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Abstract. A 15-year (1997–2012) time series of chloro-

phyll a (Chl a) in the Baltic Sea, based on merged multi-

sensor satellite data was analysed. Several available Chl a

algorithms were sea-truthed against the largest in situ pub-

licly available Chl a data set ever used for calibration and

validation over the Baltic region. To account for the known

biogeochemical heterogeneity of the Baltic, matchups were

calculated for three separate areas: (1)the Skagerrak and Kat-

tegat, (2) the central Baltic, including the Baltic Proper and

the gulfs of Riga and Finland, and (3) the Gulf of Both-

nia. Similarly, within the operational context of the Coperni-

cus Marine Environment Monitoring Service (CMEMS) the

three areas were also considered as a whole in the analy-

sis. In general, statistics showed low linearity. However, a

bootstrapping-like assessment did provide the means for re-

moving the bias from the satellite observations, which were

then used to compute basin average time series. Resulting

climatologies confirmed that the three regions display com-

pletely different Chl a seasonal dynamics. The Gulf of Both-

nia displays a single Chl a peak during spring, whereas in

the Skagerrak and Kattegat the dynamics are less regular and

composed of highs and lows during winter, progressing to-

wards a small bloom in spring and a minimum in summer. In

the central Baltic, Chl a follows a dynamics of a mild spring

bloom followed by a much stronger bloom in summer. Sur-

face temperature data are able to explain a variable fraction

of the intensity of the summer bloom in the central Baltic.

1 Introduction

Global to regional monitoring of the surface ocean is be-

lieved to be an essential element for the sustainability of the

ocean resources. In Europe, the Ocean Colour (OC) The-

matic Assembly Centre (TAC) is the entity devoted to pro-

ducing and providing ocean colour remote-sensing data; this

is performed in the context of the Copernicus Marine En-

vironment Monitoring Service (CMEMS). OC data are cur-

rently provided at global and regional scales. These two

scales refer to both the geographical limits and the algorithms

used to process the data. The OCTAC is thus meant to pro-

vide an added value by not only zooming the data from the

global domain to the single regional European seas but also,

and especially, for the application of tailored ad hoc regional

algorithms for chlorophyll (Chl a) retrieval. The present

work aims at assessing the performance of existing Chl a

algorithms for operational applications over the Baltic Sea.

Chl a is routinely measured over the world oceans with two

main kinds of algorithms: (i) those using the blue-to-green

reflectance ratio (e.g. empirical) and (ii) the semi-analytical,

e.g. those using the inherent optical properties to infer the

chlorophyll concentration. The former build on the common

experience that water colour spans from blue to green as

Chl a increases, in open ocean (Case I waters). The latter

are mathematically more complex and thus based on a larger

number of assumptions; nevertheless, they are believed to be

more suited for optically complex waters (known as Case II

waters) where the colour of the ocean is determined by sev-

eral non-covarying constituents, such as Chl a, coloured dis-
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solved organic matter (CDOM) and non-algal particles. Both

types of algorithms are very sensitive to the in situ observa-

tions used to calibrate them, thus providing the motivation of

the regionalization approach adopted within CMEMS. Those

based on neural network constitute a third kind of algorithms

for Chl a retrieval whose limitations are, in theory, the same

as the first two: strong dependency on the training data sets

that limit their overall applicability. Here, all three kinds of

algorithms are tested.

The Baltic Sea is a semi-enclosed basin bordering the

North Sea in correspondence of the Danish archipelago. The

Skagerrak and Kattegat are generally not associated with

the Baltic Sea. However, the Baltic domain that is defined

within CMEMS extends the eastern limit to the meridian

9.24◦ E, thus including most of the Skagerrak basin and the

entire Kattegat basin. The Baltic is characterized by signif-

icant CDOM concentration due to high river runoff. It is

known that high CDOM concentration reduces the water-

leaving radiance, making the seawater darker (Berthon and

Zibordi, 2010), which constitutes one of the main challenges

for ocean colour algorithms to work properly over the Baltic

Sea (Mélin and Vantrepotte, 2015). Despite the fact that the

Baltic Sea is widely recognized as a challenging test bed

for remote sensing, literature on calibration and validation

of Chl a algorithms is not abundant. Standard algorithms

are those provided by the space agencies for global and op-

erational applications. The application of these algorithms

to the in situ remote-sensing reflectance (Rrs), collected in

707 stations off Poland between 1993 and 2001, revealed un-

certainties exceeding 100 % when the output was compared

against collocated Chl a measurements (Darecki and Stram-

ski, 2004). Even less encouraging results were obtained when

four standard Chl a algorithms were applied to Sea-viewing

Wide Field-of-view Sensor (SeaWiFS) images between 2000

and 2001 (HELCOM, 2004). Matchup with 75 Chl a pro-

files across all the Baltic Sea, with predominance of Swedish

coastal waters, gave virtually null correlation, with satellite

Chl a underestimating the in situ Chl a by 180 to 500 %,

in contradiction with Darecki and Stramski (2004). More re-

cently, the Case II Regional, Boreal, and Eutrophic MERIS

processors were applied to images between 2006 and 2009

(Attila et al., 2013). Matchup with 312 stations in the Gulf

of Finland and in the central Baltic Sea showed large Chl a

overestimation. However, when the standard bio-optical rela-

tionships of these processors were tuned with the local in situ

Chl a, the bias did reduce significantly (Fig. 6 in Attila et al.,

2013). The heterogeneity of results combined with the lim-

ited spatial and temporal representativeness of the in situ ob-

servations used in the mentioned data comparisons prompts

further investigation. This work aims to fill this gap by using

the largest, publicly available in situ data set ever used over

the Baltic Sea for validation activities.

