Articles | Volume 12, issue 2
https://doi.org/10.5194/os-12-545-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-545-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Biased thermohaline exchanges with the Arctic across the Iceland–Faroe Ridge in ocean climate models
Danish Meteorological Institute, Copenhagen,
Denmark
B. Hansen
Faroe Marine Research Institute, Tórshavn, Faroe
Islands
S. Østerhus
Geophysical Institute, University of Bergen,
Norway
D. Quadfasel
Institute of Oceanography, Universität Hamburg,
Germany
H. Valdimarsson
Marine Research Institute, Reykjavik,
Iceland
Related authors
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Svein Østerhus, Rebecca Woodgate, Héðinn Valdimarsson, Bill Turrell, Laura de Steur, Detlef Quadfasel, Steffen M. Olsen, Martin Moritz, Craig M. Lee, Karin Margretha H. Larsen, Steingrímur Jónsson, Clare Johnson, Kerstin Jochumsen, Bogi Hansen, Beth Curry, Stuart Cunningham, and Barbara Berx
Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, https://doi.org/10.5194/os-15-379-2019, 2019
Short summary
Short summary
Two decades of observations of the Arctic Mediterranean (AM) exchanges show that the exchanges have been stable in terms of volume transport during a period when many other components of the global climate system have changed. The total AM import is found to be 9.1 Sv and has a seasonal variation in amplitude close to 1 Sv, and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Steffen Malskær Olsen, Detlef Quadfasel, Kerstin Jochumsen, and Svein Østerhus
Ocean Sci., 14, 871–885, https://doi.org/10.5194/os-14-871-2018, https://doi.org/10.5194/os-14-871-2018, 2018
Short summary
Short summary
The Western Valley is one of the passages across the Iceland–Scotland Ridge through which a strong overflow of cold, dense water has been thought to feed the deep limb of the Atlantic Meridional Overturning Circulation (AMOC), but its strength has not been known. Based on a field experiment with instruments moored across the valley, we show that this overflow branch is much weaker than previously thought and that this is because it is suppressed by the warm countercurrent in the upper layers.
Gary Shaffer, Esteban Fernández Villanueva, Roberto Rondanelli, Jens Olaf Pepke Pedersen, Steffen Malskær Olsen, and Matthew Huber
Geosci. Model Dev., 10, 4081–4103, https://doi.org/10.5194/gmd-10-4081-2017, https://doi.org/10.5194/gmd-10-4081-2017, 2017
Short summary
Short summary
We include methane cycling in the simplified but well-tested Danish Center for Earth System Science model. We now can deal with very large methane inputs to the Earth system that can lead to more methane in the atmosphere, extreme warming and ocean dead zones. We can now study ancient global warming events, probably forced by methane inputs. Some such events were accompanied by mass extinctions. We wish to understand such events, both for learning about the past and for looking into the future.
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Sissal Vágsheyg Erenbjerg, Jon Albretsen, Knud Simonsen, Erna Lava Olsen, Eigil Kaas, and Bogi Hansen
Ocean Sci., 17, 1639–1655, https://doi.org/10.5194/os-17-1639-2021, https://doi.org/10.5194/os-17-1639-2021, 2021
Short summary
Short summary
Here, we describe a strait that has narrow and shallow sills in both ends and is close to an amphidromic region. This generates tidally driven flows into and out of the strait, but with very different exchange rates across the entrances in both ends so that it behaves like a mixture between a strait and a fjord. Using a numerical model, we find a fortnightly signal in the net transport through the strait, generated by long-period tides. Our findings are verified by observations.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Svein Østerhus, Rebecca Woodgate, Héðinn Valdimarsson, Bill Turrell, Laura de Steur, Detlef Quadfasel, Steffen M. Olsen, Martin Moritz, Craig M. Lee, Karin Margretha H. Larsen, Steingrímur Jónsson, Clare Johnson, Kerstin Jochumsen, Bogi Hansen, Beth Curry, Stuart Cunningham, and Barbara Berx
Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, https://doi.org/10.5194/os-15-379-2019, 2019
Short summary
Short summary
Two decades of observations of the Arctic Mediterranean (AM) exchanges show that the exchanges have been stable in terms of volume transport during a period when many other components of the global climate system have changed. The total AM import is found to be 9.1 Sv and has a seasonal variation in amplitude close to 1 Sv, and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Steffen Malskær Olsen, Detlef Quadfasel, Kerstin Jochumsen, and Svein Østerhus
Ocean Sci., 14, 871–885, https://doi.org/10.5194/os-14-871-2018, https://doi.org/10.5194/os-14-871-2018, 2018
Short summary
Short summary
The Western Valley is one of the passages across the Iceland–Scotland Ridge through which a strong overflow of cold, dense water has been thought to feed the deep limb of the Atlantic Meridional Overturning Circulation (AMOC), but its strength has not been known. Based on a field experiment with instruments moored across the valley, we show that this overflow branch is much weaker than previously thought and that this is because it is suppressed by the warm countercurrent in the upper layers.
