Articles | Volume 11, issue 6
https://doi.org/10.5194/os-11-937-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-937-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An improved method for the determination of dissolved nitric oxide (NO) in seawater samples
H. E. Lutterbeck
CORRESPONDING AUTHOR
Chemical Oceanography, Division of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
H. W. Bange
Chemical Oceanography, Division of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
No articles found.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Johnathan D. Maxey, Neil D. Hartstein, Hermann W. Bange, and Mortiz Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1731, https://doi.org/10.5194/egusphere-2024-1731, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the southern hemisphere. Our study describes N2O distribution and its drivers in one such system Macquarie Harbour, Tasmania. Water samples were collected seasonally from 2022/2023. Results show the system is a sink for atmospheric N2O when river flow is high; and the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Guanlin Li, Damian L. Arévalo-Martínez, Riel Carlo O. Ingeniero, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2023-771, https://doi.org/10.5194/egusphere-2023-771, 2023
Preprint archived
Short summary
Short summary
Dissolved carbon monoxide (CO) surface concentrations were first measured at 14 stations in the Ria Formosa Lagoon system in May 2021. Ria Formosa was a source of atmospheric CO. Microbial consumption accounted for 83 % of the CO production. The results of a 48-hour irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Xiao Ma, Mingshuang Sun, Sinikka T. Lennartz, and Hermann W. Bange
Biogeosciences, 17, 3427–3438, https://doi.org/10.5194/bg-17-3427-2020, https://doi.org/10.5194/bg-17-3427-2020, 2020
Short summary
Short summary
Monthly measurements of dissolved methane (CH4), a potent greenhouse gas, were conducted at Boknis Eck (BE), a time-series station in the southwestern Baltic Sea, from June 2006. In general CH4 concentrations increased with depth. High concentrations in the upper layer were linked to saline water inflow. Eckernförde Bay emitted CH4 to the atmosphere throughout the monitoring period. No significant trend was detected in CH4 concentrations or emissions during 2006–2017.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Ye Tian, Gui-Peng Yang, Chun-Ying Liu, Pei-Feng Li, Hong-Tao Chen, and Hermann W. Bange
Ocean Sci., 16, 135–148, https://doi.org/10.5194/os-16-135-2020, https://doi.org/10.5194/os-16-135-2020, 2020
Short summary
Short summary
Nitric oxide (NO) could be produced by nitrite photolysis; the rates from dissolved nitrite in artificial seawater showed increasing trends with decreasing pH, increasing temperatures, and increasing salinity. However, NO photoproduction from the natural seawater samples did not show correlations with pH, water temperature, salinity, or dissolved nitrite concentrations in the western tropical North Pacific Ocean (WNTP). And there were other NO loss processes in the surface layer of WNTP.
Thomas Holding, Ian G. Ashton, Jamie D. Shutler, Peter E. Land, Philip D. Nightingale, Andrew P. Rees, Ian Brown, Jean-Francois Piolle, Annette Kock, Hermann W. Bange, David K. Woolf, Lonneke Goddijn-Murphy, Ryan Pereira, Frederic Paul, Fanny Girard-Ardhuin, Bertrand Chapron, Gregor Rehder, Fabrice Ardhuin, and Craig J. Donlon
Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-2019, https://doi.org/10.5194/os-15-1707-2019, 2019
Short summary
Short summary
FluxEngine is an open-source software toolbox designed to allow for the easy and accurate calculation of air–sea gas fluxes. This article describes new functionality and capabilities, which include the ability to calculate fluxes for nitrous oxide and methane, optimisation for running FluxEngine on a stand-alone desktop computer, and extensive new features to support the in situ measurement community. Four research case studies are used to demonstrate these new features.
Ye Tian, Chao Xue, Chun-Ying Liu, Gui-Peng Yang, Pei-Feng Li, Wei-Hua Feng, and Hermann W. Bange
Biogeosciences, 16, 4485–4496, https://doi.org/10.5194/bg-16-4485-2019, https://doi.org/10.5194/bg-16-4485-2019, 2019
Short summary
Short summary
Nitric oxide (NO) seems to be widespread, with different functions in the marine ecosystem, but we know little about it. Concentrations of NO were in a range from below the limit of detection to 616 pmol L−1 at the surface and 482 pmol L−1 at the bottom of the Bohai and Yellow seas. The study region was a source of atmospheric NO. Net NO sea-to-air fluxes were much lower than NO photoproduction rates, implying that the NO produced in the mixed layer was rapidly consumed before entering the air.