There is extensive literature on the biogeochemistry of the

Baltic Sea and its relation to physics. River outflows release

large amounts of organic matter, which sinks to the bot-

tom and lowers the oxygen concentration, leading to large

amounts of phosphate to be released by the sediment and

upwelled through complex mixing processes (Reissmann

et al., 2009). In spring, a nutrient-enriched hypolimnion

and warmer temperatures trigger diatom and dinoflagel-

late blooms, depleting nitrogen. In summer, nitrogen-fixing

cyanobacteria take advantage of the relatively phosphate-

rich, calm and warm surface waters, producing another

bloom (Reissmann et al., 2009). The central Baltic Sea is

characterized by summer blooms of cyanobacteria that are

known to have a buoyancy regulation ability (e.g. N. spumi-

gena and Aphanizomenon sp., Ibelings et al., 1991) and

that, under calm conditions, can accumulate at the sea sur-

face (Ploug, 2008). Cyanobacteria blooms are commonly ob-

served in the central Baltic Proper but not in the Skagerrak

and Kattegat nor in the Gulf of Bothnia (Wasmund and Uh-

lig, 2003). The Skagerrak and Kattegat are subject to much

higher influence from the North Sea, so that the phytoplank-

ton dynamics here are expected to be different than those at

the Baltic Sea. Thus, there is a strong need for the calibration

and validation of the proposed algorithms to take account of

the complex morphology and biogeochemistry of the basin.

Algorithms are then tested in four geographical areas: (1) the

Skagerrak and Kattegat, (2) the Baltic Proper and the gulfs of

Riga and Finland, here referred to as “Central Baltic”, (3) the

Gulf of Bothnia, and (4) the entire area (1–3).

Ocean colour has cloud cover as an additional problem,

which is particularly high over northern Europe. To increase

the spatial coverage of daily products, the International

Ocean-Colour Coordinating Group (IOCCG) recommended

the merging of ocean colour data from multiple missions

(IOCCG, 2007). At the European level, the Climate Change

Initiative (CCI) program (www.esa-oceancolour-cci.org) and

the Globcolour (www.globcolour.info) project followed this

recommendation and reprocessed archived data from vari-

ous medium-resolution sensors. Here, the CCI-derived Rrs

are used as input to the Chl a algorithms for the compari-

son exercise (see Sect. 2.1 for their description). One of the

limitations of this approach is given by the fact that the CCI

does not include any near-infrared bands, which are known

to be better suited than the blue–green bands for Case II wa-

ters (Odermatt et al., 2012). On the other hand, merged data

span for longer time periods (1997–2012) than any of the in-

dividual sensors alone and provide higher coverage on a daily

basis.

Applications of remote sensing in the Baltic Sea have been

mainly focused on a few main topics: cyanobacteria blooms

(Reinart and Kutser, 2006), light penetration (Pierson et al.,

2008), and management of various coastal areas (Kratzer et

al., 2008). A good overview of such different applications

can be found in Siegel and Gerth (2008). Long-term multi-

sensor satellite data were recently used to develop an in-

dicator of surface cyanobacteria accumulation over defined

Baltic regions for trend analysis (Kahru et al., 2007; Kahru

and Elmgren, 2014). However, long-term phytoplankton dy-

Ocean Sci., 12, 379–389, 2016 www.ocean-sci.net/12/379/2016/

www.esa-oceancolour-cci.org
www.globcolour.info


J. Pitarch et al.: Remote sensing of chlorophyll in the Baltic Sea 381

namics data over the entire Baltic region are still lacking, de-

spite the fact that these are required by the European Water

Framework Directive for coastal and inland waters and by the

Marine Strategy Framework Directive for open ocean waters.

In this article, we aim to partially fill this gap by focusing on

long-term remote sensing of Chl a at the basin scale.

2 Data and methods

2.1 Satellite Chl a data

The GlobColour data set (GLC hereafter) was developed in

the framework of the European Space Agency Data User Ele-

ment program to support global carbon cycle research. Daily

GlobColour data were downloaded from the project web

site (www.globcolour.info). Products are obtained by merg-

ing MERIS, MODIS, SeaWiFS, and VIIRS data. Validation

at global scale was carried out by Maritorena et al. (2010).

Downloaded data are second reprocessing Level 3 binned im-

ages (L3b), having a resolution of 1/24◦ at the equator (i.e.

around 4.63 km) and consisting of the accumulated data of all

merged Level 2 products, corresponding to periods of 1 day.

