan Gula, Clément Vic, Charly de Marez, Mikhail Sokolovskiy, and Konstantin Koshel
Ocean Sci., 15, 1531–1543, https://doi.org/10.5194/os-15-1531-2019, https://doi.org/10.5194/os-15-1531-2019, 2019
Short summary
Short summary
The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating in the Gulf of Oman and the Gulf of Aden, in the form of small features. We study the life cycle of intense and small vortices and their impact on the spread of Persian Gulf Water and Red Sea Water by using idealized numerical simulations. Small vortices are generated along the continental slopes, drift away, merge and form larger vortices. They can travel across the domain and participate in the tracer diffusion.
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
G. Dulaquais, M. Boye, M. J. A. Rijkenberg, and X. Carton
Biogeosciences, 11, 1561–1580, https://doi.org/10.5194/bg-11-1561-2014, https://doi.org/10.5194/bg-11-1561-2014, 2014
Cited articles
Al Saafani, M., Shenoi, S., Shankar, D., Aparna, M., Kurian, J., Durand, F., and Vinayachandran, P.: Westward movement of eddies into the Gulf of Aden from the Arabian Sea, J. Geophys. Res.-Oceans, 112, C11004, https://doi.org/10.1029/2006JC004020, 2007.
Banse, K.: Irregular flow of Persian (Arabian) Gulf water to the Arabian sea, J. Marine Res., 55, 1049–1067, 1997.
Barth, J. A., O'Malley, R. T., Fleischbein, J., Smith, R. L., and Huyer, A.: SeaSoar and CTD observations during coastal jet separation cruise W9408A, August to September 1994, Tech. rep., College of Oceanic and Atmospheric Sciences, Corvallis, OR, USA, 1996.
Bower, A. S. and Furey, H. H.: Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water, Prog. Oceanogr., 96, 14–39, 2012.
Bower, A. S., Hunt, H. D., and Price, J. F.: Character and dynamics of the Red Sea and Persian Gulf outflows, J. Geophys. Res.-Oceans, 105, 6387–6414, 2000.
Carton, X., L'Hegaret, P., and Baraille, R.: Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats, Ocean Sci., 8, 227–248, https://doi.org/10.5194/os-8-227-2012, 2012.
Chelton, D. B., Deszoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.: Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433–460, 1998.
Findlater, J.: A major low-level air current near the Indian Ocean during the northern summer, Q. J. Roy. Meteor. Soc., 95, 362–380, 1969.
Fischer, A. S., Weller, R. A., Rudnick, D. L., Eriksen, C. C., Lee, C. M., Brink, K. H., Fox, C. A., and Leben, R. R.: Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea, Deep-Sea Res. Pt. II, 49, 2231–2264, 2002.
Hoskins, B.: The role of potential vorticity in symmetric stability and instability, Q. J. Roy. Meteor. Soc., 100, 480–482, 1974.
IOC, SCOR and IAPSO: The international thermodynamic equation of seawater – 2010: calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp., 2010.
Kumar, S. P. and Prasad, T.: Formation and spreading of Arabian Sea high-salinity water mass, J. Geophys. Res.-Oceans, 104, 1455–1464, 1999.
Lee, C. M., Jones, B. H., Brink, K. H., and Fischer, A. S.: The upper-ocean response to monsoonal forcing in the Arabian Sea: seasonal and spatial variability, Deep-Sea Res. Pt. II, 47, 1177–1226, 2000.
L'Hégaret, P., Lacour, L., Carton, X., Roullet, G., Baraille, R., and Corréard, S.: A seasonal dipolar eddy near Ras Al Hamra (Sea of Oman), Ocean Dynam., 63, 633–659, 2013.
L'Hégaret, P., Duarte, R., Carton, X., Vic, C., Ciani, D., Baraille, R., and Corréard, S.: Mesoscale variability in the Arabian Sea from HYCOM model results and observations: impact on the Persian Gulf Water path, Ocean Sci., 11, 667–693, https://doi.org/10.5194/os-11-667-2015, 2015.
Lueck, R. G. and Picklo, J. J.: Thermal inertia of conductivity cells: observations with a Sea-Bird cell, J. Atmos. Ocean. Tech., 7, 756–768, 1990.