Hermann W. Bange, Chun Hock Sim, Daniel Bastian, Jennifer Kallert, Annette Kock, Aazani Mujahid, and Moritz Müller
Biogeosciences, 16, 4321–4335, https://doi.org/10.5194/bg-16-4321-2019, https://doi.org/10.5194/bg-16-4321-2019, 2019
Short summary
Short summary
Nitrous oxide (N2O) and methane (CH4) are atmospheric trace gases which play important roles in the climate and atmospheric chemistry of the Earth. However, little is known about their emissions from rivers and estuaries. To this end, concentrations of N2O and CH4 were measured during a seasonal study in six rivers and estuaries in northwestern Borneo. The concentrations of both gases were mainly driven by rainfall. The rivers and estuaries were an overall net source of atmospheric N2O and CH4.
Xiao Ma, Sinikka T. Lennartz, and Hermann W. Bange
Biogeosciences, 16, 4097–4111, https://doi.org/10.5194/bg-16-4097-2019, https://doi.org/10.5194/bg-16-4097-2019, 2019
Short summary
Short summary
Monthly measurements of nitrous oxide (N2O), a potent greenhouse gas and ozone depletion agent, were conducted at Boknis Eck (BE), a time series station in the southwestern Baltic Sea, since July 2005. Low N2O concentrations were observed in autumn and high in winter and early spring. Dissolved nutrients and oxygen played important roles in N2O distribution. Although we did not observe a significant N2O trend during 2005–2017, a decrease in N2O concentration and emission seems likely in future.
Eric J. Morgan, Jost V. Lavric, Damian L. Arévalo-Martínez, Hermann W. Bange, Tobias Steinhoff, Thomas Seifert, and Martin Heimann
Biogeosciences, 16, 4065–4084, https://doi.org/10.5194/bg-16-4065-2019, https://doi.org/10.5194/bg-16-4065-2019, 2019
Short summary
Short summary
Taking a 2-year atmospheric record of atmospheric oxygen and the greenhouse gases N2O, CO2, and CH4, made at a coastal site in the Namib Desert, we estimated the fluxes of these gases from upwelling events in the northern Benguela Current region. We compared these results with flux measurements made on a research vessel in the study area at the same time and found that the two approaches agreed well. The study region was a source of N2O, CO2, and CH4 to the atmosphere during upwelling events.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Qixing Ji, Mark A. Altabet, Hermann W. Bange, Michelle I. Graco, Xiao Ma, Damian L. Arévalo-Martínez, and Damian S. Grundle
Biogeosciences, 16, 2079–2093, https://doi.org/10.5194/bg-16-2079-2019, https://doi.org/10.5194/bg-16-2079-2019, 2019
Short summary
Short summary
A strong El Niño event occurred in the Peruvian coastal region in 2015–2016, during which higher sea surface temperatures co-occurred with significantly lower sea-to-air fluxes of nitrous oxide, an important greenhouse gas and ozone depletion agent. Stratified water column during El Niño retained a larger amount of nitrous oxide that was produced via multiple microbial pathways; and intense nitrous oxide effluxes could occur when normal upwelling is resumed after El Niño.