Gilles Reverdin, Hedinn Valdimarsson, Gael Alory, Denis Diverres, Francis Bringas, Gustavo Goni, Lars Heilmann, Leon Chafik, Tanguy Szekely, and Andrew R. Friedman
Earth Syst. Sci. Data, 10, 1403–1415, https://doi.org/10.5194/essd-10-1403-2018, https://doi.org/10.5194/essd-10-1403-2018, 2018
Short summary
Short summary
We report monthly time series of surface temperature, salinity, and density in the North Atlantic subpolar gyre in 1993–2017 from hydrographical data collected in particular from thermosalinographs onboard selected ships of opportunity. Most of the time, this data set reproduces well the large-scale variability, except for a few seasons with limited sampling, in particular in winter along western Greenland or northeast of Newfoundland in the presence of sea ice.
Bogi Hansen, Turið Poulsen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Svein Østerhus, Elin Darelius, Barbara Berx, Detlef Quadfasel, and Kerstin Jochumsen
Ocean Sci., 13, 873–888, https://doi.org/10.5194/os-13-873-2017, https://doi.org/10.5194/os-13-873-2017, 2017
Short summary
Short summary
On its way towards the Arctic, an important branch of warm Atlantic water passes through the Faroese Channels, but, in spite of more than a century of investigations, the detailed flow pattern through this channel system has not been resolved. This has strong implications for estimates of oceanic heat transport towards the Arctic. Here, we combine observations from various sources, which together paint a coherent picture of the Atlantic water flow and heat transport through this channel system.
Gary Shaffer, Esteban Fernández Villanueva, Roberto Rondanelli, Jens Olaf Pepke Pedersen, Steffen Malskær Olsen, and Matthew Huber
Geosci. Model Dev., 10, 4081–4103, https://doi.org/10.5194/gmd-10-4081-2017, https://doi.org/10.5194/gmd-10-4081-2017, 2017
Short summary
Short summary
We include methane cycling in the simplified but well-tested Danish Center for Earth System Science model. We now can deal with very large methane inputs to the Earth system that can lead to more methane in the atmosphere, extreme warming and ocean dead zones. We can now study ancient global warming events, probably forced by methane inputs. Some such events were accompanied by mass extinctions. We wish to understand such events, both for learning about the past and for looking into the future.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, and Svein Østerhus
Ocean Sci., 12, 1205–1220, https://doi.org/10.5194/os-12-1205-2016, https://doi.org/10.5194/os-12-1205-2016, 2016
Short summary
Short summary
The Faroe Bank Channel is one of the main passages for the flow of cold dense water from the Arctic into the depths of the world ocean where it feeds the deep branch of the AMOC. Based on in situ measurements, we show that the volume transport of this flow has been stable from 1995 to 2015. The water has warmed, but salinity increase has maintained its high density. Thus, this branch of the AMOC did not weaken during the last 2 decades, but increased its heat transport into the deep ocean.