Merged data are generated by the GSM model (Maritorena

and Siegel, 2005), which also produces the Chl a parame-

ter, delivered as a product named CHL1. CHL1 parameter is

meant to provide the best performances over Case I waters

and thus is not recommended for use over optically complex

waters, but no alternative is given for the Baltic Sea (further

details in the Product User Guide, GlobColour, 2015).

The ESA Ocean Colour CCI program has the goal to

provide stable, long-term, multi-sensor satellite products.

The data set consists of the merged SeaWiFS, MODIS, and

MERIS data, by shifting MODIS and MERIS Rrs to the

SeaWiFS wavebands, before merging (ESA-OC-CCI, 2014).

Data are mapped at 4 km resolution and are available through

the OC-CCI (www.oceancolour.org) and the CMEMS por-

tals (marine.copernicus.eu). Standard Chl a products are

global-ocean daily mean sea-surface Chl a. ESA-CCI re-

trieves Chl a through the application of the OC4v6 algorithm

(O’Reilly et al., 2000; Werdell, 2010) to the merged Rrs. The

data set available from CMEMS also includes an additional

Chl a product by applying the OC5 algorithm (Gohin et al.,

2002), developed as an adaptation of the OC4 to French At-

lantic coastal waters (further details in the Product User Man-

ual, CMEMS, 2015). Calibrated Rrs are also available for the

application of custom algorithms. We used these Rrs to test

a Baltic Sea-specific Chl a algorithm, available for the Sea-

WiFS bands, developed by D’Alimonte et al. (2011). This

algorithm is based on a multi-layer perceptron (MLP) and

was trained with in situ Rrs and Chl a. MLP was only vali-

dated with in situ Rrs and Chl a (D’Alimonte et al., 2012),

thus not taking into account all the known issues linked to

the atmospheric correction over the basin.

An image pre-analysis revealed ∼ 15 % more flagged (in-

valid) pixels for MLP than for OC4v6 and OC5, despite the

fact that all were derived from the same CCI reflectances.

The cause is the frequent occurrence of negative Rrs(412),

most likely due to aerosol optical thickness overestimation

in the blue, together with high CDOM. In contrast, OC4v6

does not use Rrs(412), the most sensible band to the atmo-

spheric correction procedure, thus allowing for problematic

pixels (those with Rrs(412) < 0) to be retrieved as well. Sim-

ilarly, OC5 is insensitive to negative Rrs(412) values, thus

allowing Chl a to be retrieved also under the extreme condi-

tions of atmospheric correction failure.

2.2 In situ Chl a data

We downloaded publicly available in situ Chl a data, con-

tained in the repositories at Seadatanet (www.seadatanet.

org), the Baltic Marine Environment Protection Commission

(www.helcom.fi), and the NOAA World Ocean Database

(www.nodc.noaa.gov/OC5/WOD/pr_wod.html). Chl a is

computed from bottle samples using standard laboratory

techniques. The technique used to collect and measure Chl a

spans from fluorimetry to spectrophotometry and HPLC. The

amount of information provided depends upon each environ-

mental agency or research institution that collected and up-

loaded the data. For their part, data repositories have addi-

tional quality control criteria based on outlier estimation. All

data collected in the Baltic region during the period covered

by the satellite observations (1997–2012) were merged and

duplicates were eliminated.

Since the remote-sensing signal can be fairly considered

a weighted average within the first optical depth, in situ ob-

servations must be treated accordingly. In situ Chl a con-

sisted either of a single subsurface reading or Chl a pro-

files derived from a few depth readings. In this latter case,

a proper vertical average of a Chl a profile is needed for

comparison to remote-sensing data. The vertical weighting

function depends on the inherent optical properties (IOPs)

that cannot be inferred solely from Chl a in Case II wa-

ters. In rigour, coincident IOP measurements are needed to

perform the vertical averaging, but such measurements are

scarce and not publicly available. In Case I waters, vertical

averaging can be performed with the method by Morel and

Berthon (1989) with input Chl a profile data. The remain-

ing applicable options to our in situ data were either to se-

lect only the subsurface Chl a value or to average the pro-

files with the method by Morel and Berthon (1989), despite

the theoretical inconsistencies. Calculations (not shown) re-

vealed that satellite in situ correlations did improve (even if

only slightly) if available profiles were vertically averaged

(and this is the approach used in this work) instead of taking

only the uppermost reading. To avoid bottom contribution to

the water-leaving radiance, only stations with a bottom depth

of at least 10 m were selected.
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Table 1. Summary of the algorithms used in the validation analysis with the acronym used in this work along with the required input for each

of them. GLC stands for GlobColour, OC4v6 for Ocean Colour four-band algorithm (version 6), OC5 for Ocean Colour five-band algorithm,

and MLP for multi-layer perceptron.

Acronym Input Chl a Reference

algorithm

GLC Rrs from single sensors GSM Maritorena and Siegel (2005)

OC4v6 ESA-CCI Rrs OC4v6 Werdell (2010)

OC5 ESA-CCI Rrs OC5 Gohin et al. (2002)

MLP ESA-CCI Rrs MLP D’Alimonte et al. (2011)
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Figure 1. (a) Spatial distribution of the 4492 in situ stations used in

the matchup analysis (see Sect. 3.1) along with the partition of the

area of study. The Skagerrak and Kattegat is highlighted in blue with

1456 matchup points, Central Baltic is highlighted in red with 2922

matchup points, and the Gulf of Bothnia is green with 114 stations.