Samuel T. Wilson, Hermann W. Bange, Damian L. Arévalo-Martínez, Jonathan Barnes, Alberto V. Borges, Ian Brown, John L. Bullister, Macarena Burgos, David W. Capelle, Michael Casso, Mercedes de la Paz, Laura Farías, Lindsay Fenwick, Sara Ferrón, Gerardo Garcia, Michael Glockzin, David M. Karl, Annette Kock, Sarah Laperriere, Cliff S. Law, Cara C. Manning, Andrew Marriner, Jukka-Pekka Myllykangas, John W. Pohlman, Andrew P. Rees, Alyson E. Santoro, Philippe D. Tortell, Robert C. Upstill-Goddard, David P. Wisegarver, Gui-Ling Zhang, and Gregor Rehder
Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, https://doi.org/10.5194/bg-15-5891-2018, 2018
Short summary
Short summary
To determine the variability between independent measurements of dissolved methane and nitrous oxide, seawater samples were analyzed by multiple laboratories. The results revealed the influences of the different parts of the analytical process, from the initial sample collection to the calculation of the final concentrations. Recommendations are made to improve dissolved methane and nitrous oxide measurements to help preclude future analytical discrepancies between laboratories.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Chun-Ying Liu, Wei-Hua Feng, Ye Tian, Gui-Peng Yang, Pei-Feng Li, and Hermann W. Bange
Ocean Sci., 13, 623–632, https://doi.org/10.5194/os-13-623-2017, https://doi.org/10.5194/os-13-623-2017, 2017
Short summary
Short summary
We developed a new method for the determination of dissolved nitric oxide (NO) in discrete seawater samples based on the combination of a purge-and-trap setup and a fluorometric detection of NO. With this method we have a reliable and comparably easy to use method to measure oceanic NO surface concentrations, which can be used to decipher both its temporal and spatial distributions as well as its biogeochemical pathways in the oceans.
Lea Steinle, Johanna Maltby, Tina Treude, Annette Kock, Hermann W. Bange, Nadine Engbersen, Jakob Zopfi, Moritz F. Lehmann, and Helge Niemann
Biogeosciences, 14, 1631–1645, https://doi.org/10.5194/bg-14-1631-2017, https://doi.org/10.5194/bg-14-1631-2017, 2017
Short summary
Short summary
Large amounts of methane are produced in anoxic, coastal sediments, from which it can seep into the overlying water column. Aerobic oxidation of methane (MOx) mediated by methanotrophic bacteria is an important sink for methane before its evasion to the atmosphere. In a 2-year seasonal study, we investigated the spatio-temporal variability of MOx in a seasonally hypoxic coastal inlet using radiotracer-based methods. In experiments, we assessed the effect of variable oxygen concentrations on MOx.
Lothar Stramma, Tim Fischer, Damian S. Grundle, Gerd Krahmann, Hermann W. Bange, and Christa A. Marandino
Ocean Sci., 12, 861–873, https://doi.org/10.5194/os-12-861-2016, https://doi.org/10.5194/os-12-861-2016, 2016
Short summary
Short summary
Results from a research cruise on R/V Sonne to the eastern tropical Pacific in October 2015 during the 2015–2016 El Niño show the transition of current, hydrographic, and nutrient conditions to El Niño conditions in the eastern tropical Pacific in October 2015. Although in early 2015 the El Niño was strong and in October 2015 showed a clear El Niño influence on the EUC, in the eastern tropical Pacific the measurements only showed developing El Niño water mass distributions.
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Carolin R. Löscher, Annie Bourbonnais, Julien Dekaezemacker, Chawalit N. Charoenpong, Mark A. Altabet, Hermann W. Bange, Rena Czeschel, Chris Hoffmann, and Ruth Schmitz
Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, https://doi.org/10.5194/bg-13-2889-2016, 2016
Short summary
Short summary
The ocean is full of eddies and they play a key role for ocean biogeochemistry. In order to understand dinitrogen (N2) fixation, one major control of oceanic primary production, we investigated three eddies in the eastern tropical South Pacific off Peru. We conducted the first detailed survey and found increased N2 fixation in the oxygen-depleted cores of anticyclonic mode water eddies. Taken together, we could – for the first time – show that eddies play an important role in N2 fixation off Peru.
Denise Müller, Hermann W. Bange, Thorsten Warneke, Tim Rixen, Moritz Müller, Aazani Mujahid, and Justus Notholt
Biogeosciences, 13, 2415–2428, https://doi.org/10.5194/bg-13-2415-2016, https://doi.org/10.5194/bg-13-2415-2016, 2016
Short summary
Short summary
Estuaries act as sources of the greenhouse gases nitrous oxide (N2O) and methane (CH4) to the atmosphere. We provide first measurements of N2O and CH4 in two estuaries in north-western Borneo, a region which is dominated by peatlands. We show that N2O and CH4 concentrations in these estuaries are moderate despite high organic carbon loads, that nutrient enhancement does not lead to enhanced N2O emissions, and that the wet season dominates the variability of the emissions in these systems.