B. Hansen, K. M. H. Larsen, H. Hátún, R. Kristiansen, E. Mortensen, and S. Østerhus
Ocean Sci., 11, 743–757, https://doi.org/10.5194/os-11-743-2015, https://doi.org/10.5194/os-11-743-2015, 2015
Short summary
Short summary
The Faroe Current is the main ocean current transporting warm Atlantic water into the Arctic region and an important transporter of heat towards the Arctic. This study documents observed transport variations over two decades, from 1993 to 2013. It shows that the volume transport of Atlantic water in this current increased by 9% over the period, whereas the heat transport increased by 18%. This increase will have contributed to the observed warming and sea ice decline in the Arctic.
K. Logemann, J. Ólafsson, Á. Snorrason, H. Valdimarsson, and G. Marteinsdóttir
Ocean Sci., 9, 931–955, https://doi.org/10.5194/os-9-931-2013, https://doi.org/10.5194/os-9-931-2013, 2013
B. Berx, B. Hansen, S. Østerhus, K. M. Larsen, T. Sherwin, and K. Jochumsen
Ocean Sci., 9, 639–654, https://doi.org/10.5194/os-9-639-2013, https://doi.org/10.5194/os-9-639-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
Cited articles
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat, J. Clim., 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012.
Beaird, N. L., Rhines, P. B., and Eriksen, C. C.: Overflow Waters at the Iceland–Faroe Ridge Observed in Multiyear Seaglider Surveys, J. Phys. Oceanogr., 43, 2334–2351, 2013.
Berx, B., Hansen, B., Østerhus, S., Larsen, K. M., Sherwin, T., and Jochumsen, K.: Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe–Shetland Channel, Ocean Sci., 9, 639–654, 2013.
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res., 106, 2441–2463, 2001.
Born, A., Levermann, A., and Mignot, J.: Sensitivity of the Atlantic ocean circulation to a hydraulic overflow parameterisation in a coarse resolution model: response of the subpolar gyre, Ocean Model., 27, 130–142, 2009.
Boulton, C. A., Allison, L. C., and Lenton, T. M.: Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model, Nat. Commun., 5, 5752, https://doi.org/10.1038/ncomms6752, 2014.
Childers, K. H., Flagg, C. N., and Rossby, T.: Direct velocity observations of volume flux between Iceland and the Shetland Islands, J. Geophys. Res. Oceans, 119, 5934–5944, 2014.
Danabasoglu, G., Large, W. G., and Briegleb, B. P.: Climate impacts of parameterized Nordic Sea overflows, J. Geophys. Res., 115, C11005, https://doi.org/10.1029/2010JC006243, 2010.
Dickson, R. R., and Brown, J.: The production of North Atlantic Deep Water: Sources, rates, and pathways, J. Geophys. Res., 99, 12319–12341, 1994.
Glessmer, M. S., Eldevik, T., Våge, K., Nilsen, J. E. Ø., and Behrens, E.: Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas, Nature Geosci., 7, 801–805, 2014.
Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-Reyes, F. J., Fučkar, N. S., Germe, A., Hawkins, E., Keeley, S., Koenigk, T., Salas y Mélia, D., and Tietsche, S.: A review on Arctic sea ice predictability and prediction on seasonal-to-decadal timescales, Q. J. R. Meteorol. Soc., 142, 546–561, https://doi.org/10.1002/qj.2401, 2014.
Guo, C., Ilicak, M., Fer, I., Darelius, E., and Bentsen, M.: Baroclinic Instability of the Faroe Bank Channel Overflow, J. Phys. Oceanogr., 44, 2698–2717, 2014.
Hansen, B. and Østerhus, S.: North Atlantic–Nordic Seas exchanges, Prog. Oceanogr., 45, 109–208, 2000.
Hansen, B. and Østerhus, S.: Faroe bank channel overflow 1995–2005, Prog. Oceanogr., 75, 817–856, 2007.