Temporal station distribution is also shown using the same colour

code (b). The frequency distribution of the entire in situ Chl a is

shown in panel (c).

Similarly, to ensure representativeness of the data in the

case of Chl a stratification, only stations with the upper-

most reading shallower than 2 m were retained for the anal-

ysis. The spatial location of matchup stations is shown in

Fig. 1a. Although covering the entire Baltic region, data are

not uniformly distributed, as the data set is built from dif-

ferent sources, in which individual institutions and agencies

are interested in specific zones. The number of matchups in-

creases significantly when both MODIS-Aqua and MERIS

started to operate in 2002 (Fig. 1b), thus providing further ev-

idence of the utility of merging different sensors for oceano-

graphic research. The Chl a in situ data set used in the follow-

ing sections of this work is log-normally distributed around

the mean value of ∼ 2.46 mg m−3 and spanning from 0.1 to

77 mg m−3 (Fig. 1c). Fleming and Kaitala (2006) reported

Chl a values 7–12 mg m−3 in the northern Baltic Proper dur-

ing the spring bloom. Our gathered in situ matchup data

set during April in the northern Baltic Proper (35 samples)

shows Chl a to range from 1.39 to 14.7 mg m−3, consistent

with these previous findings.

2.3 Statistical evaluation

Satellite Chl a was extracted from single pixels without fur-

ther spatial windowing. To calculate the mean bias and the

rms we applied a decimal logarithm transformation to the

Chl a data, and returned to percentage linear scale:

bias=
[
10

1
N

∑N
i=1(yi−xi )− 1

]
· 100 (1)

rms=

[
10

1
N

√∑N
i=1(yi−xi )

2

− 1

]
· 100, (2)

where xi and yi are the log10-transformed in situ and satellite

Chl a, respectively. N is the number of matchups. The best

linear fits were found using the log-transformed Chl a. The

corresponding coefficient of determination (R2), slope (m),

and intercept (n) are also presented. The whole area was di-

vided into regions with expected bio-optical differences (see

Fig. 1a). The number of observations available from the Gulf

of Bothnia is very limited, so the statistical information that

can be derived from the regressions must be interpreted with

caution. Nevertheless, results are presented for completeness.

The p value of the regressions was 0 for all regions except

for the Gulf of Bothnia, where it was p < 10−3.

Outliers were defined as data in which any of the four al-

gorithms gave Chl a outside the range within 1/20 and 20

times the in situ Chl a. In applying this criterion, roughly

3.5 % of the data were discarded and led N to become 1873.

Most of these discarded matchups were rejected because of

the GLC underestimation, together with the high scattering

(Fig. 2a). The discarded data were evenly distributed over

the entire range of Chl a variability and without any specific

temporal or spatial patterns. For comparison issues among

algorithms, only matchups with coincident valid pixels for

all four satellite products within the same day were consid-

ered, but once the best performing algorithm was identified,

all available matchup stations for this algorithm were used to

provide its full record of statistics (N = 4492).
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Figure 2. Density scatter plots of in situ vs. satellite-retrieved Chl a for all algorithms providing meaningful values. The line of best fit (blue)

and that of equal value (black) are superimposed, with relevant statistics.

3 Results and discussion

3.1 Matchups

In general, satellite and in situ data show modest agreement

in the Baltic. This can be intuitively associated with both the

non-full traceability of the methods used to assemble the in

situ data set and the satellite algorithms. MLP and GLC pro-

vide poorR2 and negative bias with respect to the in situ data.

Results of OC4v6 (R2
= 0.43) are consistent with findings

by Darecki and Stramski (2004). The positive bias of 44 %

here (Fig. 2b) is smaller than 119 %, as found by Darecki and

Stramski (2004), but still confirms OC4v6 to overestimate

Chl a in the Baltic Sea. OC4v6 matches the in situ data bet-

ter for high Chl a, but tends to saturate for low values. OC5

has similar linearity (R2
= 0.44) but significantly improves

in terms of bias (−14 %) with respect to OC4v6. Besides

the similar R2, we noticed graphical similarities between the

scatter plots of OC4v6 and OC5. Guided by this hint, we per-

formed a linear regression in log form between OC4v6 and

OC5 satellite-derived Chl a (not shown). Regression analy-

sis revealed a very high linear dependence (R2
= 0.97), al-

though the relationship is more complex in theory (Gohin et

al., 2002), and this will have implications for the rest of this

work (see below).