Happy Hu, Annie Bourbonnais, Jennifer Larkum, Hermann W. Bange, and Mark A. Altabet
Biogeosciences, 13, 1453–1468, https://doi.org/10.5194/bg-13-1453-2016, https://doi.org/10.5194/bg-13-1453-2016, 2016
Damian L. Arévalo-Martínez, Annette Kock, Carolin R. Löscher, Ruth A. Schmitz, Lothar Stramma, and Hermann W. Bange
Biogeosciences, 13, 1105–1118, https://doi.org/10.5194/bg-13-1105-2016, https://doi.org/10.5194/bg-13-1105-2016, 2016
Short summary
Short summary
We present the first measurements of N2O across three mesoscale eddies in the eastern tropical South Pacific. Eddie's vertical structure, offshore transport, properties during its formation and near-surface primary production determined the N2O distribution. Substantial depletion of N2O within the core of anticyclonic eddies suggests that although these are transient features, N-loss processes within their centres can lead to an enhanced N2O sink which is not accounted for in marine N2O budgets.
A. Kock, D. L. Arévalo-Martínez, C. R. Löscher, and H. W. Bange
Biogeosciences, 13, 827–840, https://doi.org/10.5194/bg-13-827-2016, https://doi.org/10.5194/bg-13-827-2016, 2016
Short summary
Short summary
We measured the nitrous oxide (N2O) distribution in the water column in the oxygen minimum zone off Peru, an area with extremely high N2O emissions. Our data show very variable and often very high N2O concentrations in the water column at the coast, which lead to high N2O emissions when these waters are brought to the surface. The very high N2O production off Peru may be caused by high nutrient turnover rates together with rapid changes in the oxygen concentrations.
A. R. Baker, M. Thomas, H. W. Bange, and E. Plasencia Sánchez
Biogeosciences, 13, 817–825, https://doi.org/10.5194/bg-13-817-2016, https://doi.org/10.5194/bg-13-817-2016, 2016
Short summary
Short summary
Concentrations of major ions and trace metals were measured in aerosols off the coast of Peru in December 2012. A few trace metals (iron, copper, nickel, and cobalt) had anomalously high concentrations, which may be associated with industrial metal smelting activities in the region. The atmosphere appears to supply an excess of iron (relative to atmospheric nitrogen supply) to the phytoplankton community of the Peruvian upwelling system.
D. Müller, T. Warneke, T. Rixen, M. Müller, A. Mujahid, H. W. Bange, and J. Notholt
Biogeosciences, 13, 691–705, https://doi.org/10.5194/bg-13-691-2016, https://doi.org/10.5194/bg-13-691-2016, 2016
Short summary
Short summary
We studied organic carbon and the dissolved greenhouse gases carbon dioxide (CO2) and carbon monoxide (CO) in two estuaries in Sarawak, Malaysia, whose coast is covered by carbon-rich peatlands. The estuaries received terrestrial organic carbon from peat-draining tributaries. A large fraction was converted to CO2 and a minor fraction to CO. Both gases were released to the atmosphere. This shows how these estuaries function as efficient filters between land and ocean in this important region.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
S. T. Lennartz, A. Lehmann, J. Herrford, F. Malien, H.-P. Hansen, H. Biester, and H. W. Bange
Biogeosciences, 11, 6323–6339, https://doi.org/10.5194/bg-11-6323-2014, https://doi.org/10.5194/bg-11-6323-2014, 2014
Short summary
Short summary
A time series of nine oceanic parameters from the coastal time series station Boknis Eck (BE, southwestern Baltic Sea) in the period of 1957-2013 is analysed with respect to seasonal cycles and long-term trends. Most striking was a paradoxical decreasing trend in oxygen with a simultaneous decline in eutrophication. Possible reasons for this paradox, e.g. processes related to warming temperatures such as increased decomposition of organic matter or altered ventilation, are discussed.