Hansen, B., Østerhus, S., Hátún, H., Kristiansen, R., and Larsen, K. M. H.: The Iceland–Faroe inflow of Atlantic water to the Nordic seas, Prog. Oceanogr., 59, 443–474, 2003.
Hansen, B., Hátún, H., Kristiansen, R., Olsen, S. M., and Østerhus, S.: Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic, Ocean Sci., 6, 1013–1026, https://doi.org/10.5194/os-6-1013-2010, 2010.
Hansen, B., Larsen, K. M. H., Hátún, H., Kristiansen, R., Mortensen, E., and Østerhus, S.: Transport of volume, heat, and salt towards the Arctic in the FaroeCurrent 1993–2013, Ocean Sci., 11, 743–757, https://doi.org/10.5194/os-11-743-2015, 2015.
Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L., Stewart, K. D., and Woodgate, R.: Arctic freshwater export: Status, mechanisms, and prospects, Glob. Plane. Change, 125, 13–35, 2015.
Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R., Sterl, A., Wyser, K., Semmler, T., Yang, S., van den Hurk, B., van Noije, T., van der Linden, E., and van der Wiel, K.: EC-Earth V2. 2: description and validation of a new seamless earth system prediction model, Clim. Dynam., 39, 2611–2629, 2012.
Hermann, F.: The T-S diagram analysis of the water masses over the Iceland-Faroe ridge and in the Faroe Bank Channel, in: Rapp. PV Réun. Cons. Perm. Inter. Exp/or. Mer, 157, 139–149, 1967.
Hurrell, J. W.: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature, Geophys. Res. Let., 23, 665–668, 1996.
Jónsson, S. and Valdimarsson, H.: Water mass transport variability to the North Icelandic shelf, 1994–2010, ICES J. Mar. Sci., 69, 809–815, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–471, 1996.
Koenigk, T. and Brodeau, L.: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth, Clim. Dynam., 42, 3101–3120, 2014.
Köller, M., Käse, R. H., and Herrmann, P.: Interannual to multidecadal variability and predictability of North Atlantic circulation in a coupled earth system model with parametrized hydraulics, Tellus A, 62, 569–578, 2010.
Lake, I. and Lundberg, P.: Seasonal barotropic modulation of the deep-water overflow through the Faroe Bank Channel, J. Phys. Oceanogr, 36, 2328–2339, 2006.
Latif, M. and Keenlyside, N. S.: A perspective on decadal climate variability and predictability, Deep-Sea Res. Pt. II, 58, 1880–1894, 2011.
Latif, M., Roeckner, E., Mikolajewicz, U., and Voss, R.: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation, J. Climate, 13, 1809–1813, 2000.
Meincke, J.: The modern current regime across the Greenland-Scotland Ridge, in Structure and development of the Greenland-Scotland Ridge, edited by: Bott, M., Saxov, S., Talwani, M., and Theide, J., Springer, New York, 637–650, 1983.
Meehl, G. A., Goddard, L., Boer, G,. Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton, R., Teng, H., van Oldenborgh, G. J., Vecchi, G., and Yeager, S.: Decadal climate prediction: an update from the trenches, Bull. Am. Meteorol. Soc., 95, 243–267, 2014.
Olsen, S. M. and Schmith, T.: North Atlantic–Arctic Mediterranean exchanges in an ensemble hindcast experiment, J. Geophys. Res., 112, C04010, https://doi.org/10.1029/2006JC003838, 2007.
Olsen, S. M., Hansen, B., Quadfasel, D., and Østerhus, S.: Observed and modelled stability of overflow across the Greenland–Scotland ridge, Nature, 455, 519–522, 2008.
Østerhus, S., Turrrell, W. R., Jónsson, S., and Hansen, B.: Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean, Geophys. Res. Lett., 32, L07603, https://doi.org/10.1029/2004GL022188, 2005.