Geographical partition of the matchup data set highlighted

significant differences in the statistical behaviour of algo-

rithms. For instance, the performance of MLP strongly de-

www.ocean-sci.net/12/379/2016/ Ocean Sci., 12, 379–389, 2016
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Figure 3. Density scatter plots of in situ vs. satellite-retrieved Chl a

for the OC4v6 algorithm. The best linear regression (blue) and the

line of equal value (black) are superimposed, with relevant statistics.

grades in the Skagerrak and Kattegat (Fig. 2h) with respect

to the central Baltic Sea (Fig. 2l). MLP was calibrated with

data only inside the Baltic Sea, and not in the Skagerrak and

Kattegat (D’Alimonte et al., 2012, Fig. 2d). It appears then

that such algorithm design is highly dependent on the cali-

bration data. GLC always performs the worst in all regions,

and the scatter plots look like undefined clouds, which is best

highlighted by the large rms errors. OC4v6 displays simi-

lar statistics at both sides of the Danish Strait, although the

slope of the regression line decreases towards the Skagerrak

and Kattegat. In each region, OC4v6 overestimates Chl a by

more than 40 %. The behaviour of OC5 is always in accor-

dance with OC4v6, with a shifted bias, given the very high

correlation between the two. Due to the much simpler appli-

cability of OC4v6 and its wider diffusion in the community,

the following analysis will be based on OC4v6.

The matchup analysis is repeated here with the same con-

ditions, including the definition and removal of the out-

liers, but only for OC4v6. Only 22 matchups were discarded

(< 0.5 % of the data), with 17 due to overestimation (i.e.

higher than 20 times the in situ counterpart). As mentioned,

when the coincidence with the other algorithms is removed,

the number of matchups increases to 4492, distributed as

1456 in the Skagerrak and Kattegat, 2922 in the Central

Baltic and 114 in the Gulf of Bothnia. Figure 3 shows the

corresponding density scatter plots and statistics. In gen-

eral, the interpretation from Fig. 2 still holds, with the big-

ger size of the matchup data set providing increased confi-

dence level of the derived statistics. However, since the ad-

Figure 4. Upper left panels, in black: best linear fits (slope

m and intercept n) of 1000 randomly chosen calibration

data sets (Ncal = 2246, x axis) of log10 (CHL ain situ) vs.

log10(CHL aOC4v6). Lower left panel: application of all 1000 (m,

n) pairs to the OC4v6 vs. in situ scatter cloud. In red, slope and

intercept for the whole data set, as shown in Fig. 3a. In green, aver-

age of the 1000 calibration results. Right panels, in black: statistics

when applying each m and n pair from the left side to the comple-

mentary validation data sets (Nval = 2246, x axis). These are the

coefficient of determination, bias (Eq. 1), and rms (Eq. 2). Same

statistics found for the whole data set, as shown in Fig. 3a, are in

red. The average of the 1000 validation results is in green.

ditional data were previously discarded (not used to produce

Fig. 2), it is not surprising that the latter statistics did de-

grade (R2
= 0.43, bias= 72 %, RMSE= 151 %, m = 0.57,

n = 0.41, N = 2619). The orders of magnitude of the un-

certainties found here (Fig. 3) are in line with those available

from the literature (Darecki and Stramski, 2004) even consid-

ering the wider space and time distribution of the data (both

in situ and satellite) used here.

3.2 Validation

When the regression coefficients are used to recalibrate ex-

isting algorithms, the validity and robustness of the matchup

statistics needs to be validated against independent data.

Starting from the matchups for OC4v6 alone (Fig. 3a), we

performed a sensitivity study to test the data set homogene-

ity by a bootstrapping-like assessment (Efron, 1979) as used

in recent validation exercises (Brewin et al., 2013). The

whole data set (N = 4492) was partitioned 1000 times into

two randomly chosen halves: calibration (Ncal = 2246) and

validation (Nval = 2246). Each calibration data set is used

to compute the linear regression coefficients (m, n) which

are then applied to the corresponding complementary val-

idation half to compute the associated statistics. The ob-

tained series of coefficients and statistics are shown in Fig. 4.

Results are remarkably robust: the averages of the regres-

sions found (m= 0.5843, n= 0.3657, green dashed lines in

Ocean Sci., 12, 379–389, 2016 www.ocean-sci.net/12/379/2016/
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Figure 5. Histogram of the absolute error between OC4v6corr and

in situ Chl a, both in logarithmic form. Associated mean and stan-

dard deviation are also shown and used to compute a relevant fitted

Gaussian distribution (black line).

Fig. 4) are almost equal to those found when the whole

data set is used (m= 0.5845 and n= 0.3656, red lines in

Fig. 4). Moreover, the dispersion is very small with the co-

efficient of variation being 2.07 % when computed over the

slopes and 1.38 % over the intercepts. As for the valida-

tion statistics, their mean values (graphically shown in green

in Fig. 4) R2
= 0.4236, bias= 59.55 %, rms= 136.13 % are

very similar to those obtained for the whole data set (Fig. 3a,

R2
= 0.4241, bias= 59.53 %, rms= 136.19 %).