Mensah, V., Le Menn, M., and Morel, Y.: Thermal mass correction for the evaluation of salinity, J. Atmos. Ocean. Technol., 26, 665–672, 2008.
Meshal, A. and Hassan, H.: Evaporation from the coastal water of the central part of the Gulf, Arab Gulf Journal of Scientific Research, 4, 649–655, 1986.
Pous, S., Carton, X., and Lazure, P.: Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman results from the GOGP99 experiment: 2. Gulf of Oman, J. Geophys. Res.-Oceans, 109, https://doi.org/10.1029/2003JC002146, 2004.
Prasad, T., Ikeda, M., and Kumar, S. P.: Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea, J. Geophys. Res.-Oceans, 106, 17059–17071, 2001.
Premchand, K., Sastry, J., and Murty, C.: Watermass structure in the western Indian Ocean: Part II, The spreading and transformation of the Persian Gulf Water, Mausam, 37, 179, https://doi.org/10.1029/2000JC000480, 1986.
Privett, D.: Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf), Q. J. Roy. Meteor. Soc., 85, 424–428, 1959.
Reynolds, R. M.: Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman results from the Mt Mitchell expedition, Mar. Pollut. Bull., 27, 35–59, 1993.
Ruddick, B. R.: Anticyclonic Lenses in Large-Scale Strain and Shear, J. Phys. Oceanogr., 17, 741–749, https://doi.org/:10.1175/1520-0485(1987)017<0741:ALILSS>2.0.CO;2, 1987.
Senjyu, T., Ishimaru, T., Matsuyama, M., and Koike, Y.: High salinity lens from the Strait of Hormuz, in: Offshore Environment of the ROPME Sea Area after the War-Related Oil Spill, Terra Scientific Publishing Company, Tokyo, 35–48, 1998.
Smith, K. S. and Ferrari, R.: The production and dissipation of compensated thermohaline variance by mesoscale stirring, J. Phys. Oceanogr., 39, 2477–2501, 2009.
Swift, S. A. and Bower, A. S.: Formation and circulation of dense water in the Persian/Arabian Gulf, J. Geophys. Res.-Oceans, 108, 3004, https://doi.org/10.1029/2002JC001360, 2003.
Thoppil, P. G. and Hogan, P. J.: On the mechanisms of episodic salinity outflow events in the Strait of Hormuz, J. Phys. Oceanogr., 39, 1340–1360, 2009.
Vic, C., Roullet, G., Carton, X., and Capet, X.: Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: a numerical investigation using ROMS, J. Geophys. Res.-Oceans, 119, 6422–6443, 2014.
Vic, C., Roullet, G., Capet, X., Carton, X., Molemaker, M., and Gula, J.: Eddy-topography interactions and the fate of the Persian Gulf Outflow, J. Geophys. Res.-Oceans, 120, 6700–6717, https://doi.org/10.1002/2015JC011033, 2015.
Walsh, D.: A model of a mesoscale lens in large-scale shear – Part I: Linear calculations, J. Phys. Oceanogr., 25, 735–746, 1995.
Wang, Z., DiMarco, S. F., Stössel, M. M., Zhang, X., Howard, M. K., and du Vall, K.: Oscillation responses to tropical Cyclone Gonu in northern Arabian Sea from a moored observing system, Deep Sea Res. Pt. I, 64, 129–145, 2012.
Wang, Z., DiMarco, S. F., Jochens, A. E., and Ingle, S.: High salinity events in the northern Arabian Sea and Sea of Oman, Deep Sea Res. Pt. I, 74, 14–24, 2013.
Short summary
The Persian Gulf produces high-salinity water spreading in the Indian Ocean through the Arabian Sea. Using measurements from the Phys-Indien 2011 experiments and satellite observations, the objective of this study is to follow the pathway and evolution of the salty water outflow in the northwestern Indian Ocean. It is shown that the outflow is strongly influenced by energetic eddies, shredding the water vein into filaments or lenses, and advecting them at their peripheries or in their cores.
The Persian Gulf produces high-salinity water spreading in the Indian Ocean through the Arabian...