Perkins, H., Hopkins, T. S., Malmberg, S. A., Poulain, P. M., and Warn-Varnas, A.: Oceanographic conditions east of Iceland, J. Geophys. Res. Oc., 103, 21531–21542, 1998.
Rahmstorf, S. and Ganopolski, A.: Long-term global warming scenarios computed with an efficient coupled climate model, Clim. Change, 43, 353–367, https://doi.org/10.1023/A:1005474526406, 1999.
Rhines, P., Häkkinen, S., and Josey, S. A.: Is the oceanic heat transport significant in the climate system?, in: Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer, Dordrecht, Netherlands, 87–110, 2008.
Richter, K., Segtnan, O. H., and Furevik, T.: Variability of the Atlantic inflow to the Nordic Seas and its causes inferred from observations of sea surface height, J. Geophys. Res., 117, C04004, https://doi.org/10.1029/2011JC007719, 2012.
Sandø, A. B., Nilsen, J. E., Eldevik, T., and Bentsen, M.: Mechanisms for variable North Atlantic–Nordic seas exchanges, J. Geophys. Res., 117, C12006, https://doi.org/10.1029/2012JC008177, 2012.
Sterl, A., Bintanja, R., Brodeau, L., Gleeson, E., Koenigk, T., Schmith, T., Semmler, T., Severijns, C., Wyser, K., and Yang, S.: A look at the ocean in the EC-Earth climate model, Clim. Dynam., 39, 2631–2657, 2012.
Stommel, H.: Thermohaline Convection with Two Stable Regimes of Flow, Tellus XIII, 2, 224–230, 1961.
Sun, B. and Wang, H.: Larger variability, better predictability?, Int. J. Climatol., 33, 2341–2351, 2013.
Sutton, R. T. and Hodson, D. L.: Atlantic Ocean forcing of North American and European summer climate, Science, 309, 115–118, 2005
Swaters, G. E.: On the baroclinic instability of cold-core coupled density fronts on a sloping continental shelf, J. Fluid Mech., 224, 361–382, 1991.
Swingedouw, D., Rodehacke, C. B., Olsen, S. M., Menary, M., Gao, Y., Mikolajewicz, U., and Mignot, J.: On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment, Clim. Dynam., 44, 3261–3279, https://doi.org/10.1007/s00382-014-2270-x, 2015.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bull. Amer. Meteor. Soc., 93, 485–498, 2012.
Vellinga, M. and Wood, R. A.: Global climatic impacts of a collapse of the Atlantic thermohaline circulation, Clim. Change, 54, 251–267, 2002.
Vihma, T.: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review, Surv. Geophys., 35, 1175–1214, 2014.
Voet, G. and Quadfasel, D.: Entrainment in the Denmark Strait overflow plume by meso-scale eddies, Ocean Sci., 6, 301–310, https://doi.org/10.5194/os-6-301-2010, 2010.
Wang, H., Legg, S. A., and Hallberg, R. W.: Representations of the Nordic Seas Overflows and Their Large Scale Climate Impact in Coupled Models, Ocean Model., 86, 76–92, 2015.
Whitehead, J. A.: Topographic control of oceanic flows in deep passages and straits, Rev. Geophys., 36, 423–440, 1998.
Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column, Geophys. Res. Lett., 39, L24603, https://doi.org/10.1029/2012GL054092, 2012.
Yang, S. and Christensen, J. H.: Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments, Geophys. Res. Lett., 39, L20707, https://doi.org/10.1029/2012GL053338, 2012.
Yashayaev, I. and Seidov, D.: The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas, Prog. Oceanogr., 132, 68–127, 2015.
Short summary
About half of the warm Atlantic water that enters the Norwegian Sea flows between Iceland and the Faroes. Here it crosses the Iceland-Faroe Ridge and dynamically interacts with the cold, dense and deep return flow across the ridge. This flow is not resolved in climate models and the lack of interaction prevents realistic heat anomaly propagation towards the Arctic.
About half of the warm Atlantic water that enters the Norwegian Sea flows between Iceland and...