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
D. L. Arévalo-Martínez, M. Beyer, M. Krumbholz, I. Piller, A. Kock, T. Steinhoff, A. Körtzinger, and H. W. Bange
Ocean Sci., 9, 1071–1087, https://doi.org/10.5194/os-9-1071-2013, https://doi.org/10.5194/os-9-1071-2013, 2013
L. Stramma, H. W. Bange, R. Czeschel, A. Lorenzo, and M. Frank
Biogeosciences, 10, 7293–7306, https://doi.org/10.5194/bg-10-7293-2013, https://doi.org/10.5194/bg-10-7293-2013, 2013
I.-N. Kim, K. Lee, H. W. Bange, and A. M. Macdonald
Biogeosciences, 10, 6783–6792, https://doi.org/10.5194/bg-10-6783-2013, https://doi.org/10.5194/bg-10-6783-2013, 2013
C. A. Marandino, S. Tegtmeier, K. Krüger, C. Zindler, E. L. Atlas, F. Moore, and H. W. Bange
Atmos. Chem. Phys., 13, 8427–8437, https://doi.org/10.5194/acp-13-8427-2013, https://doi.org/10.5194/acp-13-8427-2013, 2013
K. Laß, H. W. Bange, and G. Friedrichs
Biogeosciences, 10, 5325–5334, https://doi.org/10.5194/bg-10-5325-2013, https://doi.org/10.5194/bg-10-5325-2013, 2013
C. Zindler, A. Bracher, C. A. Marandino, B. Taylor, E. Torrecilla, A. Kock, and H. W. Bange
Biogeosciences, 10, 3297–3311, https://doi.org/10.5194/bg-10-3297-2013, https://doi.org/10.5194/bg-10-3297-2013, 2013
L. M. Zamora, A. Oschlies, H. W. Bange, K. B. Huebert, J. D. Craig, A. Kock, and C. R. Löscher
Biogeosciences, 9, 5007–5022, https://doi.org/10.5194/bg-9-5007-2012, https://doi.org/10.5194/bg-9-5007-2012, 2012
Cited articles
Adeleke, B. B. and Wan, J. K. S.: Further ESR evidence of the primary N-N cleavage in the photolysis of dimethylnitrosamine: Indirect spin trapping of the primary radical NO, Mol. Photochem., 6, 329–331, 1974.
Alarcón, G. and Ulloa, O.: Cruise Report, MOOMZ-2, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile, 28 pp., 2009.
Alpert, C., Ramdev, N., George, D., and Loscalzo, J.: Detection of S-nitrosothiols and other nitric oxide derivatives by photolysis-chemiluminescence spectrometry, Anal. Biochem., 245, 1–7, 1997.
Bange, H. W.: Gaseous nitrogen compounds (NO, N2O, N2, NH3) in the ocean, in: Nitrogen in the Marine Environment, 2, edited by: Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., Elsevier, Amsterdam, the Netherlands, 51–94, 2008
Canfield, D. E., Stewart, F. J., Thamdrup, B., De Brabandere, L., Dalsgaard, T., Delong, E. F., Revsbech, N. P., and Ulloa, O.: A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean coast, Science, 330, 1375–1378, 2010.
Cox, R. D.: Determination of nitrate and nitrite at the parts per billion level by chemiluminescence, Anal. Chem., 52, 332–335, 1980.
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Canfield, D. E., and DeLongg, E. F.: Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile, mBio, 5, e01966-14, https://doi.org/10.1128/mBio.01966-14, 2014.
De Brabandere, L., Thamdrup, B., Revsbech, N. P., and Foadi, R.: A critical assessment of the occurrence and extend of oxygen contamination during anaerobic incubations utilizing commercially available vials, J. Microbiol. Meth., 88, 147–154, 2012.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., and Strous, M.: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 464, 543–548, 2010.
Ettwig, K. F., Speth, D. R., Reimann, J., Wu, M. L., Jetten, M. S. M., and Keltjens, J. T.: Bacterial oxygen production in the dark, Front. Microbiol., 3, 273, 2012.