3.3 Algorithm regional calibration

Efficient and useful algorithm regionalization needs appro-

priate bio-optical in situ data. Unfortunately, the Baltic lacks

such a publicly available in situ data set that therefore pre-

vents a canonical regionalization. This, together with the

high confidence level associated with the described statistics

and in view of obtaining an unbiased proxy for Chl a, with

the available data, prompts the use of the computed coeffi-

cients (m and n in Fig. 4) for recalibrating OC4v6, as fol-

lows:

log10 (CHL aOC4v6corr)=
log10 (CHL aOC4v6)− n

m
. (3)

Errors between Eq. (3) and the complementary in situ val-

idation matchups were calculated. Each of the 1000 cho-

sen combinations generated a vector of errors with length

Nval = 2246. Their accumulation led to a total of 2 246 000

error estimates, whose distribution is shown in Fig. 5, to-

gether with the fitted Gaussian curve. The recalibration in

Eq. (3) removed the bias, resulting in a zero-centred error

distribution. It is worth reminding that, within the calibration

and validation exercises, the two data sets are independent.

The standard deviation (σ = 0.4582) includes all errors not

taken into account by the system, i.e. atmospheric noise, er-

rors in the in situ measurements and, most of all, the limited

suitability of algorithms such as OC4v6.

The symmetric and zero-centred error distribution (Fig. 5)

obtained with the application of Eq. (3) within the

bootstrapping-like assessment warrants a high level of con-

fidence when basin averages are calculated; all the errors at

the level of individual pixels are expected to cancel out when

a horizontal (pixel-wise) average is performed over a large

region. Although the former statement implies that the statis-

tical properties of the matchup data set can be extrapolated to

the whole Baltic area, the good spatial and temporal cover-

age of the former (see Fig. 1) helps to support this argument.

From this point, we defined the algorithm OC4v6corr through

Eq. (3), with the coefficients (m = 0.5884, n = 0.3751) of

Fig. 3a. This enabled the bias to be removed. Neverthe-

less, rms was altered, rising to 187 %, in agreement with

σ = 0.4582 in Fig. 5 through Eq. (2). The mathematical ex-

planation of the latter relationship is that the rms and the stan-

dard deviation of a zero-mean distribution are equal.

Among all regions in which the Baltic Area has been di-

vided, Fig. 3 highlights different best linear fits. Given the

coefficients of variation 2.07 and 1.38 % for the slope and

intercept, respectively, found in the bootstrapping assess-

ment, the coefficients in Fig. 3 are significantly different.

If OC4v6 is linearly adjusted with Eq. (3), the coefficients

must be different for each region in particular and equal to

those found in Fig. 3. Therefore, for the Skagerrak and Kat-

tegat, they were set to 0.4212 and 0.3027, respectively, for

m and n. Due to the lack of data, the stations in the Gulf of

Bothnia were aggregated to those of the Central Baltic. Re-

sulting statistics for these two regions were almost equal to

those of the Central Baltic alone: R2
= 0.35, bias= 60.45 %,

rms= 138.64 %, m = 0.5632, and n = 0.4206. These linear

coefficients were applied to recalibrate OC4v6 for the Cen-

tral Baltic and the Gulf of Bothnia. Even if the same algo-

rithm was used, results are presented separately for the two

basins.

3.4 Satellite-derived basin averages

Horizontally averaged Chl a for OC4v6corr was computed

only for images with a minimum number of 1000 valid pix-

els. The entire Baltic has 21 424 pixels, with the Gulf of

Bothnia contributing with 5750 pixels, the Skagerrak and

Kattegat with 2625 pixels, and the Central Baltic with 13 049

pixels. One thousand pixels correspond to 5, 17, 38, and 7 %

of their respective surfaces. Chl a dynamics strongly varies

among regions at both seasonal (Fig. 6) and interannual

timescales (Supplement). In the Skagerrak and Kattegat, the

dynamics consist of intermittent growth periods in late winter

(up to ∼ 4 mg m−3) and a small bloom in spring, reaching a

minimum in summer (∼ 0.5 mg m−3), consistent with other

works (Edelvang et al., 2005) . In the Gulf of Bothnia, the

overall range of Chl a variability is limited to ∼ 2 mg m−3

(0.7–2.8 mg m−3) with minima in winter and a series of

bloom-like pulses from spring to fall. The spring bloom is

the most intense and lasts longer than the others (Carstensen

www.ocean-sci.net/12/379/2016/ Ocean Sci., 12, 379–389, 2016
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Figure 6. Chl a daily climatology. For any given day of the year,

the average was computed only if data for a minimum of 6 years

were available. Plots of individual time series with their associated

standard deviation bars can be found in the Supplement. To improve

the plot readability, all time series were smoothed with a 1-week

moving average.

