Articles | Volume 12, issue 2
https://doi.org/10.5194/os-12-379-2016
https://doi.org/10.5194/os-12-379-2016
Research article
 | 
08 Mar 2016
Research article |  | 08 Mar 2016

Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data

Jaime Pitarch, Gianluca Volpe, Simone Colella, Hajo Krasemann, and Rosalia Santoleri

Related authors

A hyperspectral and multi-angular synthetic dataset for algorithm development in waters of varying trophic levels and optical complexity
Jaime Pitarch and Vittorio Ernesto Brando
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-295,https://doi.org/10.5194/essd-2024-295, 2024
Revised manuscript under review for ESSD
Short summary
Global maps of Forel–Ule index, hue angle and Secchi disk depth derived from 21 years of monthly ESA Ocean Colour Climate Change Initiative data
Jaime Pitarch, Marco Bellacicco, Salvatore Marullo, and Hendrik J. van der Woerd
Earth Syst. Sci. Data, 13, 481–490, https://doi.org/10.5194/essd-13-481-2021,https://doi.org/10.5194/essd-13-481-2021, 2021
Short summary

Related subject area

Approach: Remote Sensing | Depth range: Surface | Geographical range: Baltic Sea | Phenomena: Biological Processes
Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM
J. M. Beltrán-Abaunza, S. Kratzer, and C. Brockmann
Ocean Sci., 10, 377–396, https://doi.org/10.5194/os-10-377-2014,https://doi.org/10.5194/os-10-377-2014, 2014

Cited articles

Attila, J., Koponen, S., Kallio, K., Lindfors, A., Kaitala, S., and Ylöstalo, P.: MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea, Remote Sens. Environ., 128, 138–149, https://doi.org/10.1016/j.rse.2012.07.009, 2013.
Berthon, J.-F. and Zibordi, G.: Optically black waters in the northern Baltic Sea, Geophys. Res. Lett., 37, L09605, https://doi.org/10.1029/2010GL043227, 2010.
Brewin, R. J. W., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P.-Y., Devred, E., Doerffer, R., Fomferra, N., Franz, B., Grant, M., Groom, S., Horseman, A., Hu, C., Krasemann, H., Lee, Z., Maritorena, S., Mélin, F., Peters, M., Platt, T., Regner, P., Smyth, T., Steinmetz, F., Swinton, J., Werdell, J., and White Iii, G. N.: The Ocean Colour Climate Change Initiative: III, A round-robin comparison on in-water bio-optical algorithms, Remote Sensing of Environment, Volume 162, 1 June 2015, Pages 271–294, ISSN 0034–4257, https://doi.org/10.1016/j.rse.2013.09.016, 2013.
Carstensen, J., Klais, R., and Cloern, J. E.: Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species, Estuar. Coast. Shelf S., 162, 98–109, https://doi.org/10.1016/j.ecss.2015.05.005, 2015.
D'Alimonte, D., Zibordi, G., Berthon, J. F., Canuti, E., and Kajiyama, T.: Bio-optical algorithms for European seas: Performance and applicability of neural-net inversion schemes, Joint research Centre, IspraJRC66326, 2011.
Download
Short summary
Several operational satellite chlorophyll a (CHL) in the Baltic Sea were tested at a regional scale. Comparison to an extensive in situ CHL dataset showed low linearity. Bias-corrected CHL annual cycles were computed. The Gulf of Bothnia displays a single CHL peak during spring. In Skagerrak and Kattegat, there is a small bloom in spring and a minimum in summer. In the central Baltic, CHL follows a dynamic of a mild spring bloom followed by a much stronger bloom in summer.