Firestone, M. K., Firestone, R. B., and Tiedje, J. M.: Nitric oxide as an intermediate in denitrification: Evidence from nitrogen-13 isotope exchange, Biochem. Biophy. Res. Co., 91, 10–16, 1979.
Freitag, A. and Bock, E.: Energy conservation in Nitrobacter, FEMS Microbiol. Lett., 66, 157–162, 1990.
Garside, C.: A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrite in seawater, Mar. Chem., 11, 159–167, 1982.
Goldstick, T. K. and Fatt, I.: Diffusion of oxygen in solutions of blood proteins, Chem. Eng. Prog. S. Ser., 66, 101–113, 1970.
Hawkins, T. D., Bradley, B. J., and Davy, S. K.: Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model sea anemone-dinoflagellate symbiosis, FASEB J., 12, 4790–4798, 2013.
Hetrick, E. M. and Schoenfisch, M. H.: Analytical chemistry of nitric oxide, Annu. Rev. Anal. Chem., 2, 409–433, 2009.
Ignarro, L. J.: Biosynthesis and metabolism of endothelium-derived nitric oxide, Annu. Rev. Pharmacol., 30, 535–560, 1990.
Ignarro, L. J., Lippton, H., Edwards, J. C., Baricos, W. H., Hyman, A. L., Kadowitz, P. J., and Gruetter, C. A.: Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates, J. Pharmacol. Exp. Ther., 218, 739–749, 1981.
Ignarro, L. J., Fukuto, J. M., Griscavage, J. M., Rogers, N. E., and Byrns, R. E.: Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine, P. Natl. Acad. Sci. USA, 90, 8103–8107, 1993.
Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P., Günter, M., LaRoche, J., Lavik, G., and Kuypers, M. M. M.: Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones, PLoS ONE, 6, e29299, https://doi.org/10.1371/journal.pone.0029299, 2011.
Kampschreur, M. J., Picioreanu, C., Tan, N., Kleerebezem, R., Jetten, M. S. M., and van Loosdrecht, M. C. M.: Unraveling the source of nitric oxide emission during nitrification, Water Environ. Res., 79, 2499–2509, 2007.
Kartal, B., Maalcke, W. J., de Almeida, N. M., Cirpus, I., Gloerich, J., Geert, W., den Camp, H., Harhangi, H. R., Janssen-Megens, E. M., Francoijs, K. J., Stunnenberg, H. G., Keltjens, J. T., Jetten, M. S. M., and Strous, M.: Molecular mechanism of anaerobic ammonium oxidation, Nature, 479, 127–130, 2011.
Kester, R. A., Wijlhuizen, A. G., Duyts, H., and Laanbroek, H. J.: Chemiluminescence analysis of nitric oxide in small-volume samples by a modified injection method, Biol. Fert. Soils, 18, 260–262, 1994.
Kharitonov, V. G., Sundquist, A. R., and Sharma, V. S.: Kinetics of nitric oxide autoxidation in aqueous solution, J. Biol. Chem., 269, 5881–5883, 1994.
Lewis, R. S. and Deen, W. M.: Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions, Chem. Res. Toxicol., 7, 568–574, 1994.
Lipschultz, F., Zafiriou, O. C., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W.: Production of NO and N2O by soil nitrifying bacteria, Nature, 294, 641–643, 1981.
Menon, N. K., Pataricza, J., Binder, T., and Bing, R. J.: Reduction of biological effluents in purge and trap micro reaction vessels and detection of endothelium-derived nitric oxide (edno) by chemiluminescence, J. Mol. Cell. Cardiol., 123, 389–393, 1991.
Mesaros, S., Grunfeld, S., Mesarosova, A., Bustin, D., and Malinski, T.: Determination of nitric oxide saturated (stock) solution by chronoamperometry on a porphyrine microelectrode, Anal. Chim. Acta, 339, 265–270, 1997.
Olasehinde, E. F., Takeda, K., and Sakugawa, H.: Development of an analytical method for nitric oxide radical determination in natural waters, Anal. Chem., 81, 6843–6850, 2009.