et al., 2015). Given the prolonged winter darkness, the length

of this data time series is shorter than those from the other

regions. Moreover, in winter the Gulf of Bothnia is normally

ice covered and some ice remains in the northern part until

May; thus, not the entire domain contributed to the displayed

Chl a. A non-trivial point is that this time series has to be

interpreted with caution due to lack of a significant num-

ber of data for specific calibration in this area. In the Cen-

tral Baltic, the dynamics is completely different. Two distinct

Chl a maxima are appreciable (Reissmann et al., 2009): the

first one peaks at the end of April, reaching ∼ 2.5 mg m−3,

which is at the lower end of the variability previously ob-

served by Schneider et al. (2006); the intensity of the second

peak, in mid-July, (∼ 4.6 mg m−3) is consistent with previous

observations in the area (Schneider et al., 2006), and allows it

to steadily decrease and reach a minimum in winter. The dy-

namics of the entire domain (black line in Fig. 6) are clearly

dominated by the Central Baltic due to its major weight in

terms of area coverage. The summer bloom that occurs in

the Central Baltic is known to occur due to cyanobacteria

taking advantage of the milder weather conditions and of the

increased water temperature. As cyanobacteria can form sur-

face scum, it is worth questioning whether such data would

be masked during the operational image processing. A previ-

ously documented mild cyanobacteria bloom on 11 July 2010

was visible from space via qualitative RGB image. Here,

surface accumulations were not observed (SMHI, 2010). To

assess whether the standard processing is also able to pro-

vide reliable observations in these conditions, MODIS-Aqua

Level-1A was downloaded and processed to L2 using the

same settings used to produce the CCI input data. Figure 7a

shows the Central Baltic blooming also in the areas identified

as cyanobacteria by the SeaDAS Level-2 flag TURBIDW

(Fig. 7b) used to discriminate the accumulation of cyanobac-

teria (Kahru and Elmgren, 2014). During summer 2005, the

Baltic experienced the second largest cyanobacteria bloom

(Kahru and Elmgren, 2014) that covered 25 % of the entire

domain (183 000 km2). As for the 2010 bloom – and apart

from the small area classified as too bright in the north Baltic

Proper (in light grey in Fig. 7c and d) – the standard pro-

cessing demonstrated its ability to provide valid data also

under these conditions. Therefore, the data used here appear

suitable for the study of phytoplankton dynamics throughout

the year, even during cyanobacteria bloom events, when only

a negligible percentage of pixels is affected by atmospheric

correction failures (Kahru and Elmgren, 2014).

Figure 6 shows that the strongest signal in the Cen-

tral Baltic is given by the summer bloom. Cyanobacteria-

like species are known to bloom under warm and calm

weather conditions (Ploug, 2008). High sea-surface temper-

ature (SST) is known to enhance the growth of cyanobac-

teria, both directly through higher growth rates, and indi-

rectly by increasing the stability of the water column to allow

cyanobacteria to take advantage of their buoyancy regulation

ability (Ibelings et al., 1991). Analogously, cyanobacteria

were demonstrated to provide positive feedbacks to the sur-

face temperature by absorbing the incoming radiation (Kahru

et al., 1993). It is then reasonable to investigate whether Chl a

and SST covary over the Central Baltic during summer. In

the specific context of this cross-correlation analysis, we are

implicitly assuming that both SST and Chl a respond to the

calm weather conditions with the same time lag. For this mat-

ter, daily-average SST data (1998–2009) over the Baltic Sea

were downloaded from the CMEMS website. The SST data

set is the merged product from the sensors AVHRRs (series

7, 9, 11, 14, 16, 17, 18), Envisat ATSR1 and ATSR2, and the

AATSR (see CMEMS (2015) for details and the Supplement

for their basin-average time series). Both Chl a and SST data

time series were deseasonalized by computing the anoma-

lies with respect to their climatologies, which were used as

input for the cross-correlation analysis. Figure 8 shows the

two time series anomalies along with correlation values com-

puted over the summer period (between the Julian days 150

and 250) for all years for which SST was available. Prior

to the correlation analysis, the Chl a anomaly time series

was further smoothed with a 1-week moving average. Here,

the basic underlying assumption is that warm waters, as a

proxy of calm weather conditions, can explain the dynamics

of cyanobacteria. Thus, when cyanobacteria do represent a

high fraction (in terms of their space and time presence) of

the Chl a signal, the correlation is expected to be high, and

vice versa.

Figure 8 shows quite a surprising relationship between

both quantities with high-amplitude SST anomalies correlat-

ing with those of Chl a. This related behaviour is somewhat

unexpected, because we are not comparing absolute Chl a

and temperature, but rather their differences with respect to

Ocean Sci., 12, 379–389, 2016 www.ocean-sci.net/12/379/2016/



J. Pitarch et al.: Remote sensing of chlorophyll in the Baltic Sea 387

Figure 7. MODIS Level-1A of 11 July 2010 (a, b) and 2005

(c, d) were downloaded from the OBPG website (Ocean Biol-

ogy Processing Group, oceancolor.gsfc.nasa.gov) and processed to

Level-2 using the standard settings within SeaDAS version 7.3

(seadas.gsfc.nasa.gov). Kahru and Elmgren (2014) recently identi-

fied the presence of cyanobacteria accumulating on the sea surface

using the SeaDAS Level-2 flag TURBIDW (“turbid water”) when

the flag MAXAERITER (“maximum aerosol iterations”) is turned

off within the Level-1 to Level-2 processing. Here, Chl a images

without (a, c) and with (b, d) the application of the TURBIDW

flag are shown; pixels affected by TURBIDW are coloured black.