Olasehinde, E. F., Takeda, K., and Sakugawa, H.: Photochemical production and consumption mechanisms of nitric oxide in seawater, Environ. Sci. Technol., 44, 8403–8408, 2010.
Samouilov, A. and Zweier, J. L.: Development of chemiluminescence-based methods for specific quantitation of nitrosylated thiols, Anal. Biochem., 258, 322–330, 1998.
Schreiber, F., Polerecky, L., and de Beer, D.: Nitric Oxide Microsensor for high spatial resolution measurements in biofilms and sediments, Anal. Chem., 80, 1152–1158, 2008.
Stauffer, D.: Das Chromatogramm, in: Chromatogramme richtig integrieren und bewerten: Ein Praxishandbuch für die HPLC und GC, edited by: Kromidas, S. and Kuss, H., Wiley-VCH, Weinheim, Germany, 2008.
Strady, E., Pohl, C., Yakushev, E. V., Krüger, S., and Hennings, U.: PUMP–CTD-System for trace metal sampling with a high vertical resolution. A test in the Gotland Basin, Baltic Sea, Chemosphere, 70, 1309–1319, 2008.
Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M. W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C., Médigue, C., Collingro, A., Snel, B., Dutilh, B. E., Op den Camp, H. J. M., van der Drift, C., Cirpus, I., van de Pas-Schoonen, K. T., Harhangi, H. R., van Niftrik, L., Schmid, M., Keltjens, J., van de Vossenberg, J., Kartal, B., Meier, H., Frishman, D., Huynen, M. A., Mewes, H.-W., Weissenbach, J., Jetten, M. S. M., Wagner, M., and Le Paslier, D.: Deciphering the evolution and metabolism of an anammox bacterium from a community genome, Nature, 440, 790–794, 2006.
Thamdrup, B.: New pathways and processes in the global nitrogen cycle, Annu. Rev. Ecol. Evol. S., 43, 407–428, 2012.
Tiano, L., Garcia-Robledo, E., Dalsgaard, T., Devol, A. H., Ward, B. B., Ulloa, O., Canfield, D. E., and Revsbech N. P.: Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones, Deep-Sea Res. Pt. I, 94, 173–183, 2014.
Vardi, A.: Cell signaling in marine diatoms, Commun. Integr. Biol., 1, 134–136, 2008.
Vardi, A., Formiggini, F., Casotti, R., De Martino, A., Ribalet, F., Miralto, A., and Bowler, C.: A stress surveillance system based on calcium and nitric oxide in marine diatoms, PLoS Biol., 4, e60, 2006.
Vardi, A., Bidle, K. D., Kwityn, C., Hirsh, D. J., Thompson, S. M., Callow, J. A., Falkowski, P., and Bowler, C.: A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes, Curr. Biol., 18, 895–899, 2008.
Ward, B. B. and Zafiriou, O. C.: Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific, Deep-Sea Res., 35, 1127–1142, 1988.
Xing, L., Zhang, Z., Liu, C., Wu, Z., and Lin, C.: Amperometric detection of nitric oxide with microsensor in the medium of seawater and its applications, Sensors, 5, 537–545, 2005.
Yoshinari, T.: Nitrite and nitrous oxide production by Methylosinus trichosporium, Can. J. Microbiol., 31, 139–144, 1985.
Zacharia, I. G. and Deen, W. M.: Diffusivity and solubility of nitric oxide in water and saline, Ann. Biomed. Eng., 33, 214–222, 2005.
Zafiriou, O. C. and McFarland, M.: Determination of trace levels of nitric oxide in aqueous solution, Anal. Chem., 52, 1662–1667, 1980.
Zafiriou, O. C. and True, M. B.: Nitrite photolysis in seawater by sunlight, Mar. Chem., 8, 9–32, 1979.
Zhang, Z., Xing, L., Jiang, L., Wang, Y., Ren, C., and Cai, W.: The electrochemical detremination of nitric oxide in seawater media with microelectrodes, Sensors, 3, 304–313, 2003.
Zumft, W. G.: Cell biology and molecular basis of denitrification, Microbiol. Mol. Biol. R., 61, 533–616, 1997.