As mentioned by Kahru and Elmgren (2014), the MAXAERITER

flag is, by default, turned on within the NASA standard process-

ing (e.g. the same used here). A light grey area (c, d) in the north-

western Baltic Proper is perceived by the operational processing as

too bright (i.e. masked as MAXAERITER) and not processed.

their climatological values. Generally, during the second half

of the time series, from 2003 on, the correlation appears to

be tighter. The causes of the dynamics shown are undoubt-

edly complex, involving considerations on the circulation

and the peculiar biogeochemistry of the basin (Reissmann et

al., 2009). Nevertheless, this article is focused on the remote-

sensing aspect and the intensity of the cyanobacteria bloom

appears to depend on the timing of the summer temperature

peak: although 2004 had a high SST peak, such a peak hap-

pened late in the season (10 August), which appeared un-

favourable for cyanobacteria growth. On the contrary, years

2002, 2003, 2005, and 2006 had SST peaks of similar or

lower intensity but much earlier in the season. Instead, 2001

displayed two marked positive SST anomalies that were only

Figure 8. Time series of the Chl a and SST anomalies with respect

to their climatologies, over the Central Baltic. The reference value 0

is also displayed. Shaded areas indicate the part of the time series

not used for the computation of the cross-correlation coefficient,

which is indicated on each year. Full size plots of individual years

can be found in the Supplement.

mildly followed by Chl a anomalies. Despite the Chl a and

SST anomalies being poorly correlated during 1998 (Fig. 8),

they were both negative. This suggests that in that year, the

cyanobacteria bloom, generally dominating the summer sig-

nal in the Central Baltic, was only partially contributing to

the overall dynamics. This is clearly documented in Kahru

and Elmgren (2014), who found the fraction of cyanobacte-

ria accumulations (FCA) of only 6 % in 1998, which is the

ratio of the number of pixels classified as cyanobacteria to

the number of cloud-free sea-surface views during the period

July–August.

On the other hand, the year 2008 was completely anoma-

lous with respect to both the climatology value and timing

of the summer bloom, with a maximum at the beginning of

May. This massive and early bloom has already been doc-

umented (Majaneva et al., 2012; Larsson et al., 2014), with

the dominant species being Prymnesium polylepis. Respon-

sible abiotic factors included exceptionally calm and sunny

weather during October 2007, resulting in high light avail-

ability and low turbulence above the thermocline (Majaneva

et al., 2012; Larsson et al., 2014). These conditions enabled

P. polylepis to build up a considerable biomass. The follow-

ing winter was the mildest since more than a century, which

allowed P. polylepis to persist throughout the winter. Improv-

ing weather and abundant nutrients allowed further growth

until a maximum in spring.

www.ocean-sci.net/12/379/2016/ Ocean Sci., 12, 379–389, 2016
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4 Conclusions

A 15-year merged multi-sensor daily data set of satellite-

derived Chl a contains very valuable information for ecolog-

ical studies, if information is properly processed. Matchup

analysis was undertaken with the largest in situ database ever

used for calibration and validation purposes over the Baltic

region. Standard algorithms proved to be easy to apply but,

in the Baltic Sea, required further adjustments before an un-

biased estimation of the basin-average Chl a was obtained.

Our derived time series take advantage of the independence

of the error added by other water constituents and additional

sources. The error distribution of the Chl a estimates, when

averaging over a large number of observations, tends to zero,

thus demonstrating that more accurate observations can be

achieved when averaging over large areas.

The OC4v6corr-derived climatology in the Skagerrak and

Kattegat revealed strong productivity in winter and a rather

inactive summer. However, it should be noted that the blue–

green Chl a algorithms are not optimal for the coccol-

ithophore detection (Gordon et al., 2001), commonly ob-

served in this area. In the Gulf of Bothnia, Chl a exhibits

a single bloom during spring and experiences lower variabil-

ity than the Skagerrak and Kattegat regions or the Central

Baltic. In the latter region, the productivity in late fall, winter,

and early spring is severely inhibited. A first growth period

with a maximum at the end of April is detected, followed

by a stronger summer bloom peaking in the second week of

July. The summer bloom in the Central Baltic constitutes the

most intense signal found in this work, and is attributed to

cyanobacteria-like species. Chl a and SST anomaly time se-

ries were cross-correlated to assess the cyanobacteria con-

tribution to the overall Chl a dynamics during the summer

period of the Central Baltic. For example, the exceptionally

warm winter 2007/2008 triggered an intense spring bloom in

2008 that also altered the normal dynamics throughout the

year.

The Baltic region is widely recognized as a challenging

test bed for ocean colour remote sensing. The interfering

CDOM at blue wavelengths suggests that better Chl a algo-

rithms should use red and NIR bands, like the fluorescence

line height or the maximum chlorophyll index algorithms

(Odermatt et al., 2012, Fig. 1). Most of the Baltic Chl a val-

ues range between ∼ 1 and 10 mg m−3 and are at the lower

part of the retrievable concentrations, by these algorithms

(Odermatt et al., 2012, Fig. 1). These algorithms are only

applicable to the archived MERIS data (2002–2012). The

Ocean and Land Colour Instrument, on-board the Sentinel-3

will provide continuity with MERIS and the algorithms will

be adapted. The addition of the 400 nm band will expectedly

aid in the separation of the CDOM contribution, given that

proper atmospheric correction is achieved.

The Supplement related to this article is available online

at doi:10.5194/os-12-379-2016-supplement.
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